Jcmt Newsletter

Total Page:16

File Type:pdf, Size:1020Kb

Jcmt Newsletter JCMT EWSLETTER N J A M E S C L E R K M A X W E L L T E L E S C O P E AUTUMN 2009 • #31 Galactic Centre HARP 12CO(3–2) mapping SCUBA Polarimeter Legacy Science Results RxWD Science Results JCMT Newsletter, James Clerk Max- In This Issue well Telescope, is published biannu- ally and is edited by Antonio Chry- sostomou and Jonathan Kemp. ISSN 1351–5497. Copyright © 2009 by Science and Technology Facilities Council, Joint Astronomy Centre, Hilo, except where copyright re- tained by named individual article or From the Desk of the Director (Davis & Chrysostomou) ............................................. 3 image authors. SSUE postal address I James Clerk Maxwell Telescope JCMT Science Joint Astronomy Centre HIS University Park T The SCUBA Polarimeter Legacy Catalog (Matthews) ............................................ 6 660 North A`ohoku Place N I Hilo, Hawai`i 96720–2700 The 3–D Structure of Molecular Gas Around PWN G 63.7+1.1 USA (Kothes, Matthews, Safi–Harb, & Brunt) ............................................................................................. 8 telephone CO(6–5) Emission from Arp 220: Piecing Together the Puzzle +1 (808) 961 – 3756 of This Enigmatic ULIRG (Papadopoulos, Isaak, van der Werf, & Xilouris) ........................ 10 facsimile +1 (808) 961 – 6516 JCMT Operations world wide web JCMT Science Archive (JSA) Update (Economou) ...................................................... 4 http://www.jach.hawaii.edu/JCMT/ Starlink Software Release: Nanahope Release (Cavanagh) ............................. 5 The Joint Astronomy Centre provides Tips for Reducing ACSIS Data with the ORAC–DR Pipeline: QA Tweaks services and support to enable visit- and Recipe Modifications (Cavanagh, Tilanus, Jenness, & Chrysostomou) ...................... 12 ing and staff astronomers to under- 2 take top-quality, front-line interna- Mapping the Galactic Centre with HARP (Dempsey & Thomas) ............................ 15 tional-class research using the James Galileo Block Party (Heyer) .................................................................................................. 18 Clerk Maxwell Telescope (JCMT) and the United Kingdom Infrared Tele- Mark Horita: 1958–2009 (Davis) ................................................................................. 19 scope (UKIRT); to develop these fa- cilities in order to maintain their position as the most advanced of their kind in the world; to operate them in the most cost effective and efficient manner on behalf of the funding agencies; and to be respon- sive to the changing needs of the contributing organizations. The JCMT is supported by the United Kingdom’s Science and Technology Facilities Council (STFC), the Na- tional Research Council Canada (NRC), and the Netherlands Organi- 2009 • #31 zation for Scientific Research (NWO); it is overseen by the JCMT Board. UTUMN The JCMT is a member of the RadioNet consortium. • A On the front and rear covers: Integrated intensity HARP 12CO(3–2) map of the Galactic Centre. (Also see Figure 1 EWSLETTER and article on page 15.) JCMT N JCMT JCMT N JCMT From the Desk of the Director EWSLETTER Professor Gary Davis (Director JCMT) & Antonio Chrysostomou (Associate Director JCMT) • A The most signifi- though the initial integration work scope until cant event at the over the course of that summer 2012, the future JAC in the period turned up some unexpected prob- beyond that date UTUMN since the last lems, solutions to all of them have is by no means newsletter was since been identified and put in certain. Each of the untimely place. The first two science-grade the three coun- 2009 • #31 death of a long- arrays were delivered in July and tries has its own serving staff installed in August, and as we write unique story to member, Mark this column, the instrument check- tell, but from the Horita; see the out phase is in progress. We have observatory’s dedicated article implemented a fast-track approach point of view it is Gary Davis, Director JCMT elsewhere in this in which the functionality of the in- abundantly clear Antonio Chrysostomou, newsletter. strument will be verified and the that getting sci- Associate Director JCMT instrument will be commissioned ence results out Most readers of this column will over the course of September of SCUBA–2 as quickly as possible is know that the JCMT is in the midst through November, leading to a absolutely essential. This is, in fact, of a profound transformation, in phase of shared-risk observing in the rationale for the fast-track ap- which virtually the entire instrument December and January. By the time proach described above. suite is being replaced or upgraded. you read this column, the call for The science driver for this extreme shared-risk proposals might already In the meantime the JCMT Legacy makeover is the need to capitalise