CONSPICUOUSNESS of BAND-WINGED GRASSHOPPERS to PREDATORS and CONSPECIFICS (ORTHOPTERA: ACRIDIDAE: OEDIPODINAE) a Senior Thesis P

Total Page:16

File Type:pdf, Size:1020Kb

CONSPICUOUSNESS of BAND-WINGED GRASSHOPPERS to PREDATORS and CONSPECIFICS (ORTHOPTERA: ACRIDIDAE: OEDIPODINAE) a Senior Thesis P CONSPICUOUSNESS OF BAND-WINGED GRASSHOPPERS TO PREDATORS AND CONSPECIFICS (ORTHOPTERA: ACRIDIDAE: OEDIPODINAE) A Senior Thesis Presented to The Faculty of the Department of Organismal Biology and Ecology Colorado College Bachelor of Arts Degree in Biology BY Brae A. Salazar May, 2018 Approved by: ____________________________________________ Dr. Brian Linkhart Primary Thesis Advisor ____________________________________________ Dr. Emilie Gray Secondary Thesis Advisor ABSTRACT In band-winged grasshoppers (subfamily Oedipodinae), the variety of hindwing colors—ranging from blue to red—is both striking and unexplained. Hindwing color can vary both within and between species. However, the functional significance, if any, of this variation is unknown. Notably, the colorful hindwings are revealed only in flight, and remain hidden in stationary individuals. Although experimental evidence is lacking, this flash of color has been proposed to 1) startle potential predators, 2) to signal the quality of a potential mate, and 3) to enhance species recognition. To elucidate their potential function(s), here I measure the spectral and spatial characteristics of the hindwing patterns in 6 different band-winged species. I then model how an avian predator or potential mate might view grasshopper wings at behaviorally relevant distances. These data suggest that there is a rapid change in conspicuousness as a grasshopper moves from rest to flight regardless of the color vision of the receiver. However, there is little within species variation in coloration or wing patterning. My results indicate that while hindwings 1) may function as a protean defense against avian predators, 2) it is unlikely that they serve as a signal of mate quality, although, they 3) may deliver enough information for species recognition. This research helps to elucidate evolutionary relationships leading to the diversification of behavior, visual systems, and coloration within band-winged grasshoppers. Key Words: Oedipodinae, band-winged grasshopper, visual signaling, morphological variation, communication 2 INTRODUCTION Ecology and evolution are driven by studies that explore morphological variation. Morphological variation can result from numerous selective pressures including those of 1) predation, 2) sexual selection for interspecific discrimination, and/or 3) sexual selection for intraspecific discrimination of mate quality. Alternatively, neutral evolution can also lead to variable morphological outcomes. Nonetheless, we often observe morphological variation under influence of natural selection (Badyaev and Foresman 2000; Van Valen 1965; Caumul and Polly 2005). For example, in the passion-vine butterfly, wing coloration and pattern are correlated with success in both predator deterrence and mate attraction (Finkbeiner et al. 2014). Additionally, rhinoceros beetles exhibit a large diversity of horns; structurally specialized horns provide a competitive advantage in male to male combat (McCullough et al. 2014). Many species of bird exhibit plumage variability as well. This variability often signals status and aids in mate attraction (Rohwer 1975; 1977). Not only can morphological variability lead to increased functional efficiency, it can also provide information about the identity and quality of an individual as both a potential target for predation and/or courtship. However, potential predators and conspecifics cannot respond to these cues unless they are able to receive and discriminate between the variants present. Spatial and color vision vary greatly between animals (Cronin 2014; Land and Nilsson 2002; Eaton and Johnson 2007); visual signals that are conspicuous to one 3 receiver may be inconspicuous or cryptic to another (Speiser et al. 2013; Brandley et al. 2016). This visual sensory differentiation may be present both within and between species (Munz 1958; Lythogoe 1968; Menzel 1979; Jacobs 1984; Kornicker and Harrison-Nelson 1997; Marshall et al. 1999; Petrowitz et al. 2000; Briscoe and Chittka 2001; Frentiu and Briscoe 2008; Gumm