Light and the Evolution of Vision

Total Page:16

File Type:pdf, Size:1020Kb

Light and the Evolution of Vision Eye (2016) 30, 173–178 © 2016 Macmillan Publishers Limited All rights reserved 0950-222X/16 www.nature.com/eye Light and the DL Williams CAMBRIDGE OPHTHALMOLOGICAL SYMPOSIUM evolution of vision Abstract originated; but.....as some of the lowest organ- isms.....are known to be sensitive to light, it does It might seem a little ridiculous to cover the not seem impossible that certain elements...should period over which vision evolved, perhaps 1.5 billion years, in only 3000 words. Yet, if we become aggregated and developed into nerves examine the photoreceptor molecules of the endowed with this special sensibility. most basic eukaryote protists and even before that, in those of prokaryote bacteria In a later letter to J.D. Hooker written in 1871 and cyanobacteria, we see how similar they Darwin remarks: are to those of mammalian rod and cone But if (and oh! what a big if!) we could conceive in photoreceptor opsins and the photoreceptive some warm little pond, with all sorts of ammonia molecules of light sensitive ganglion cells. This and....salts, light, heat, electricity.... present, that shows us much with regard the development a proteine [sic]..... was chemically formed ready to of vision once these proteins existed, but there undergo still more complex changes...2 is much more to discover about the evolution of even more primitive vision systems. and so perhaps a warm little pond would be a – Eye (2016) 30, 173 178; doi:10.1038/eye.2015.220; reasonable place to start as we look at the published online 6 November 2015 evolution of vision. I wonder if you remember pond dipping as a child? As far as I remember we only looked at macroscopic life-forms— water boatmen, pond skaters and the like. But if we had happened to look under a microscope no Introduction doubt we would have found two organisms, Euglena (Figure 1a) and Chlamydomonas Darwin is often quoted as seeing the (Figure 1b). development of the eye as a significant difficulty for his theory of evolution by natural selection. He writes in The Origin of Species: Euglena and Chlamydomonas To suppose that the eye, with all its inimitable Both these unicellular protists have a clear contrivances.... could have been formed by natural orange-coloured eyespot. Euglena gracilis exists selection, seems, I freely confess, absurd in the as a photosynthesising autotrophe but at low highest possible degree.1 light intensity it can survive as a heterotrophe ingesting plant material. Neither strictly plant Department of Veterinary Medicine, University of But what is omitted by many is his answer to nor animal, it occupies a third kingdom as a Cambridge, Madingley this conundrum, a few sentences further on: protist. Chlamydomonas rheinhartii might more Road, Cambridge, UK strictly be defined as a green algae in the plant Reason tells me, that if numerous gradations from kingdom. Phototaxis is essential for both Correspondence: a simple and imperfect eye to one complex and organisms; moving towards light upon which DL Williams, Department of perfect can be shown to exist.... and if such they depend for energy and nutrition, yet also Veterinary Medicine, variations should be useful to any animal.... then University of Cambridge, undergoing negative phototaxis to protect the difficulty of believing that a perfect and Madingley Road, themselves against too intense a source of complex eye could be formed by natural selection, Cambridge, CB3 0ES UK illumination. The eyespot is not the Tel: +44 (0)7 9390 7682; should not be considered as subversive of the photoreceptor itself but rather a mass of Fax: +44 (0)12 2323 2977. theory. carotenoid pigment shading the photoreceptor E-mail: [email protected] from light from one direction. This demonstrates Indeed, he notes further. Received: 21 September 2015 the essential components of any visual system; Accepted: 22 September 2015 How a nerve comes to be sensitive to light, hardly any photosensitive organism needs a Published online: concerns us more than how life itself first photoreceptor that detects the light. But that 6 November 2015 Evolution of vision DL Williams 174 Figure 1 Top left Chlamydomonas rheinhartii. Top right Euglea gracilis. Bottom Hydra vulgaris. alone would not allow the organism to determine the detection of light can be translated into a change in direction of the light source. A pigment spot reduces the flagellar movement, generally an ion flux of one kind or illumination from one direction, or changes the another. wavelength of the incident light falling on the In Euglena the photoreceptor, a tightly packed mass of photoreceptor, thus allowing the organism to move in the crystalline protein, is located next to the eyespot direction of the light or away for it. So third, a mechanism (Figure 2a). It has been estimated that the photoreceptor to promote movement is essential. To detect the light is contains around 2 × 107 molecules of a rhodopsin-like one thing but to move towards or away from it requires a protein.3 Around 108 photons impinging on this crystal motor system; the flagellae in Chlamydomonas