have been issued. Survey with HARP continues. Since on the JCMT’s trail-blazing successes the last edition of the Newsletter we of the past by carrying out large- The delays in this programme have have seen the Nearby Galaxies Leg- area surveys of the submillimetre led to a number of potentially seri- acy Survey reach almost 90% com- sky in both continuum and spectro- ous difficulties. One is the lack of a pletion, the Gould Belt Survey 60%, 3 scopic modes. continuum instrument on the JCMT and the Spectral Legacy Survey are since SCUBA was retired in July 2005 now more than half-way through The spectroscopic part of this trans- (apart from a 3-month visit by AzTEC their project. As always you can formation is virtually complete. later that same year). Fortunately, in keep up with the general progress of HARP, the world’s first array receiver part because there is no realistic the JLS at http://www.jach.hawaii.edu/ in the 345-GHz band, is now our competition for SCUBA–2’s promised JCMT/surveys/JLS_status.html . workhorse instrument, and the up- capabilities, this has not been a seri- graded RxWD provides world-leading ous problem and we have detected We have also seen the JCMT Science sensitivity in the 690-GHz band. no loss of enthusiasm in our user Archive (JSA) and the ORAC–DR pipe- RxA3 continues to provide reliable community for SCUBA–2 and the line advance. Reduced data products service in the 230-GHz band, and projects in the JCMT Legacy Survey; have been available from the JSA for ACSIS now serves as the backend on the contrary, we are asked anx- a while now. After each night’s ob- D ESK spectrometer for all of these. These iously about progress with SCUBA–2 serving, all data used to be reproc- new capabilities have proved to be a everywhere we go! A second diffi- essed on machines at the JAC and OF great success, with HARP in particu- culty is the increase in the cost of the reduced products shipped over lar being used for three projects in the instrument with every delay, and to CADC for ingestion into the JSA. THE the JCMT Legacy Survey. The only it is entirely possible that further This September, an important mile- remaining element of the spectro- cuts to observatory operations will stone was reached when this nightly D scopic instrumentation is ROVER, the be necessary in order to help pay for re-reduction processing was trans- IRECTOR polarimeter for RxA3 and HARP, it. ferred over to the fast machines at which is being commissioned as and CADC. As well as the dramatic in- when time permits amongst our The mention of money brings us to crease in processing power, this other priorities. the third and most profound diffi- gives us increased flexibility as to culty occasioned by the delay in when and how often we can process The continuum part of this transfor- SCUBA–2. The funding agencies in (or reprocess) data and fulfils one of mation is unfortunately running well the UK, Canada and the Netherlands the requirements of the project. We behind schedule, due primarily to are all operating under very con- now intend to go through the back- the late delivery of SCUBA–2 and its strained financing at present, and log of data to bring the archive up to arrays. The instrument itself was although they have all committed to date. delivered in March 2008, and al- the continued operation of the tele- (Director’s Desk, continued on page 4) JCMT Science Archive (JSA) Update Frossie Economou (JAC Software Group) More than 10,000 processed files are now available for ACSIS data from the JCMT Science Archive. These data were reduced by our pipeline in “full on” mode (as op- posed to the shove-data-out-the- door-as-quickly-as-possibly mode that most visiting observers see run- PERATIONS ning at the Mauna Kea summit). Our ORAC–DR recipes have matured considerably since we embarked on JCMT O JCMT this, so the more recent your data, the better it will look. When re- sources allow, we'll go back and re- reduce the backlog to improve early reductions and process data from before the pipeline was available. PIs who would like products from older ACSIS data generated with the latest version of the pipeline can jump the reprocessing queue by emailing jcmtarch .at. jach.hawaii.edu with their project ID(s). 4 (JCMT Science Archive, continued on page 5) Figure 1. — An example of thumbnails from data search results at the JCMT Science Archive (JSA). (Director’s Desk, continued from page 3) Campbell, and her husband Ian, Services Centre in Swindon, UK, has These reduced data products are Electronics Engineer, left at the end joined us as Christine’s replacement, processed by the ORAC–DR pipeline of August to return to their native bringing to an end a happy phase in using advanced methods that also Scotland. Christine and Ian were im- which we had no Manchester United incorporate pre-defined quality as- mensely valuable to us, both in their supporters on staff.