et al. 2012; Brandley et al. 2013). Functionally, visual differentiation allows for a single color or structure to relay varying degrees of information to multiple perceivers (Brandley et al. 2013). This color or structure may act as a signal, and thereby, is under selection due to the signal’s behavioral effect on potential receiver(s) (Cronin et al. 2014). Therefore, the study of visual systems is important for investigating morphological evolution through sensory differentiation. If a potential predator can discriminate between intra/interspecific variants of a signal, the signal may function as deterrence to predators. If a conspecific can only detect interspecific variants, then the signal may serve for species recognition. Finally, if a conspecific can detect intraspecific variants, then a signal of mate quality may be present. Otherwise, the inability of a relevant receiver to discriminate between signals would suggest no functional significance in a given role. These variations, then, are considered incidental effects rather than evolved functions (Otte 1974; Gould and Lewontin 1979). Comparing the perception of signals between predators and conspecifics is a key tool for investigating selection forces acting on the diversification of morphology. Often, it is evolutionarily illuminating to explore the communication systems of organisms of interest via spatial and spectral visual modeling (Eaton 1987; Cronin et al. 2014; Stoddard and Prumm 2008; Brandley et al. 2016; Endler et al. 2001). This approach 4 can elucidate the source of pressure(s) leading to inter/intraspecific morphological variation. In band-winged grasshoppers (subfamily Oedipodinae), the variety of hindwing colors—ranging from blue to red—is both striking and unexplained (Figure 1). Hindwing color can vary both within and between species (Otte 1981; Schennum and Willey 1979). Additionally, their hindwings often include a black band of varying size and form. While most species have a small black band extending across the outer margins of the wing, some species have broad bands that fill only the inner margins. The functional significance, if any, of this variation is unknown. Notably, the colorful hindwings are revealed only in flight (Otte 1981). In stationary individuals, their often cryptically colored forewings conceal the hindwings and render the animal inconspicuous (at least to a human observer). When approached by a threat, many species of band-winged grasshoppers have been shown to prefer escape via flight (Cooper 2006; Bateman and Fleming 2014; Kral 2010). To a human observer, the striking appearance of their wings during flight is anything but cryptic. Therefore, previous studies suggest that band-winged grasshoppers’ predator flight response is a form of protean defense—the sudden conspicuous flash of their colored wings and unpredictable flight patterns are a method in which they can momentarily disorient a pursuing predator (Willey and Willey 1969; Humphries and Driver 1970). Despite these claims, no study has experimentally examined whether or not protean behavior decreases the risk of predation in band-winged grasshoppers. Alarmingly, it is only an assumption based solely on human spatial 5 and color vision that band-wings shift from conspicuous to inconspicuous as they transition from flight to rest. Figure 1: Variations in hindwing pattern and color. Pictured from left to right: Disossteira carolina, Arphia conspersa, Trimerotropis verruculata, Arphia pseudonietana, Chortophaga viridifasciata, and Spharagemon equale. In addition to having predator deterrence functions, naturalists have suggested that the hindwing coloration may have diversified under sexual selection (Otte 1970; Willey and Willey 1969). Males have been observed to make short advertising flights in which they flash their hindwings and crepitate (Otte 1981, 1970; Capinera et al. 2001; Niedzlek-Feave 1995; Willey and Willey 1969). Otte (1970) reports that these courtship flights are acoustically and visually conspicuous, causing attraction of the opposite sex. However, results from a field study conducted with Chortophaga viridifasciata postulate that crepitating courtship flights may function not to attract females, but to signal a male’s arrival in a new area. If a female becomes more active in response to the flight, then the male