IL-36Α Expression Is Elevated in Ulcerative Colitis and Promotes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Data Sheet Huil36g (152 A.A.)
Growth Factor Data Sheet GoldBio growth factors are manufactured for RESEARCH USE ONLY and cannot be sold for human consumption! Interleukin-36G (IL36G) is a pro-inflammatory cytokine that plays an important role in the pathophysiology of several diseases. IL36A, IL36B and IL36G (formerly IL1F6, IL1F8, and IL1F9) are IL1 family members that signal through the IL1 receptor family members IL1Rrp2 (IL1RL2) and IL1RAcP. IL36G is secreted when transfected into 293-T cells and could constitute part of an independent signaling system analogous to that of IL1A and IL1B receptor agonist and interleukin-1 receptor type I (IL1R1). Furthermore, IL36G also can function as an agonist of NFκB activation through the orphan IL1- receptor-related protein 2. Human IL36G (152 a.a.) shares 58%, 59%, 68% and 69% amino acid sequence identity with mouse, rat, bovine and equine IL36G, respectively, and 23-57% amino acid sequence identity with other family members. Catalog Number 1110-36F Product Name IL36G (IL-36 gamma), Human (152 a.a.) Recombinant Human Interleukin-36γ IL36G, IL36γ Interleukin 1 Homolog 1 (IL1H1) Interleukin 1-Related Protein 2 (IL1RP2) Interleukin 1 Family, Member 9 (IL1F9) Source Escherichia coli MW ~17.0 kDa (152 amino acids) Sequence SMCKPITGTI NDLNQQVWTL QGQNLVAVPR SDSVTPVTVA VITCKYPEAL EQGRGDPIYL GIQNPEMCLY CEKVGEQPTL QLKEQKIMDL YGQPEPVKPF LFYRAKTGRT STLESVAFPD WFIASSKRDQ PIILTSELGK SYNTAFELNI ND Accession Number Q9NZH8 Purity >95% by SDS-PAGE and HPLC analyses Biological Activity Fully biologically active when compared to standard. The ED50 as determined by its ability to induce IL-8 secretion by human preadipocytes is less than 10 ng/ml, corresponding to a specific activity of >1 × 105 IU/mg. -
Expression of the Alpha, Beta, and Gamma Subunits of the Interleukin-2
Expression of the Alpha, Beta, and Gamma Subunits of the Interleukin-2 Receptor by Human Vascular Smooth Muscle Cells A thesis submitted in partial fulfillment Of the requirements for the degree of Master of Science By Sultan Alhayyani B.S. King Abdulaziz University 2014 Wright State University WRIGHT STATE UNIVERSITY SCHOOL OF GRADUATE STUDIES April 14, 2014 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY SULTAN ALHAYYANI ENTITLED EXPRESSION OF THE ALPHA, BETA, AND GAMMA SUBUNITS OF THE INTERLEUKIN-2 RECEPTOR BY HUMAN VASCULAR SMOOTH MUSCLE CELLS BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science. Lucile Wrenshall, MD, Ph.D. Thesis Director Committee on Final Examination Lucile Wrenshall, MD, Ph.D. Barbara E. Hull, Ph.D. Professor of Neuroscience, Cell Biology, and Director of Microbiology and Physiology Immunology Program, College of Science and Mathematics Barbara E. Hull, Ph.D. Professor of Biological Sciences Nancy J. Bigley, Ph.D. Professor of Microbiology and Immunology John Miller, Ph.D. Adjunct Assistant Professor Of Neuroscience, Cell Biology, and Physiology Robert E. W. Fyffe, Ph.D. Vice President of Research and Dean of the Graduate School ABSTRACT Alhayyani, Sultan. M.S. Microbiology and Immunology Graduate Program, Wright State University, 2014. Expression of the Alpha, Beta, and Gamma Subunits of the Interleukin-2 Receptor by Human Vascular Smooth Muscle Cells. Interleukin 2 (IL-2) is a member of the cytokine family and contributes to the proliferation, survival, and death of lymphocytes [1]. The interleukin-2 receptor (IL-2) is a tripartite receptor commonly expressed on the surfaces of many lymphoid cells and is composed of three non-covalently associated subunits, alpha (α) (CD25), beta (β) (CD122), and gamma (γ) (CD132) [2]. -
Huil36g 169 Data Sheet