Recommended publications
  • HST/WFC3 OBSERVATIONS of an OFF-NUCLEAR SUPERBUBBLE in ARP 220 Kelly E
    The Astrophysical Journal, 810:149 (11pp), 2015 September 10 doi:10.1088/0004-637X/810/2/149 © 2015. The American Astronomical Society. All rights reserved. HST/WFC3 OBSERVATIONS OF AN OFF-NUCLEAR SUPERBUBBLE IN ARP 220 Kelly E. Lockhart1, Lisa J. Kewley2, Jessica R. Lu1, Mark G. Allen3, David Rupke4, Daniela Calzetti5, Richard I. Davies6, Michael A. Dopita2, Hauke Engel6, Timothy M. Heckman7, Claus Leitherer8, and David B. Sanders1 1 Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 2 Research School of Astronomy and Astrophysics, Australian National University, Cotter Road, Weston Creek ACT 2611, Australia 3 Observatoire de Strasbourg, UMR 7550, Strasbourg, F-67000, France 4 Department of Physics, Rhodes College, Memphis, TN 38112, USA 5 Department of Astronomy, University of Massachusetts, Amherst, MA 01003, USA 6 Max-Planck-Institut für Extraterrestrische Physik, Postfach 1312, D-85741 Garching, Germany 7 Center for Astrophysical Sciences, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA 8 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA Received 2015 March 7; accepted 2015 June 8; published 2015 September 9 ABSTRACT We present a high spatial resolution optical and infrared study of the circumnuclear region in Arp 220, a late-stage galaxy merger. Narrowband imaging using Hubble Space Telescope/WFC3 has resolved the previously observed peak in Hα+[N II] emission into a bubble-shaped feature. This feature measures 1″. 6 in diameter, or 600 pc, and is only 1″ northwest of the western nucleus. The bubble is aligned with the western nucleus and the large-scale outflow axis seen in X-rays.
    [Show full text]
  • New Herbig±Haro Objects and Giant Outflows in Orion
    Mon. Not. R. Astron. Soc. 310, 331±354 (1999) New Herbig±Haro objects and giant outflows in Orion S. L. Mader,1 W. J. Zealey,1 Q. A. Parker2 and M. R. W. Masheder3,4 1Department of Engineering Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia 2Anglo-Australian Observatory, Coonabarabran, NSW 2357, Australia 3Department of Physics, University of Bristol, Bristol BS8 1TL 4Netherlands Foundation for Research in Astronomy, PO Box 2, 7990 AA Dwingeloo, the Netherlands Accepted 1999 June 29. Received 1999 May 11; in original form 1998 June 25 ABSTRACT We present the results of a photographic and CCD imaging survey for Herbig±Haro (HH) objects in the L1630 and L1641 giant molecular clouds in Orion. The new HH flows were initially identified from a deep Ha film from the recently commissioned AAO/UKST Ha Survey of the southern sky. Our scanned Ha and broad-band R images highlight both the improved resolution of the Ha survey and the excellent contrast of the Ha flux with respect to the broad-band R. Comparative IVN survey images allow us to distinguish between emission and reflection nebulosity. Our CCD Ha,[Sii], continuum and I-band images confirm the presence of a parsec-scale HH flow associated with the Ori I-2 cometary globule, and several parsec-scale strings of HH emission centred on the L1641-N infrared cluster. Several smaller outflows display one-sided jets. Our results indicate that, for declinations south of 268 in L1641, parsec-scale flows appear to be the major force in the large-scale movement of optical dust and molecular gas.