has a greater chance at locating her. Although this hypothesis is suggested, no data indicates an increase in female activity following the courtship flight of a male (NiedZlek-Feave 1995). Additionally, a number of species of band-winged grasshoppers exhibit red hindwings. Notably, a long-wavelength-sensitive photoreceptor has yet to have been detected in any species of band-winged grasshoppers, which is used to detect red coloration 6 (Briscoe and Chittka 2001). Therefore, it would appear erroneous that hindwing coloration has evolved strictly under sexual pressure. If, however, conspecifics can discriminate between interspecific variants, then the signal may serve for species recognition. On the other hand, if females assess the quality of a potential mate via courtship flight, then significant differences in color and/or hindwing structure must 1) be present within a species, and 2) be detected by a conspecific at behaviorally relevant distances. Here, I examine how potential avian predators and conspecifics view six band- winged species (Chortophaga viridifasciata, Dissosteira carolina, Arphia pseudonietana, Arphia conspersa, Spharagemon
Recommended publications
  • The Acridiidae of Minnesota
    Wqt 1lluitttr11ity nf :!alliuur11nta AGRICULTURAL EXPERIMENT STATION BULLETIN 141 TECHNICAL THE ACRIDIIDAE OF MINNESOTA BY M. P. SOMES DIVISION OF ENTOMOLOGY UNIVERSITY FARM, ST. PAUL. JULY 1914 THE UNIVERSlTY OF l\ll.'\1\ESOTA THE 130ARD OF REGENTS The Hon. B. F. :.JELsox, '\finneapolis, President of the Board - 1916 GEORGE EDGAR VINCENT, Minneapolis Ex Officio The President of the l.:niversity The Hon. ADOLPH 0. EBERHART, Mankato Ex Officio The Governor of the State The Hon. C. G. ScnuLZ, St. Paul l'.x Oflicio The Superintendent of Education The Hon. A. E. RICE, \Villmar 191.3 The Hon. CH.\RLES L. Sol\DfERS, St. Paul - 1915 The Hon. PIERCE Bun.ER, St. Paul 1916 The Hon. FRED B. SNYDER, Minneapolis 1916 The Hon. W. J. J\Lwo, Rochester 1919 The Hon. MILTON M. \NILLIAMS, Little Falls 1919 The Hon. }OIIN G. vVILLIAMS, Duluth 1920 The Hon. GEORGE H. PARTRIDGE, Minneapolis 1920 Tl-IE AGRICULTURAL C0:\1MITTEE The Hon. A. E. RrCE, Chairman The Hon. MILTON M. vVILLIAMS The Hon. C. G. SCHULZ President GEORGE E. VINCENT The Hon. JoHN G. \VrLLIAMS STATION STAFF A. F. VlooDs, M.A., D.Agr., Director J. 0. RANKIN, M.A.. Editor HARRIET 'vV. SEWALL, B.A., Librarian T. J. HORTON, Photographer T. L.' HAECKER, Dairy and Animal Husbandman M. H. REYNOLDS, B.S.A., M.D., D.V.:'d., Veterinarian ANDREW Boss, Agriculturist F. L. WASHBURN, M.A., Entomologist E. M. FREEMAN, Ph.D., Plant Pathologist and Botanist JonN T. STEWART, C.E., Agricultural Engineer R. W. THATCHER, M.A., Agricultural Chemist F. J.
    [Show full text]
  • Habitat Conservation Plan Outline
    Low-Effect Habitat Conservation Plan for Endangered Sandhills Species at the Clements Property, Santa Cruz County California Prepared by: Prepared for: Submitted to: Jodi McGraw, Ph.D. Ron and Natalie Clements Mr. Steve Henry Principal and Ecologist 8225 Ridgeview Drive Field Supervisor Jodi McGraw Consulting Ben Lomond, CA 95005 US Fish and Wildlife Service PO Box 221 2493 Portola Road, Suite B Freedom, CA 95019 Ventura, CA 93003 September 2017 HCP for the Clements Property, Ben Lomond, CA Contents Executive Summary 1 Section 1. Introduction and Background 3 Overview/Background ........................................................................ 3 Permit Holder/Permit Duration ............................................................ 3 Permit Boundary/Covered Lands ........................................................ 3 Species to be Covered by Permit ....................................................... 5 Regulatory Framework ....................................................................... 5 Federal Endangered Species Act ............................................ 5 The Section 10 Process - Habitat Conservation Plan Requirements and Guidelines ................................................. 7 National Environmental Policy Act .......................................... 8 National Historic Preservation Act ...................................................... 8 California Endangered Species Act .................................................... 8 California Environmental Quality Act .................................................