and saturate the protein with a maximum absorption at Euglena. But also a mechanism is required by which around 500–525 nm.4,5 Photostimulation leads to positive Eye Evolution of vision DL Williams 175 Figure 2 Photoreceptor of Euglena gracilis, left: measuring the photoelectric effect after Nichols and Rikmenspoel (1977) right: photoreceptor rhodopsin crystal positioned next to emergent flagellum after Barsanti et al (2012). phototaxis with the ion flux giving what appears the organism away from light is modulated through surprisingly like an electroretinogram (Figure 2b). increased levels of cyclic AMP produced by a blue-light- In Chlamydomonas (Figure 1b) the eyespot apparatus activated adenylyl cyclase (PAC).10,11 Similarly, whereas consists of thylakoid membranes with layers of negative phototaxis in Chlamydomonasis is modulated carotenoid rich globules and photoreceptor molecules in by PAC, photoattraction occurs through the action of the membranes between these globules (Figure 3a). two sensory rhodopsins CSRA and CSRB discovered Chlamydomonas has a flavin-associated blue-sensitive by Sineshchekov et al in 2002,12 also called channel- chromophore,6 highly sensitive to blue light at a rhodopsins, ChR1 and ChR2 by Nagel’s group,13 and wavelength of 440 nm, intimately linked to its circadian termed Acop1 by Susuki et al.14 The two photoreceptor clock. Although this algal species is essentially a plant, proteins have different abosrption profiles with CSRA genetic analysis of the chromophore shows what has absorbing predominantly at blue–green wavelengths and previously been considered an animal chromophore promoting a photophobic response in response to strong CRY2.7 Indeed CRY1 and CRY2 have been detected in illumination while CSRB absorbs at shorter wavelengths light-sensitive ganglion cells in the human retina and leads to phototaxis at weaker light intensties.15 There responsible for pupillary light reactivity and setting of are around 9 × 104 molecules of CSRA and 1.5 × 104 photocycles.8 molecules of CSRB in each cell.16 ChR2 is a How nice it would be to see these two organisms as photoactivated cation channel but in addition acts as a fore-runners of on the one hand the rhodopsin-based light-driven proton pump. Although this double action photodetection systems of mammalian rod and cone might seem somewhat perverse it is not unique—other photoreceptors and on the other precursors of the more chloride channels also act as proton pumps, recently discovered blue-wavelength detection systems in demonstrating their origin as Cl−/H+ exchangers. But the light-sensitive ganglion cells. Sadly, evolution is never as ChRs do not exhibit homology with other ion channels simple as that. For a start each of these organisms has but rather with rhodopsins. Indeed, these photoactive ion multiple light detecting molecules. Euglena orientates channels did not start their evolutionary existence in the itself towards light using a rhodopsin photopigment, but Euglenoids and Chlamydomonads we have been discussing also has a blue-light receptor.9 The photo-reorientation of above. Such eukaryotes originated probably between 800 Eye Evolution of vision DL Williams 176 Figure 3 Photoresonses in Chamydomnas reinherdtii. The photoreceptive proteins reside in between thylakoid membranes (arrows) with carotenoid-rish granules (asterisks) between them. A photorelectic discharge is seen after a light impulse and this is maximal when correlating with the natural helical motion of the alga. and 1200 million years ago,17 but prokaryotes have been existing in much higher copy number than the other present in the fossil record around 1500 million years proteins, can act on its own as shown by producing blind earlier.18 Lynn Margulis presented the theory by which mutants and recovering photosensitivity by reconstituting eukaryotes form through endophagy of prokaryote BR alone.23 BR is a purple molecule, with an absorption algae to produce chloroplasts and bacteria to yield maximum in green wavelengths, hyperpolarising the cell mitochondria, both examples of endosymbiosis.19 membrane at around 570 nm, whereas HR absorbs at So we should look for the origin of these eukaryote green–yellow wavelengths, depolarising the membrane. photopigments in prokaryote bacteria.20 The BR gene has limited sequence homology with other photoreceptive rhodopsins such as those in mammalian rod photoreceptors,20 but does have the structural Photopigment origins similarities of the seven transmembrane domains24 and The photoresponsive prokaryotes to investigate are both a protonated Lys-216 Schiff base where the prosthetic those that are photosynthetic such as Synechocystis and group of retinal binds. The big difference is what while those like Halobacterium that are not. Halobacterium eukaryote rhodopsins are associated with a G protein,25 species21,22 have four photosensory proteins; prokaryote rhodopsins are not. It had been considered Bacteriorhodopsin (BR) a proton pump, Halorhodopsin that eukaryote and prokaryote rhodopsins were a prime (HR), a light-gated chloride pump, and two sensory example of evolutionary convergence,26 but structural rhodopsins.