    [Show full text]
  • The Discovery of Herbig-Haro Objects in Ldn 673
    Draft version December 4, 2017 Typeset using LATEX default style in AASTeX61 THE DISCOVERY OF HERBIG-HARO OBJECTS IN LDN 673 T. A. Rector1 | R. Y. Shuping2 | L. Prato3 | H. Schweiker4, 5, 6 | 1Department of Physics and Astronomy, University of Alaska Anchorage, Anchorage, AK 99508, USA 2Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA 3Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA 4National Optical Astronomy Observatory, Tucson, AZ 85719, USA 5Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA) under cooperative agreement with the National Science Foundation. 6WIYN Observatory, Tucson, AZ 85719, USA ABSTRACT We report the discovery of twelve faint Herbig-Haro (HH) objects in LDN 673 found using a novel color-composite imaging method that reveals faint Hα emission in complex environments. Follow-up observations in [S II] confirmed their classification as HH objects. Potential driving sources are identified from the Spitzer c2d Legacy Program catalog and other infrared observations. The twelve new HH objects can be divided into three groups: Four are likely associated with a cluster of eight YSO class I/II IR sources that lie between them; five are colinear with the T Tauri multiple star system AS 353, and are likely driven by the same source as HH 32 and HH 332; three are bisected by a very red source that coincides with an infrared dark cloud. We also provide updated coordinates for the three components of HH 332. Inaccurate numbers were given for this object in the discovery paper.
    [Show full text]
  • The Future of the GBT
    The Future of the GBT Felix J. Lockman NRAO Green Bank Arecibo, July 2009 UNOFFICIAL The Future of the GBT Felix J. Lockman NRAO Green Bank Arecibo, July 2009 Characteristics of the GBT Large Collecting Area Sensitive to Low Surface Brightness Sky Coverage & Tracking (>85%) Angular Resolution Frequency Coverage Radio Quiet Zone Unblocked Aperture state-of-art receivers & detectors modern control software flexible scheduling Unique capabilities which complement EVLA, VLBA, and ALMA The Advantage of Unblocked Optics Dynamic Range Near sidelobes reduced by a factor >10 from conventional antennas Gain & Sensitivity The 100 meter diameter GBT performs better than a 120 meter conventional antenna Reduced Interference 2002 panels active surface retroreflectors for future metrology A telescope designed to be enhanced Unique active surface →Unlike any other radio telescope← Green Bank and the GBT A telescope that works well over a factor of 1000 in frequency/wavelength / energy -- equivalent to the range from the infrared (10μ) to the soft X-ray (0.01μ) GALEX HST Chandra Spitzer “...just hitting its stride” Future Prospects & Development at NRAO and in the US Radio Community ~ 2008 NRAO Staff Retreat 4 AOC Auditorium, NRAO, Socorro, NM ~ April 10-11, 2008 A telescope for fundamental physics The fastest pulsars test our understanding of matter at the most extreme densities “A Radio Pulsar Spinning at 716 Hz” Hessels et al 2006 Science A telescope for fundamental physics The fastest pulsars test our understanding of matter at the most extreme densities
    [Show full text]
  • 277 — 18 January 2016 Editor: Bo Reipurth ([email protected]) List of Contents
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 277 — 18 January 2016 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 3 Abstracts of Newly Accepted Papers ........... 5 Editor: Bo Reipurth [email protected] Abstracts of Newly Accepted Major Reviews . 30 Technical Editor: Eli Bressert Dissertation Abstracts ........................ 31 [email protected] New Jobs ..................................... 32 Technical Assistant: Hsi-Wei Yen Meetings ..................................... 33 [email protected] Summary of Upcoming Meetings ............. 36 Editorial Board Joao Alves Alan Boss Jerome Bouvier Cover Picture Lee Hartmann Thomas Henning The Rosette Nebula is a large HII region in Mono- Paul Ho ceros at a distance of about 1.6 - 1.7 kpc. It is Jes Jorgensen illuminated by the OB cluster NGC 2244, which Charles J. Lada contains seven O-stars, dominated by the O4V star Thijs Kouwenhoven HD 46223. The northwestern edge of the HII region Michael R. Meyer contains a large complex of globules and elephant Ralph Pudritz trunks. Luis Felipe Rodr´ıguez Ewine van Dishoeck Image courtesy Don Goldman http://astrodonimaging.com Hans Zinnecker ( ). The Star Formation Newsletter is a vehicle for fast distribution of information of interest for as- tronomers working on star and planet formation and molecular clouds. You can submit material for the following sections: Abstracts of recently Submitting your abstracts accepted papers (only for papers sent to refereed journals), Abstracts of recently accepted major re- Latex macros for submitting abstracts views (not standard conference contributions), Dis- and dissertation abstracts (by e-mail to sertation Abstracts (presenting abstracts of new [email protected]) are appended to Ph.D dissertations), Meetings (announcing meet- each Call for Abstracts.