    [Show full text]
  • Spatial Vision in Band-Winged Grasshoppers (Orthoptera: Acrididae: Oedipodinae)
    Spatial vision in band-winged grasshoppers (Orthoptera: Acrididae: Oedipodinae) A Senior Thesis Presented to the Faculty of the Department of Organismal Biology and Ecology, Colorado College By Alexander B. Duncan Bachelor of Arts Degree in Organismal Biology and Ecology May, 2017 Approved by: _________________________________________ Dr. Nicholas Brandley Primary Thesis Advisor ________________________________________ Dr. Emilie Gray Secondary Thesis Advisor ABSTRACT Visual acuity, the ability to resolve fine spatial details, can vary dramatically between and within insect species. Body-size, sex, behavior, and ecological niche are all factors that may influence an insect’s acuity. Band-winged grasshoppers (Oedipodinae) are a subfamily of grasshoppers characterized by their colorfully patterned hindwings. Although researchers have anecdotally suggested that this color pattern may attract mates, few studies have examined the visual acuity of these animals, and none have examined its implications on intraspecific signaling. Here, we compare the visual acuity of three bandwing species: Dissosteira carolina, Arphia pseudonietana, and Spharagemon equale. To measure acuity in these species we used a modified radius of curvature estimation (RCE) technique. Visual acuity was significantly coarser 1) in males compared to females, 2) parallel to the horizon compared to the perpendicular, and 3) in S. equale compared to other bandwings. Unlike many insect families, body size within a species did not correlate with visual acuity. To examine the functional implications of these results, we modeled the appearance of different bandwing patterns to conspecifics. These results suggest that hind- wing patterning could only be used as a signal to conspecifics at short distances (<50cm). This study furthers the exploration of behavior and the evolution of visual systems in bandwings.
    [Show full text]
  • The Evolution of South American Populations of Trimerotropis Pallidipennis (Oedipodinae: Acrididae) Revisited: Dispersion Routes
    N.V. GUZMAN AND V.A.Journal CONFALONIERI of Orthoptera Research 2010,19(2): 253-260253 The evolution of South American populations of Trimerotropis pallidipennis (Oedipodinae: Acrididae) revisited: dispersion routes and origin of chromosomal inversion clines Submitted July 27, 2010, accepted October 20, 2010 NOELIA VERÓNICA GUZMAN AND VIVIANA ANDREA CONFALONIERI Grupo de Investigación en Filogenias Moleculares y Filogeografía, Departamento de Ecología, Genética y Evolución. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Intendente Güiraldes y Costanera Norte s/n., 4to. Piso Pabellón II, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Argentina. [VAC] Email: [email protected] Abstract enization between related species in geographic regions of sympatry. Indeed, inversions can create genomic regions of low recombina- In the past few years large-scale genome sequencing has demonstrated tion that may provide a means to create ‘‘islands of differentiation’’ that inversion rearrangements are more frequent than initially hypothesized. Many examples suggest they may have played an important function in between species (Brown et al. 2004; Butlin 2005; Slotman et al. delineating the evolution of biodiversity. In particular, clinal patterns of 2006, 2007). This pattern of localized differentiation should be variation for this type of rearrangement point out its significance in relation particularly strong if regions of low recombination also harbor loci to the evolution and adaptation of organisms to changing environments. with divergently selected alleles or alleles conferring reproductive Within grasshoppers, Trimerotropis and Circotettix show high incidence of isolation (Feder & Nosil 2009), a hypothesis that has recently been inversion rearrangements, either in fixed or polymorphic state, according tested on a genome-wide scale (Kulathinal et al.