Recommended publications
  • Blue Cone Monochromacy: Visual Function and Efficacy Outcome Measures for Clinical Trials
    RESEARCH ARTICLE Blue Cone Monochromacy: Visual Function and Efficacy Outcome Measures for Clinical Trials Xunda Luo1☯‡, Artur V. Cideciyan1☯‡*, Alessandro Iannaccone2, Alejandro J. Roman1, Lauren C. Ditta2, Barbara J. Jennings2, Svetlana A. Yatsenko3, Rebecca Sheplock1, Alexander Sumaroka1, Malgorzata Swider1, Sharon B. Schwartz1, Bernd Wissinger4, Susanne Kohl4, Samuel G. Jacobson1* 1 Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America, 2 Hamilton Eye Institute, Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America, 3 Pittsburgh Cytogenetics Laboratory, Center for Medical Genetics and Genomics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 4 Molecular Genetics Laboratory, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tuebingen, Tuebingen, Germany ☯ These authors contributed equally to this work. ‡ OPEN ACCESS These authors are joint first authors on this work. * [email protected] (SGJ); [email protected] (AVC) Citation: Luo X, Cideciyan AV, Iannaccone A, Roman AJ, Ditta LC, Jennings BJ, et al. (2015) Blue Cone Monochromacy: Visual Function and Efficacy Abstract Outcome Measures for Clinical Trials. PLoS ONE 10(4): e0125700. doi:10.1371/journal.pone.0125700 Academic Editor: Dror Sharon, Hadassah-Hebrew University Medical Center, ISRAEL Background Blue Cone Monochromacy (BCM) is an X-linked retinopathy caused by mutations in the Received: December 29, 2014 OPN1LW / OPN1MW gene cluster, encoding long (L)- and middle (M)-wavelength sensitive Accepted: March 21, 2015 cone opsins. Recent evidence shows sufficient structural integrity of cone photoreceptors in Published: April 24, 2015 BCM to warrant consideration of a gene therapy approach to the disease.
    [Show full text]
  • Signaling by Sensory Receptors
    Signaling by Sensory Receptors David Julius1 and Jeremy Nathans2 1Department of Physiology, University of California School of Medicine, San Francisco, California 94158 2Department of Molecular Biology and Genetics, Johns Hopkins Medical School, Baltimore, Maryland 21205 Correspondence: [email protected] and [email protected] SUMMARY Sensory systems detect small molecules, mechanical perturbations, or radiation via the activa- tion of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled recep- tors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR- based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illus- trate the integration of diverse modulatory signals at the receptor, as seen in the thermosen- sory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous exam- ples in which gene duplication and sequence divergence have created novel sensory specific- ities. This is the evolutionary basis for the observed diversity in temperature- and ligand- dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche.