    [Show full text]
  • VLBI IMAGES of 49 RADIO SUPERNOVAE in ARP 220 Colin J
    The Astrophysical Journal, 647:185Y193, 2006 August 10 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. VLBI IMAGES OF 49 RADIO SUPERNOVAE IN ARP 220 Colin J. Lonsdale MIT Haystack Observatory, Westford, MA 01886; [email protected] Philip J. Diamond and Hannah Thrall Jodrell Bank Observatory, Macclesfield, SK11 9DL, UK; [email protected], [email protected] Harding E. Smith CASS, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0424; [email protected] and Carol J. Lonsdale Infrared Processing and Analysis Center, MS 100-22, Pasadena, CA 91125; [email protected] Received 2006 March 6; accepted 2006 April 14 ABSTRACT We have used a very long baseline interferometry (VLBI) array at 18 cm wavelength to image the nucleus of the luminous IR galaxy Arp 220 at 1 pc linear resolution, with very high sensitivity. The resulting map has an rms of 5.5 Jy beamÀ1, and careful image analysis results in 49 confirmed point sources ranging in flux density from 1.2 mJy down to 60 Jy. Comparison with high-sensitivity data from 12 months earlier reveals at least four new sources. The favored interpretation of these sources is that they are radio supernovae, and if all new supernovae are detectable at this sensitivity, a resulting estimate of the supernova rate in the Arp 220 system is 4 Æ 2 per year. The implied star for- mation rate is sufficient to power the entire observed far-infrared luminosity of the galaxy. The two nuclei of Arp 220 exhibit striking similarities in their radio properties, although the western nucleus is more compact, and appears to be 3 times more luminous than the eastern nucleus.
    [Show full text]
  • Technion, Israel Abstract
    JETS before, during, and after explosions and in powering intermediate luminosity optical transients (ILOTs) Noam Soker Technion, Israel Abstract I will describe recent results on the role of JETS in exploding core collapse supernovae (CCSNe) and in powering Intermediate Luminosity Optical Transients (ILOTs), and will compare the results with the most recent observations and with other theoretical studies. I will discuss new ideas of processes that become possible by jets, such as the jittering jets explosion mechanism of massive stars aided by neutrino heating, the formation of Type IIb CCSNe by the Grazing Envelope Evolution (GEE), and common envelope jets supernovae (CEJSNe). 1. Introduction JETS 2. Jets Before 2.1 Jets shape pre-explosion circumstellar matter Similar outer rings in SN 1987A and in the planetary nebula jet jet SN 1987A 19987A Broken inner ring in SN 1987A and in the Necklace planetary nebulae jet Necklace planetary nebula In both planetary nebulae there is a binary system at jet (Corradi et al. 2011) the center. The compact companion launches the SN 1987A jets as it accretes mass from the giant progenitor. 2.2 Jets launched by a companion power pre-explosion outbursts Can be a main sequence companion as in the Great Eruption of Eta Carinae (Kashi, A. & Soker, N. in several papers). Can be a neutron star that enters the envelope (Gilkis, A., Kashi, A., Soker, N. 2019), or that accretes from the inflated envelope (Danieli, B. & Soker, N. 2019) 2.3 Type IIb supernovae by the grazing envelope evolution Jet-driven mass loss prevents common envelope and leads to the formation of a Type IIb supernova.