Growth Factor Data Sheet GoldBio growth factors are manufactured for RESEARCH USE ONLY and cannot be sold for human consumption! Interleukin-36G (IL36G) is a pro-inflammatory cytokine that plays an important role in the pathophysiology of several diseases. IL36A, IL36B and IL36G; (formerly IL1F6, IL1F8, and IL1F9) are IL1 family members that signal through the IL1 receptor family members IL1Rrp2 (IL1RL2) and IL1RAcP. IL36B is secreted when transfected into 293-T cells and could constitute part of an independent signaling system analogous to that of IL1A and IL1B receptor agonist and interleukin-1 receptor type I (IL1R1). Furthermore, IL36G also can function as an agonist of NFκB activation through the orphan IL1- receptor-related protein 2. Recombinant human IL36G is synthesized as a protein that contains no signal sequence, no prosegment and no potential N-linked glycosylation site.There is a 53% amino acid homology between human and mouse IL36G. IL36G also has a 25-55% amino acid homology with IL36G and IL1RN, IL1B, IL36RN, IL36A, IL37, IL36B and IL1F10. Catalog Number 1110-36E Product Name IL36G (IL-36 gamma), Human (169 a.a.) Recombinant Human Interleukin-36γ IL36G, IL36γ Interleukin 1 Homolog 1 (IL1H1) Interleukin 1-Related Protein 2 (IL1RP2) Interleukin 1 Family, Member 9 (IL1F9) Source Escherichia coli MW 18.7 kDa (169 amino acids) Sequence MRGTPGDADG GGRAVYQSMC KPITGTINDL NQQVWTLQGQ NLVAVPRSDS VTPVTVAVIT CKYPEALEQG RGDPIYLGIQ NPEMCLYCEK VGEQPTLQLK EQKIMDLYGQ PEPVKPFLFY RAKTGRTSTL ESVAFPDWFI ASSKRDQPII LTSELGKSYN TAFELNIND Accession Number Q9NZH8 Purity >95% by SDS-PAGE and HPLC analyses Biological Activity Fully biologically active when compared to standard. The specific activity is determined by its binding ability in a functional ELISA. -
Genetic Determinants of Circulating Interleukin-1 Receptor Antagonist Levels and Their Association with Glycemic Traits
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Trepo - Institutional Repository of Tampere University GENETIC DETERMINANTS OF CIRCULATING INTERLEUKIN-1 RECEPTOR ANTAGONIST LEVELS AND THEIR ASSOCIATION WITH GLYCEMIC TRAITS Marja-Liisa Nuotio Syventävien opintojen kirjallinen työ Tampereen yliopisto Lääketieteen yksikkö Tammikuu 2015 Tampereen yliopisto Lääketieteen yksikkö NUOTIO MARJA-LIISA: GENETIC DETERMINANTS OF CIRCULATING INTERLEUKIN-1 RECEPTOR ANTAGONIST LEVELS AND THEIR ASSOCIATION WITH GLYCEMIC TRAITS Kirjallinen työ, 57 s. Ohjaaja: professori Mika Kähönen Tammikuu 2015 Avainsanat: sytokiinit, insuliiniresistenssi, tyypin 2 diabetes, tulehdus, glukoosimetabolia, genominlaajuinen assosiaatioanalyysi (GWAS) Tulehdusta välittäviin sytokiineihin kuuluvan interleukiini 1β (IL-1β):n kohonneen systeemisen pitoisuuden on arveltu edesauttavan insuliiniresistenssin kehittymistä ja johtavan haiman β-solujen toimintahäiriöihin. IL-1β:n sisäsyntyisellä vastavaikuttajalla, interleukiini 1 reseptoriantagonistilla (IL-1RA), on puolestaan esitetty olevan suojaava rooli mainittujen fenotyyppien kehittymisessä päinvastaisten vaikutustensa ansiosta. IL-1RA:n suojaavan roolin havainnollistamiseksi työssä Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits tunnistettiin veren IL-1RA- pitoisuuteen assosioituvia geneettisiä variantteja, minkä jälkeen selvitettiin näiden yhteyttä glukoosi- ja insuliinimetaboliaan liittyvien muuttujien-, sekä -
Interleukin (IL)17A, F and AF in Inflammation: a Study in Collageninduced Arthritis and Rheumatoid Arthritis
bs_bs_banner Clinical and Experimental Immunology ORIGINAL ARTICLE doi:10.1111/cei.12376 Interleukin (IL)-17A, F and AF in inflammation: a study in collagen-induced arthritis and rheumatoid arthritis S. Sarkar,* S. Justa,* M. Brucks,* Summary J. Endres,† D. A. Fox,† X. Zhou,* Interleukin (IL)-17 plays a critical role in inflammation. Most studies to date F. Alnaimat,* B. Whitaker,‡ have elucidated the inflammatory role of IL-17A, often referred to as IL-17. J. C. Wheeler,‡ B. H. Jones§ and IL-17F is a member of the IL-17 family bearing 50% homology to IL-17A S. R. Bommireddy* and can also be present as heterodimer IL-17AF. This study elucidates the *Section of Rheumatology, Department of Medicine, and the Arizona Arthritis Center, distribution and contribution of IL-17A, F and AF in inflammatory arthritis. University of Arizona, Tucson, AZ, †Divison of Neutralizing antibody to IL-17A alone or IL-17F alone or in combination Rheumatology, Department of Internal Medicine, was utilized in the mouse collagen-induced arthritis (CIA) model to eluci- University