    [Show full text]
  • Blauflüglige Ödlandschrecke (Oedipoda Caerulescens) (Stand November 2011)
    Niedersächsische Strategie zum Arten- und Biotopschutz Vollzugshinweise zum Schutz von Wirbellosenarten in Niedersachsen Wirbellosenarten mit Priorität für Erhaltungs- und Entwicklungsmaßnahmen Blauflüglige Ödlandschrecke (Oedipoda caerulescens) (Stand November 2011) Inhalt 1 Lebensweise und Lebensraum 3 Erhaltungsziele 1.1 Merkmale, Lebensweise 4 Maßnahmen 1.2 Lebensraumansprüche 4.1 Schutz- und Entwicklungsmaßnahmen 2 Bestandssituation und Verbreitung 4.2 Gebiete für die Umsetzung mit 2.1 Verbreitung in Niedersachsen Prioritätensetzung 2.2 Bestandssituation in Deutschland und 4.3 Bestandsüberwachung Niedersachsen 5 Schutzinstrumente 2.3 Schutzstatus 6 Literatur 2.4 Erhaltungszustand 2.5 Beeinträchtigungen und Gefährdungen Abb. 1: Blauflüglige Ödlandschrecke (Foto: W. Höxter) Niedersächsischer Landesbetrieb für Wasserwirtschaft, Küsten- und Naturschutz – NLWKN 1 Niedersächsische Strategie zum Arten- und Biotopschutz – Vollzugshinweise Wirbellosenarten – Blauflüglige Ödlandschrecke Oedipoda caerulescens (prioritär) November 2011 1 Lebensweise und Lebensraum 1.1 Merkmale, Lebensweise . Die Blauflüglige Ödlandschrecke (Oedipoda caerulescens) ist eine Art aus der Familie der Acrididae (Feldheuschrecken). Sehr variable, dem Untergrund angepasste Grundfarbe . Wird gelegentlich mit Sphingonotus caerulans verwechselt: Unterscheidung: blaue Hinter- flügel mit deutlicher Hinterflügelbinde, gewölbtes Halsschild und eine Stufe am Oberrand des Hinterschenkels . Gelegentlich Individuen mit rötlich gefärbten Flügeln, die mit der Rotflügligen Ödlandschre-
    [Show full text]
  • Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site a Report to the U
    Invertebrate Distribution and Diversity Assessment at the U. S. Army Pinon Canyon Maneuver Site A report to the U. S. Army and U. S. Fish and Wildlife Service G. J. Michels, Jr., J. L. Newton, H. L. Lindon, and J. A. Brazille Texas AgriLife Research 2301 Experiment Station Road Bushland, TX 79012 2008 Report Introductory Notes The invertebrate survey in 2008 presented an interesting challenge. Extremely dry conditions prevailed throughout most of the adult activity period for the invertebrates and grass fires occurred several times throughout the summer. By visual assessment, plant resources were scarce compared to last year, with few green plants and almost no flowering plants. Eight habitats and nine sites continued to be sampled in 2008. The Ponderosa pine/ yellow indiangrass site was removed from the study after the low numbers of species and individuals collected there in 2007. All other sites from the 2007 survey were included in the 2008 survey. We also discontinued the collection of Coccinellidae in the 2008 survey, as only 98 individuals from four species were collected in 2007. Pitfall and malaise trapping were continued in the same way as the 2007 survey. Sweep net sampling was discontinued to allow time for Asilidae and Orthoptera timed surveys consisting of direct collection of individuals with a net. These surveys were conducted in the same way as the time constrained butterfly (Papilionidea and Hesperoidea) surveys, with 15-minute intervals for each taxanomic group. This was sucessful when individuals were present, but the dry summer made it difficult to assess the utility of these techniques because of overall low abundance of insects.