    [Show full text]
  • EVLA Imaging of Methanimine and Hydrogen Cyanide in Arp 220
    DePaul University Via Sapientiae College of Liberal Arts & Social Sciences Theses and Dissertations College of Liberal Arts and Social Sciences 8-2011 EVLA imaging of methanimine and hydrogen cyanide in Arp 220 Matthew R. Rickert DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/etd Recommended Citation Rickert, Matthew R., "EVLA imaging of methanimine and hydrogen cyanide in Arp 220" (2011). College of Liberal Arts & Social Sciences Theses and Dissertations. 97. https://via.library.depaul.edu/etd/97 This Thesis is brought to you for free and open access by the College of Liberal Arts and Social Sciences at Via Sapientiae. It has been accepted for inclusion in College of Liberal Arts & Social Sciences Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. EVLA IMAGING OF METHANIMINE AND HYDROGEN CYANIDE IN ARP 220 A Thesis Presented in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE August, 2 0 1 1 BY Matthew Rickert PHYSICS DEPARTMENT College of Liberal Arts and Sciences DePaul University Chicago, Illinois 2 TABLE OF CONTENTS LIST OF FIGURES . .3 LIST OF TABLES . .4 ABSTRACT . .6 CHAPTER 1 Introduction . .8 1.1 Introduction to Spectroscopy . .9 1.2 Radio Interferometry . 11 1.3 Arp 220 . 17 1.4 The Prebiotic Molecules H2CNH and HCN . 24 CHAPTER 2 Observations and Data Reduction . 34 2.1 Observations . 34 2.2 Data Reduction . 35 2.3 Visualization and Additional Processing . 45 CHAPTER 3 Results and Discussion . 48 3.1 Arp 220 Continuum .
    [Show full text]
  • Celebrating 30 Years of Science from the James Clerk Maxwell Telescope Rsos.Royalsocietypublishing.Org Ian Robson1,2, Wayne S
    Celebrating 30 Years of Science from the James Clerk Maxwell Telescope rsos.royalsocietypublishing.org Ian Robson1;2, Wayne S. Holland1;2 and Per Friberg3 Review 1UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK Article submitted to journal 2Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK Subject Areas: 3East Asian Observatory, 660 N. A‘ohok¯ u¯ Place, Observational astronomy University Park, Hilo, HI 96720, USA Keywords: The James Clerk Maxwell Telescope (JCMT) has Galaxies, stars, planets been the world’s most successful single dish telescope at submillimetre wavelengths since it began operations Author for correspondence: in 1987. From the pioneering days of single-element Ian Robson photometers and mixers, through the first modest imaging arrays, leading to the state-of-the-art wide- e-mail: [email protected] field camera SCUBA-2 and the spectrometer array HARP, the JCMT has been associated with a number of major scientific discoveries. Famous for the discovery of “SCUBA” galaxies, which are responsible for a large fraction of the far-infrared background, to the first images of huge discs of cool debris around nearby stars, possibly giving us clues to the evolution of planetary systems, the JCMT has pushed the sensitivity limits more than any other facility in this most difficult of wavebands in which to observe. Now approaching the 30th anniversary of the first observations the telescope continues to carry out unique and innovative science. In this review article we look back on just some of the scientific highlights from the past 30 years.
    [Show full text]
  • A Massive Bipolar Outflow and a Dusty Torus with Large Grains in the Preplanetary Nebula Iras 22036+5306 R
    The Astrophysical Journal, 653:1241Y1252, 2006 December 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. A MASSIVE BIPOLAR OUTFLOW AND A DUSTY TORUS WITH LARGE GRAINS IN THE PREPLANETARY NEBULA IRAS 22036+5306 R. Sahai,1 K. Young,2 N. A. Patel,2 C. Sa´nchez Contreras,3 and M. Morris4 Received 2006 June 19; accepted 2006 August 10 ABSTRACT We report high angular resolution (100)COJ ¼ 3Y2 interferometric mapping using the Submillimeter Array (SMA) of IRAS 22036+5306 (I22036), a bipolar preplanetary nebula (PPN) with knotty jets discovered in our HST snapshot survey of young PPNs. In addition, we have obtained supporting lower resolution (1000) CO and 13CO J ¼ 1Y0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J ¼ 3Y2 observations show the presence of a very fast (220 km sÀ1), 39 À1 highly collimated, massive (0.03 M ) bipolar outflow with a very large scalar momentum (about 10 gcms ), and the characteristic spatiokinematic structure of bow shocks at the tips of this outflow. The H line shows an absorption feature blueshifted from the systemic velocity by 100 km sÀ1, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I22036, as in most PPNs, cannot be driven by radiation pressure. We find an unresolved source of submillimeter (and millimeter- wave) continuum emission in I22036, implying a very substantial mass (0.02Y0.04 M ) of large (radius k1 mm), cold (P50 K) dust grains associated with I22036’s toroidal waist.