of Michigan, Ann Arbor, MI, and date the contribution of each subtype in mediating inflammation. IL-17A, F ‡Biologics Research and §Immunology Discovery and AF were all increased during inflammatory arthritis. Neutralization of Research, Janssen Research and Development, IL-17A reduced the severity of arthritis, neutralization of IL-17A+IL-17F had Spring House, PA, USA the same effect as neutralizing IL-17A, while neutralization of IL-17F had no effect. Moreover, significantly higher levels of IL-17A and IL-17F were detected in peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA) in comparison to patients with osteoarthritis (OA). -
Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor-Infiltrating Lymphocytes
Published OnlineFirst February 18, 2016; DOI: 10.1158/0008-5472.CAN-15-1548 Cancer Tumor and Stem Cell Biology Research Inflammation-Dependent IL18 Signaling Restricts Hepatocellular Carcinoma Growth by Enhancing the Accumulation and Activity of Tumor- Infiltrating Lymphocytes Geoffrey J. Markowitz1, Pengyuan Yang1,2,3, Jing Fu3, Gregory A. Michelotti4, Rui Chen1, Jianhua Sui5, Bin Yang2, Wen-Hao Qin3, Zheng Zhang6, Fu-Sheng Wang6, Anna Mae Diehl4, Qi-Jing Li7, Hongyang Wang3, and Xiao-Fan Wang1 Abstract Chronic inflammation in liver tissue is an underlying cause of IL18R1 deletion increased tumor burden. Mechanistically, we hepatocellular carcinoma. High levels of inflammatory cytokine foundthatIL18exertedinflammation-dependent tumor-sup- IL18 in the circulation of patients with hepatocellular carcinoma pressive effects largely by promoting the differentiation, activ- correlates with poor prognosis. However, conflicting results have ity, and survival of tumor-infiltrating T cells. Finally, differences been reported for IL18 in hepatocellular carcinoma development in the expression of IL18 in tumor tissue versus nontumor and progression. In this study, we used tissue specimens from tissueweremorepredictiveofpatientoutcomethanoverall hepatocellular carcinoma patients and clinically relevant mouse tissue expression. Taken together, our findings resolve a long- models of hepatocellular carcinoma to evaluate IL18 expression standing contradiction regarding a tumor-suppressive role for and function. In a mouse model of liver fibrosis that recapitulates IL18 in established hepatocellular carcinoma and provide a a tumor-promoting microenvironment, global deletion of the mechanistic explanation for the complex relationship between IL18 receptor IL18R1 enhanced tumor growth and burden. Sim- its expression pattern and hepatocellular carcinoma prognosis. ilarly, in a carcinogen-induced model of liver tumorigenesis, Cancer Res; 76(8); 1–12. -
Interleukin-33 Signaling Exacerbates Experimental Infectious Colitis by Enhancing Gut Permeability and Inhibiting Protective Th17 Immunity
www.nature.com/mi ARTICLE OPEN Interleukin-33 signaling exacerbates experimental infectious colitis by enhancing gut permeability and inhibiting protective Th17 immunity Vittoria Palmieri1, Jana-Fabienne Ebel1, Nhi Ngo Thi Phuong1, Robert Klopfleisch2, Vivian Pham Vu3,4, Alexandra Adamczyk1, Julia Zöller1, Christian Riedel5, Jan Buer1, Philippe Krebs3, Wiebke Hansen1, Eva Pastille1 and Astrid M. Westendorf 1 A wide range of microbial pathogens is capable of entering the gastrointestinal tract, causing infectious diarrhea and colitis. A finely tuned balance between different cytokines is necessary to eradicate the microbial threat and to avoid infection complications. The current study identified IL-33 as a critical regulator of the immune response to the enteric pathogen Citrobacter rodentium.We observed that deficiency of the IL-33 signaling pathway attenuates bacterial-induced colitis. Conversely, boosting this pathway strongly aggravates the inflammatory response and makes the mice prone to systemic infection. Mechanistically, IL-33 mediates its detrimental effect by enhancing gut permeability and by limiting the induction of protective T helper 17 cells at the site of infection, thus impairing host defense mechanisms against the enteric pathogen. Importantly, IL-33-treated infected mice supplemented with IL-17A are able to resist the otherwise strong systemic spreading of the pathogen. These findings reveal a novel IL-33/IL-17A crosstalk that controls the pathogenesis of Citrobacter rodentium-driven infectious colitis. Manipulating the dynamics of cytokines may offer new therapeutic strategies to treat specific intestinal infections. 1234567890();,: Mucosal Immunology (2021) 14:923–936; https://doi.org/10.1038/s41385-021-00386-7 INTRODUCTION epithelial cells, and endothelial cells in response to injury6. -