    [Show full text]
  • Photosynthesis
    20 Photosynthesis Plants use sunlight (Photon), (H O) and (CO ) to convert light Energy into chemical Energy by 2 2 chlorophyll. This process is known as photosynthesis. Chemical equation : Sunlight 6CO + 12H O o C H O + 6O + 6H O 2 2 Chlorophyll 6 12 6 2 2 Necessary factors for photoynthesis : Light Chlorophyll Water (H O) 2 Carbon Dioxide (CO ) (0.03 % in the atmosphere) 2 Photosynthetic Organisms : Different types of algae (Blue green algae, Brown algae, Red algae, Green algae). Bryophytes, Pteridophytes, Gymnosperms, Angiosperms. Some bacteria. (Note : Fungi is not able to perform photosynthesis due to lack of chlorophyll.) Advantages of Photosynthesis : Main products of photosynthesis are starch and sucrose. (O ) is byproduct which is used by organisms for respiration. 2 (1) What is produced as byproduct of photosynthesis ? (A) Oxygen (B) Nitrogen (C) Carbon dioxide (D) Sulphur dioxide (2) Which type of energy can be used by all organisms ? (A) Light energy (B) Chemical energy (C) Heat energy (D) Water potential (3) Which of the following type of reaction photosynthesis is ? (A) Anabolic, Endothermic, Reduction (B) Anabolic, Endothermic, Oxidation (C) Catabolic, Exothermic, Oxidation (D) Catabolic, Endothermic, Reduction Answers : (1-A), (2-B), (3-A) 382 History of Photosynthesis : No. Name of Scientist Contribution 1. Joseph Priestly Plants obtain CO from atmosphere and release O . 2 2 (1733-1804) 2. Ingenhouse In bright sunlight, small bubbles were formed around the (1730-1799) green parts of the plant. 3. Julius Von Sachs Green substance (chlorophyll) in plants is located in special (1854) bodies (chloroplast) of plant cell. This green substances produces glucose which is usually stored in the form of starch.
    [Show full text]
  • The Genetics of Normal and Defective Color Vision
    Vision Research xxx (2011) xxx–xxx Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Review The genetics of normal and defective color vision Jay Neitz ⇑, Maureen Neitz University of Washington, Dept. of Ophthalmology, Seattle, WA 98195, United States article info a b s t r a c t Article history: The contributions of genetics research to the science of normal and defective color vision over the previ- Received 3 July 2010 ous few decades are reviewed emphasizing the developments in the 25 years since the last anniversary Received in revised form 25 November 2010 issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward Available online xxxx through the application of the tools of molecular genetics. For all their complexity, the biological pro- cesses responsible for color vision are more accessible than for many other neural systems. This is partly Keywords: because of the wealth of genetic variations that affect color perception, both within and across species, Color vision and because components of the color vision system lend themselves to genetic manipulation. Mutations Cone photoreceptor and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pig- Colorblindness Cone mosaic ments are responsible for color vision deficiencies and mutations have been identified that affect the Opsin genes number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, Evolution and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of pri- Comparative color vision mate color vision, and has been done in experimental animals can produce expanded color vision capac- Cone photopigments ities and this has provided insight into the underlying neural circuitry.