    [Show full text]
  • A Multi-Transition Molecular Line Study of Infrared Dark Cloud G331.71+00.59
    Research in Astron. Astrophys. 2013 Vol. 13 No. 1, 28 – 38 Research in http://www.raa-journal.org http://www.iop.org/journals/raa Astronomy and Astrophysics A multi-transition molecular line study of infrared dark cloud G331.71+00.59 Nai-Ping Yu and Jun-Jie Wang National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; [email protected] NAOC-TU Joint Center for Astrophysics, Lhasa 850000, China Received 2012 March 12; accepted 2012 August 3 Abstract Using archive data from the Millimeter Astronomy Legacy Team Survey at 90 GHz (MALT90), carried out using the Mopra 22-m telescope, we made the first multi-transition molecular line study of infrared dark cloud (IRDC) MSXDC G331.71+00.59. Two molecular cores were found embedded in this IRDC. Each of these cores is associated with a known extended green object (EGO), indicating places of massive star formation. The HCO+ (1–0) and HNC (1–0) transitions show promi- nent blue or red asymmetric structures, suggesting outflow and inflow activities of young stellar objects (YSOs). Other detected molecular lines include H13CO+ (1– 0), C2H (1–0), HC3N (10–9), HNCO(40;4–30;3) and SiO (2–1), which are typical of hot cores and outflows. We regard the two EGOs as evolving from the IRDC to hot cores. Using public GLIMPS data, we investigate the spectral energy distribution of EGO G331.71+0.60. Our results support this EGO being a massive YSO driving the outflow. G331.71+0.58 may be at an earlier evolutionary stage.
    [Show full text]
  • Abstract Book & Logistics
    MASSIVE STAR FORMATION 2007 Observations confront Theory September 10 – 14, 2007 Convention Centre Heidelberg, Germany ABSTRACT BOOK & LOGISTICS 2 List of Contents Heidelberg Map Extract Page 7 Room Plan of the Convention Center Page 9 Social Events Page 11 Proceedings Information Page 13 Scientific Program Page 15 Abstracts for Talk Contributions Page 25 Abstracts for Poster Contributions Page 91 List of Participants Page 245 3 4 LOGISTICS 5 6 A Cutout Map of Heidelberg 7 The image shows a cutout from the Heidelberg map included in your conference papers. Three impor- tant locations, the Convention Centre (“Stadthalle”), the Heidelberg Castle (“Schloß”), and the University including the Old Assembly Hall are indicated with ellipses. Note that the Konigstuhl¨ Hill with the Lan- dessternwarte and MPIA is not included here. 8 A Sketch of the Room Plan in the Convention Center Internet cafe Main hall for talks and posters Coffee Reception Area Desk Main Entrance Internet Connection We provide an “Internet Cafe”´ with 8 comput- ers and additional plugins for laptops. Furthermore, the Coffee Area will be wireless and you can easily connect to the Internet via a normal DHCP connection from there. The WLAN net will have the name Kon- gresshaus. Convention Center Telephone during the meeting The Convention Center provides a telephone number for callers from outside: +49 (0)6221 14 22 812 9 10 Social Events Beside the scientific program, we have arranged for some “Social Events” that, we hope, are a nice and light addition to the concentrated series of talks during the conference. Welcome Reception On Monday, September 10, we will have the welcome reception at the Heidelberg Castle at 19:30 in the evening.
    [Show full text]