    [Show full text]
  • Elements for the Sustainable Management of Acridoids of Importance in Agriculture
    African Journal of Agricultural Research Vol. 7(2), pp. 142-152, 12 January, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.912 ISSN 1991-637X ©2012 Academic Journals Review Elements for the sustainable management of acridoids of importance in agriculture María Irene Hernández-Zul 1, Juan Angel Quijano-Carranza 1, Ricardo Yañez-López 1, Irineo Torres-Pacheco 1, Ramón Guevara-Gónzalez 1, Enrique Rico-García 1, Adriana Elena Castro- Ramírez 2 and Rosalía Virginia Ocampo-Velázquez 1* 1Department of Biosystems, School of Engineering, Queretaro State University, C.U. Cerro de las Campanas, Querétaro, México. 2Department of Agroecology, Colegio de la Frontera Sur, San Cristóbal de las Casas, Chiapas, México. Accepted 16 December, 2011 Acridoidea is a superfamily within the Orthoptera order that comprises a group of short-horned insects commonly called grasshoppers. Grasshopper and locust species are major pests of grasslands and crops in all continents except Antarctica. Economically and historically, locusts and grasshoppers are two of the most destructive agricultural pests. The most important locust species belong to the genus Schistocerca and populate America, Africa, and Asia. Some grasshoppers considered to be important pests are the Melanoplus species, Camnula pellucida in North America, Brachystola magna and Sphenarium purpurascens in northern and central Mexico, and Oedaleus senegalensis and Zonocerus variegatus in Africa. Previous studies have classified these species based on specific characteristics. This review includes six headings. The first discusses the main species of grasshoppers and locusts; the second focuses on their worldwide distribution; the third describes their biology and life cycle; the fourth refers to climatic factors that facilitate the development of grasshoppers and locusts; the fifth discusses the action or reaction of grasshoppers and locusts to external or internal stimuli and the sixth refers to elements to design management strategies with emphasis on prevention.
    [Show full text]
  • Grasshoppers and Locusts (Orthoptera: Caelifera) from the Palestinian Territories at the Palestine Museum of Natural History
    Zoology and Ecology ISSN: 2165-8005 (Print) 2165-8013 (Online) Journal homepage: http://www.tandfonline.com/loi/tzec20 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh To cite this article: Mohammad Abusarhan, Zuhair S. Amr, Manal Ghattas, Elias N. Handal & Mazin B. Qumsiyeh (2017): Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History, Zoology and Ecology, DOI: 10.1080/21658005.2017.1313807 To link to this article: http://dx.doi.org/10.1080/21658005.2017.1313807 Published online: 26 Apr 2017. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tzec20 Download by: [Bethlehem University] Date: 26 April 2017, At: 04:32 ZOOLOGY AND ECOLOGY, 2017 https://doi.org/10.1080/21658005.2017.1313807 Grasshoppers and locusts (Orthoptera: Caelifera) from the Palestinian territories at the Palestine Museum of Natural History Mohammad Abusarhana, Zuhair S. Amrb, Manal Ghattasa, Elias N. Handala and Mazin B. Qumsiyeha aPalestine Museum of Natural History, Bethlehem University, Bethlehem, Palestine; bDepartment of Biology, Jordan University of Science and Technology, Irbid, Jordan ABSTRACT ARTICLE HISTORY We report on the collection of grasshoppers and locusts from the Occupied Palestinian Received 25 November 2016 Territories (OPT) studied at the nascent Palestine Museum of Natural History. Three hundred Accepted 28 March 2017 and forty specimens were collected during the 2013–2016 period.
    [Show full text]
  • The Taxonomy of Utah Orthoptera
    Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College.
    [Show full text]
  • Extra Nucleolar Activity Associated with Chromosome Segment in The
    Heredity 56 (1986) 237—241 The Genetical Society of Great Britain Received 22 July 1985 Extra nucleolar activity associated with presence of a supernumerary chromosome segment in the grasshopper Oedipoda fuscocincta J. P. M. Camacho, J. Navas-Castillo Departamento de Genética, Facultad de Ciencias, and J. Cabrero Universidad de Granada, 18071 Granada, Spain. The standard males of Oedipoda fuscocincta show a single active nucleolus organiser region (NOR) located in the secondary constriction of the M9 chromosomes. Nine males from three different populations proved to be heterozygous for a heterochromatic supernumerary segment which is distally located on the S10 chromosome. This also showed NOR activity. All available data seem to support the hypothesis that this extra segment on the S10 chromosome has arisen by translocation of part of the M9 chromosome, specifically that located between the centromere and the secondary constriction. INTRODUCTION However, in this paper we report a supernu- merary chromosome segment containing an active Oneform of chromosomal polymorphism com- NOR, which may serve as evidence in favour of monly identified in acridid grasshoppers is that the origin of this extra segment by means of translo- caused by the presence of extra chromatin seg- cation. ments attached one or more chromosomes of the standard complement. That is to say they are super- numerary chromosome segments. The majority of MATERIALSAND METHODS observed extra segments are heterochromatic in nature, although two cases of euchromatic ones Forty-sevenadult males of the grasshopper have been recorded in the gomphocerine grasshop- Oedipoda fuscocincta Saussure were caught at five pers namely, Omocestus bolivari (Camacho et a!., localities in the South of the Iberian Peninsula, 1984) and Chorthippus binotatus (Cabrero, 1985).