    [Show full text]
  • Functional Analysis of Mammalian Cryptochromes a Matter of Time
    Functional Analysis of Mammalian Cryptochromes A Matter of Time The studies presented in this thesis were performed in the Department of Genetics, Chronobiology and Health Researcher Group at the Erasmus University Medical Centre in Rotterdam, The Netherlands. The Department is a member of the Medisch Genetisch Centrum Zuid-West Nederland (MGC). The research has been supported financially by NWO. Cover: Inspired by “Hommage à Apollinaire” Marc Chagall, 1911-1912, Collection Van Abbemuseum in Eindhoven, The Netherlands. Layout: Dan G.M. Vennix Printer: Wöhrman Print Service, Zutphen Functional Analysis of Mammalian Cryptochromes A Matter of Time Functionele analyse van zoogdier cryptochromen Een kwestie van tijd proefschrift ter verkrijging van de graad van doctor aan de Erasmus Universiteit Rotterdam op gezag van de rector magnificus Prof.dr. H.G. Schmidt en volgens besluit van het College voor Pro moties De openbare verdediging zal plaatsvinden op woensdag 4 november 2009 om 9:30 uur door ͂ Monika Iwona Bajek geboren te Stalowa Wola, Polen Promotiecommissie Promotors Prof.dr. G.T.J. van der Horst Prof.dr. J.H.J. Hoeijmakers Overige leden Prof.dr. F.G. Grosveld Prof.dr. J.H. Meijer Prof.dr. B.A. Oostra ....... dla Frania i naszego Aniołka Marysi 7 Contents Chapter 1 Introduction 11 I The circadian clock 13 Historical background 13 Circadian oscillator mechanisms 15 Master clock – suprachiasmatic nucleus 17 Photoentrainment 19 Peripheral clock 20 II The photolyase/cryptochrome flavoprotein family 21 Photolyase 22 Structural analysis of
    [Show full text]
  • The UV-B Photoreceptor UVR8: from Structure to Physiology
    The Plant Cell, Vol. 26: 21–37, January 2014, www.plantcell.org ã 2014 American Society of Plant Biologists. All rights reserved. REVIEW The UV-B Photoreceptor UVR8: From Structure to Physiology Gareth I. Jenkins1 Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom Low doses of UV-B light (280 to 315 nm) elicit photomorphogenic responses in plants that modify biochemical composition, photosynthetic competence, morphogenesis, and defense. UV RESISTANCE LOCUS8 (UVR8) mediates photomorphogenic responses to UV-B by regulating transcription of a set of target genes. UVR8 differs from other known photoreceptors in that it uses specific Trp amino acids instead of a prosthetic chromophore for light absorption during UV-B photoreception. Absorption of UV-B dissociates the UVR8 dimer into monomers, initiating signal transduction through interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1. However, much remains to be learned about the physiological role of UVR8 and its interaction with other signaling pathways, the molecular mechanism of UVR8 photoreception, how the UVR8 protein initiates signaling, how it is regulated, and how UVR8 regulates transcription of its target genes. INTRODUCTION below (Caldwell et al., 1983; Jordan 1996; Rozema et al., 1997; Frohnmeyer and Staiger, 2003; Jenkins, 2009). Damage caused Light is of paramount importance in promoting the growth and by UV-B exposure is ameliorated in several ways, in particular by development of plants. In addition to its role as the energy source antioxidant systems and enzymes that repair DNA damage. An for photosynthesis, light regulates numerous aspects of plant important feature of these protective responses is that they are form and function throughout the life cycle, from seedling es- stimulated when plants are exposed to UV-B.
    [Show full text]
  • Redistribution and Reduction of Interphotoreceptor Retinoid-Binding Protein During Ocular Coronavirus Infection
    Investigative Ophthalmology & Visual Science, Vol. 33, No. 1, January 1992 Copyright © Association for Research in Vision and Ophthalmology Redistribution and Reduction of Interphotoreceptor Retinoid-Binding Protein During Ocular Coronavirus Infection Suson G. Robbins,* Barbara Wiggert.f Geetha Kutty,f Gerald J. Chader.f Barbara Derrick,* and John J. Hooks'1 Inoculation of the neurotropic coronavirus mouse hepatitis virus strain JHM intravitreally or into the anterior chamber causes acute infection of the retinal pigment epithelium (RPE) and neural retina. Weeks later, many retinas have foci of moderate to severe atrophy. The effect of coronavirus infection (after intravitreal inoculation) was examined on interphotoreceptor retinoid-binding protein (IRBP), the glycolipoprotein in the interphotoreceptor matrix (IPM) thought to transport retinoids between the photoreceptors and the RPE. Changes in IRBP distribution accompanied virus-associated retinal pa- thology, including photoreceptor loss and RPE abnormalities. Immunohistochemistry on days 3 and 6 showed that IRBP had diffused into the neural retina away from the IPM. The IRBP became localized abnormally in the same areas as virus-induced lesions, shown by staining adjacent sections with a monoclonal antibody specific for the viral nucleocapsid protein. Moreover, the level of IRBP in isolated retinas, measured in an immunoslot-blot assay, decreased significantly by day 3 and remained low through day 23. This decrease was confirmed in eyecups isolated on day 6. It may be caused in part by loss of photoreceptors and diffusion of IRBP through the retina into the vitreous. These studies show that a virus may induce an acute, limited infection in the retina that can be cleared by the host.