Interleukin 2 Medical Intensive Care Unit (4MICU)
Interleukin 2 Medical Intensive Care Unit (4MICU) Ronald Reagan UCLA Medical Center 757 Westwood Plaza Los Angeles, CA 90095 Main Phone: (310) 267-7441 Fax: (310) 267-3785 About Our Unit The Medical Intensive Care Unit (MICU) cares Quick for critically ill patients in an intensive care Reference Guide environment, with nursing staff specially trained in the administration of Interleukin 2 therapy. Unit Director / Manager Mark Flitcraft, RN, MSN One registered nurse (RN) is assigned to take (310) 267-9529 care of a maximum of two patients. Our Medical Clinical Nurse Specialist Intensive Care Unit patient rooms are designed Yuhan Kao, RN, MSN, CNS (310) 267-7465 to allow nurses constant visual contact with their patients. As a safety precaution, the Medical Assistant Manager Sherry Xu, RN, BA, CCRN Intensive Care Unit is a closed unit and requires (310) 267-7485 permission to enter by intercom. Clinical Case Manager Each private-patient-care room contains the Connie Lefevre (310) 267-9740 most advanced intensive-care equipment available, including cardiac-monitoring and Clinical Social Worker Codie Lieto emergency-response equipment. The curtains in (310) 267-9741 the room will usually be drawn to keep your room Charge Nurse On-Duty more private. (310) 267-7480 or (310) 267-7482 A brief tour is available on weekdays for patients and visitors interested in walking through the unit Patient Affairs (310) 267-9113 and meeting the staff before arrival. To arrange for a tour, please call the nurse manager at Respiratory Supervisor (310) 267-9529. Orna Molayeme, MA, RCP, RRT, NPS (310) 267-8921 UCLAHEALTH.ORG 1-800-UCLA-MD1 (1-800-825-2631) About Our Unit During Your Stay Quick The Medical Team Reference Guide During each shift, you will be assigned a registered nurse (RN) and a clinical care partner (CCP). -
Cellular and Molecular Signatures in the Disease Tissue of Early
Cellular and Molecular Signatures in the Disease Tissue of Early Rheumatoid Arthritis Stratify Clinical Response to csDMARD-Therapy and Predict Radiographic Progression Frances Humby1,* Myles Lewis1,* Nandhini Ramamoorthi2, Jason Hackney3, Michael Barnes1, Michele Bombardieri1, Francesca Setiadi2, Stephen Kelly1, Fabiola Bene1, Maria di Cicco1, Sudeh Riahi1, Vidalba Rocher-Ros1, Nora Ng1, Ilias Lazorou1, Rebecca E. Hands1, Desiree van der Heijde4, Robert Landewé5, Annette van der Helm-van Mil4, Alberto Cauli6, Iain B. McInnes7, Christopher D. Buckley8, Ernest Choy9, Peter Taylor10, Michael J. Townsend2 & Costantino Pitzalis1 1Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK. Departments of 2Biomarker Discovery OMNI, 3Bioinformatics and Computational Biology, Genentech Research and Early Development, South San Francisco, California 94080 USA 4Department of Rheumatology, Leiden University Medical Center, The Netherlands 5Department of Clinical Immunology & Rheumatology, Amsterdam Rheumatology & Immunology Center, Amsterdam, The Netherlands 6Rheumatology Unit, Department of Medical Sciences, Policlinico of the University of Cagliari, Cagliari, Italy 7Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow G12 8TA, UK 8Rheumatology Research Group, Institute of Inflammation and Ageing (IIA), University of Birmingham, Birmingham B15 2WB, UK 9Institute of -
The Role of Interleukin-36 in Inflammatory Skin Diseases
UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DOTTORATO DI RICERCA IN MEDICINA CLINICA E SPERIMENTALE CURRICULUM IN SCIENZE IMMUNOLOGICHE E DERMATOLOGICHE XXIX Ciclo Coordinatore: Prof. Gianni Marone TESI DI DOTTORATO TITOLO The role of interleukin-36 in inflammatory skin diseases TUTOR/RELATORE CANDIDATA Chiar.mo Dott.ssa Giuseppina Caiazzo Prof. Fabio Ayala INDEX Summary .…………………………………………………………. page 2 I CHAPTER IL-36 cytokines……………………………………………………... page 3 IL-36 and their immune function………………………………….. page 5 II CHAPTER IL-36 and diseases…………………………………………………… page 7 IL-36 and skin diseases……………………………………………… page 7 Pathogenesis of psoriasis …………………………………………… page 9 Pathogenesis of allergic contact dermatitis………………………… page 12 Pathogenesis of polymorphic light eruption..………………………. page14 III CHAPTER Experimental Design………………………………………………..... page 17 Materials and methods........................................................................ page 17 Results……………………………………………………………….... page 24 VI CHAPTER Discussion……………………………………………………………… page 31 References 1 Summary Interleukin (IL)-36 cytokines are new members of the IL-1 family, that include pro- inflammatory factors, IL-36α, IL-36β and IL-36γ, and a natural receptor antagonist IL-36Ra. IL-36 cytokines are expressed in a specific manner by monocytes/macrophages, dendritic cells (DCs), T cells subsets, keratinocytes, Langerhans cells, and mucosal epithelium. Since IL-36 cytokines are predominantly expressed in keratinocytes it is not surprising that specifically skin disorders have been -
Expression of Inflammation-Related Genes Is Altered in Gastric Tissue of Patients with Advanced Stages of NAFLD
Hindawi Publishing Corporation Mediators of Inflammation Volume 2013, Article ID 684237, 10 pages http://dx.doi.org/10.1155/2013/684237 Clinical Study Expression of Inflammation-Related Genes Is Altered in Gastric Tissue of Patients with Advanced Stages of NAFLD Rohini Mehta,1,2 Aybike Birerdinc,1,2 Arpan Neupane,1,2 Amirhossein Shamsaddini,1,2 Arian Afendy,1,3 Hazem Elariny,1,3 Vikas Chandhoke,2 Ancha Baranova,1,2 and Zobair M. Younossi1,3 1 Betty and Guy Beatty Obesity and Liver Program, Inova Health System, Falls Church, VA 22042, USA 2 Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Fairfax, VA 22030, USA 3 Center for Liver Diseases and Department of Medicine, Inova Fairfax Hospital, Falls Church, VA 22042, USA Correspondence should be addressed to Zobair M. Younossi; [email protected] Received 15 December 2012; Revised 12 February 2013; Accepted 14 February 2013 Academic Editor: David Bernardo Ordiz Copyright © 2013 Rohini Mehta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Obesity is associated with chronic low-grade inflammation perpetuated by visceral adipose. Other organs, particularly stomach and intestine, may also overproduce proinflammatory molecules. We examined the gene expression patterns in gastric tissue of morbidly obese patients with nonalcoholic fatty liver disease (NAFLD) and compared the changes in gene expression in different histological forms of NAFLD. Stomach tissue samples from 20 morbidly obese NAFLD patients who were undergoing sleeve gastrectomy were profiled using qPCR for 84 genes encoding inflammatory cytokines, chemokines, their receptors, and other components of inflammatory cascades. -
Modulation of the Inflammatory Response After Spinal Cord Injury
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en MODULATION OF THE INFLAMMATORY RESPONSE AFTER SPINAL CORD INJURY Presented by Jesús Amo Aparicio ACADEMIC DISSERTATION To obtain the degree of PhD in Neuroscience by the Universitat Autònoma de Barcelona 2019 Directed by Dr. Rubèn López Vales Tutorized by Dr. Xavier Navarro Acebes INDEX SUMMARY Page 7 INTRODUCTION Page 13 - Spinal cord Page 15 - Spinal cord injury Page 17 - Incidence and causes Page 18 - Types of SCI Page 18 - Biological events after SCI Page 20 - Studying SCI Page 24 - Animal models Page 24 - Lesion models Page 24 - Current therapies for SCI Page 25 - Basic principles of the immune system Page 27 - Innate immune response Page 27 - Adaptive immune response Page 28 - Inflammatory response Page 29 - Inflammatory response after SCI Page 30 - Modulation of injury environment Page 36 - Interleukin 1 Page 36 - Interleukin 37 Page 40 - Interleukin 13 Page 44 OBJECTIVES Page 47 MATERIALS AND METHODS Page 51