    [Show full text]
  • Proc Ent Soc Mb 2019, Volume 75
    Proceedings of the Entomological Society of Manitoba VOLUME 75 2019 T.D. Galloway Editor Winnipeg, Manitoba Entomological Society of Manitoba The Entomological Society of Manitoba was formed in 1945 “to foster the advancement, exchange and dissemination of Entomological knowledge”. This is a professional society that invites any person interested in entomology to become a member by application in writing to the Secretary. The Society produces the Newsletter, the Proceedings, and hosts a variety of meetings, seminars and social activities. Persons interested in joining the Society should consult the website at: http://home. cc.umanitoba.ca/~fieldspg, or contact: Sarah Semmler The Secretary Entomological Society of Manitoba [email protected] Contents Photo – Adult male European earwig, Forficula auricularia, with a newly arrived aphid, Uroleucon rudbeckiae, on tall coneflower, Rudbeckia laciniata, in a Winnipeg garden, 2017-08-05 ..................................................................... 5 Scientific Note Earwigs (Dermaptera) of Manitoba: records and recent discoveries. Jordan A. Bannerman, Denice Geverink, and Robert J. Lamb ...................... 6 Submitted Papers Microscopic examination of Lygus lineolaris (Hemiptera: Miridae) feeding injury to different growth stages of navy beans. Tharshi Nagalingam and Neil J. Holliday ...................................................................... 15 Studies in the biology of North American Acrididae development and habits. Norman Criddle. Preamble to publication
    [Show full text]
  • A Cytological Survey of Wild Populations of Trimerotropis and Circotettix. (Orthoptera, Acrididae). I. the Chromosomes of Twelve
    A CYTOLOGICAL SURVEY OF WILD POPULATIONS OF TRIMEROTROPIS AND CIRCOTETTIX. (ORTHOPTERA, ACRIDIDAE). I. THE CHROMOSOMES OF . TWELVE SPECIES M. J. D. WHITE University of Texas, Austin, Texas Received November 29, 1948 INTRODUCTION N RECENT years a great deal of work has been carried out on the distri- I bution of structurally different chromosomal types in wild populations of Drosophila (DOBZHANSKY1947 a, b, c, 1948; DOBZHANSKYand EPLING1944; WARTERS1944; CARSONand STALKER1947). Similar studies have also been carried out on some species of Chironomus (PHILIP 1942; Hsu and LIU 1948). Comparisons have been made between different populations of the same species and between samples of the same population collected at different seasons:of the year and in several successive years. These studies have been almost entirely concerned with one particular type of chromosomal rearrangements, namely paracentric inversions. In the case of Drosophila pseudoobscura, the species which has been studied most extensively, it was found by DOBZHANSKYthat individuals heterozygous for inversions were, as a rule, better adapted under natural conditions than either of the two homozygous types. Thus, if we call one gene-sequence A and the other A’, individuals of the constitution AA’ possessed a higher degree of fitness than either AA or A’A’ individuals, although the relative fitness of the various types showed regular seasonal fluctuations. Results such as these (which can be duplicated in laboratory experiments carried out under controlled environ- mental conditions in “population cages”) explain the existence of the multipli- city of different gene-sequences known for the chromosomes of D.pseudoobscura and some other species of the genus Drosophila.
    [Show full text]