    [Show full text]
  • Colour Vision Deficiency
    Eye (2010) 24, 747–755 & 2010 Macmillan Publishers Limited All rights reserved 0950-222X/10 $32.00 www.nature.com/eye Colour vision MP Simunovic REVIEW deficiency Abstract effective "treatment" of colour vision deficiency: whilst it has been suggested that tinted lenses Colour vision deficiency is one of the could offer a means of enabling those with commonest disorders of vision and can be colour vision deficiency to make spectral divided into congenital and acquired forms. discriminations that would normally elude Congenital colour vision deficiency affects as them, clinical trials of such lenses have been many as 8% of males and 0.5% of femalesFthe largely disappointing. Recent developments in difference in prevalence reflects the fact that molecular genetics have enabled us to not only the commonest forms of congenital colour understand more completely the genetic basis of vision deficiency are inherited in an X-linked colour vision deficiency, they have opened the recessive manner. Until relatively recently, our possibility of gene therapy. The application of understanding of the pathophysiological basis gene therapy to animal models of colour vision of colour vision deficiency largely rested on deficiency has shown dramatic results; behavioural data; however, modern molecular furthermore, it has provided interesting insights genetic techniques have helped to elucidate its into the plasticity of the visual system with mechanisms. respect to extracting information about the The current management of congenital spectral composition of the visual scene. colour vision deficiency lies chiefly in appropriate counselling (including career counselling). Although visual aids may Materials and methods be of benefit to those with colour vision deficiency when performing certain tasks, the This article was prepared by performing a evidence suggests that they do not enable primary search of Pubmed for articles on wearers to obtain normal colour ‘colo(u)r vision deficiency’ and ‘colo(u)r discrimination.
    [Show full text]
  • 1468.Full.Pdf
    1468 • The Journal of Neuroscience, February 11, 2004 • 24(6):1468–1477 Cellular/Molecular Novel Features of Cryptochrome-Mediated Photoreception in the Brain Circadian Clock of Drosophila Andre´ Klarsfeld, Se´bastien Malpel, Christine Michard-Vanhe´e, Marie Picot, Elisabeth Che´lot, and Franc¸ois Rouyer Institut de Neurobiologie Alfred Fessard, Centre National de la Recherche Scientifique, Unite´ Propre de Recherche 2216, 91198 Gif-sur-Yvette, France In Drosophila, light affects circadian behavioral rhythms via at least two distinct mechanisms. One of them relies on the visual photo- transduction cascade. The other involves a presumptive photopigment, cryptochrome (cry), expressed in lateral brain neurons that control behavioral rhythms. We show here that cry is expressed in most, if not all, larval and adult neuronal groups expressing the PERIOD (PER) protein, with the notable exception of larval dorsal neurons (DN2s) in which PER cycles in antiphase to all other known cells. Forcing cry expression in the larval DN2s gave them a normal phase of PER cycling, indicating that their unique antiphase rhythm is related to their lack of cry expression. We were able to directly monitor CRY protein in Drosophila brains in situ. It appeared highly unstable in the light, whereas in the dark, it accumulated in both the nucleus and the cytoplasm, including some neuritic projections. We also show that dorsal PER-expressing brain neurons, the adult DN1s, are the only brain neurons to coexpress the CRY protein and the photoreceptor differentiation factor GLASS. Studies of various visual system mutants and their combination with the cryb mutation indicated that the adult DN1s contribute significantly to the light sensitivity of the clock controlling activity rhythms, and that this contribution depends on CRY.
    [Show full text]
  • Phototransduction Mediated by Melanopsin in Intrinsically Photosensitive Retinal Ganglion Cells
    C.A. Domínguez-Solís, J.A. Pérez-León: Phototransduction mediated by melanopsin Contents available at PubMed www.anmm.org.mx PERMANYER Gac Med Mex. 2015;151:709-20 www.permanyer.com GACETA MÉDICA DE MÉXICO REVIEW ARTICLE Phototransduction mediated by melanopsin in intrinsically photosensitive retinal ganglion cells Carlos Augusto Domínguez-Solís and Jorge Alberto Pérez-León* Department of Chemical-Biological Sciences, Institute of Biomedical Sciences, Universidad Autónoma de Ciudad Juárez, Chihuahua, Chih., México Abstract Melanopsin is the most recent photopigment described. As all the other opsins, it attaches in the retina as chromophore. Its amino acid sequence resembles more invertebrate opsins than those of vertebrates. The signal transduction pathway of opsins in vertebrates is based on the coupling to the G protein transducin, triggering a signaling cascade that results in the hyperpolarization of the plasma membrane. On the contrary, the photoreceptors of invertebrates activate the Gq protein pathway, which leads to depolarizing responses. Phototransduction mediated by melanopsin leads to the depolarization of those cells where it is expressed, the intrinsically photosensitive retinal ganglion cells; the cellular messengers and the ion channel type(s) responsible for the cells´ response is still unclear. Studies to elucidate the signaling cascade of melanopsin in heterologous expression systems, in retina and isolated/cultured intrinsically photosensitive retinal ganglion cells, have provided evidence for the involvement of protein Gq and phospholipase C together with the likely participation of an ion channel member of the transient receptor potential-canonical family, a transduction pathway similar to invertebrate photopigments, particularly Drosophila melanogaster. The intrinsically photosensitive retinal ganglion cells are the sole source of retinal inferences to the suprachiasmatic nucleus; thus, clarifying completely the melanopsin signaling pathway will impact the chronobiology field, including the clinical aspects.
    [Show full text]
  • Intrinsically Photosensitive Retinal Ganglion Cells Gary E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Veterinary and Biomedical Science Veterinary and Biomedical Sciences, Department of 2011 Intrinsically Photosensitive Retinal Ganglion Cells Gary E. Pickard University of Nebraska-Lincoln, [email protected] Patricia J. Sollars University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/vetscipapers Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons Pickard, Gary E. and Sollars, Patricia J., "Intrinsically Photosensitive Retinal Ganglion Cells" (2011). Papers in Veterinary and Biomedical Science. 268. http://digitalcommons.unl.edu/vetscipapers/268 This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Published in Review of Physiology, Biochemistry and Pharmacology 162 (2012), pp. 59-90. doi: 10.1007/112_2011_4, Copyright © 2011 Springer-Verlag Berlin Heidelberg. Used by permission. digitalcommons.unl.edu Intrinsically Photosensitive Retinal Ganglion Cells Gary E. Pickard and Patricia J.
    [Show full text]
  • Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders
    G C A T T A C G G C A T genes Review Intermixing the OPN1LW and OPN1MW Genes Disrupts the Exonic Splicing Code Causing an Array of Vision Disorders Maureen Neitz * and Jay Neitz Department of Ophthalmology and Vision Science Center, University of Washington, Seattle, WA 98109, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-206-543-7998 Abstract: Light absorption by photopigment molecules expressed in the photoreceptors in the retina is the first step in seeing. Two types of photoreceptors in the human retina are responsible for image formation: rods, and cones. Except at very low light levels when rods are active, all vision is based on cones. Cones mediate high acuity vision and color vision. Furthermore, they are critically important in the visual feedback mechanism that regulates refractive development of the eye during childhood. The human retina contains a mosaic of three cone types, short-wavelength (S), long-wavelength (L), and middle-wavelength (M) sensitive; however, the vast majority (~94%) are L and M cones. The OPN1LW and OPN1MW genes, located on the X-chromosome at Xq28, encode the protein component of the light-sensitive photopigments expressed in the L and M cones. Diverse haplotypes of exon 3 of the OPN1LW and OPN1MW genes arose thru unequal recombination mechanisms that have intermixed the genes. A subset of the haplotypes causes exon 3- skipping during pre-messenger RNA splicing and are associated with vision disorders. Here, we review the mechanism by which splicing defects in these genes cause vision disorders. Citation: Neitz, M.; Neitz, J.
    [Show full text]