New Herbig±Haro Objects and Giant Outflows in Orion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spectroscopic Analysis of Accretion/Ejection Signatures in the Herbig Ae/Be Stars HD 261941 and V590 Mon T Moura, S
Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon T Moura, S. Alencar, A. Sousa, E. Alecian, Y. Lebreton To cite this version: T Moura, S. Alencar, A. Sousa, E. Alecian, Y. Lebreton. Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon. Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P - Oxford Open Option A, 2020, 494 (3), pp.3512-3535. 10.1093/mnras/staa695. hal-02523038 HAL Id: hal-02523038 https://hal.archives-ouvertes.fr/hal-02523038 Submitted on 16 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. MNRAS 000,1–24 (2019) Preprint 27 February 2020 Compiled using MNRAS LATEX style file v3.0 Spectroscopic analysis of accretion/ejection signatures in the Herbig Ae/Be stars HD 261941 and V590 Mon T. Moura1?, S. H. P. Alencar1, A. P. Sousa1;2, E. Alecian2, Y. Lebreton3;4 1Universidade Federal de Minas Gerais, Departamento de Física, Av. Antônio Carlos 6627, 31270-901, Brazil 2Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France 3LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. -
XIII Publications, Presentations
XIII Publications, Presentations 1. Refereed Publications E., Kawamura, A., Nguyen Luong, Q., Sanhueza, P., Kurono, Y.: 2015, The 2014 ALMA Long Baseline Campaign: First Results from Aasi, J., et al. including Fujimoto, M.-K., Hayama, K., Kawamura, High Angular Resolution Observations toward the HL Tau Region, S., Mori, T., Nishida, E., Nishizawa, A.: 2015, Characterization of ApJ, 808, L3. the LIGO detectors during their sixth science run, Classical Quantum ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravity, 32, 115012. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Ao, Y., Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Hatsukade, B., Matsuda, Y., Iono, D., Kurono, Y.: 2015, The 2014 Collaboration, Virgo Collaboration: 2016, Astrophysical Implications ALMA Long Baseline Campaign: Observations of the Strongly of the Binary Black Hole Merger GW150914, ApJ, 818, L22. Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z = Abbott, B. P., et al. including Flaminio, R., LIGO Scientific 3.042, ApJ, 808, L4. Collaboration, Virgo Collaboration: 2016, Observation of ALMA Partnership, et al. including Asaki, Y., Hirota, A., Nakanishi, Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. K., Espada, D., Kameno, S., Sawada, T., Takahashi, S., Kurono, Lett., 116, 061102. Y., Tatematsu, K.: 2015, The 2014 ALMA Long Baseline Campaign: Abbott, B. P., et al. including Flaminio, R., LIGO Scientific Observations of Asteroid 3 Juno at 60 Kilometer Resolution, ApJ, Collaboration, Virgo Collaboration: 2016, GW150914: Implications 808, L2. for the Stochastic Gravitational-Wave Background from Binary Black Alonso-Herrero, A., et al. including Imanishi, M.: 2016, A mid-infrared Holes, Phys. -
Radio Constraints on Activity in Young Brown Dwarfs
in prep. Radio Constraints on Activity in Young Brown Dwarfs Rachel A. Osten1 Department of Astronomy, University of Maryland, College Park, MD 20742-2421, U.S.A. Electronic Mail: [email protected] Ray Jayawardhana Department of Astronomy & Astrophysics, University of Toronto, Toronto, ON M5S 3H8, CANADA Electronic Mail: [email protected] ABSTRACT We report on searches for radio emission from three of the nearest known young brown dwarfs using the Very Large Array. We have obtained sensitive upper limits on 3.6cm emission from 2MASSW J1207334-393254, TWA 5B and SSSPM J1102-3431, all of which are likely members of the ∼8-Myr-old TW Hy- drae association. We derive constraints on the magnetic field strength and the number density of accelerated electrons, under the assumption that young brown dwarf atmospheres are able to produce gyrosynchrotron emission, as seems to be indicated in older brown dwarfs. For the young brown dwarf TWA 5B, the ratio of its detected X-ray luminosity to the upper limit on radio luminosity places arXiv:astro-ph/0604521v2 27 Apr 2006 it within the expected range for young stars and older, active stars. Thus, its behavior is anomalous compared to older brown dwarfs, in which radio luminos- ity is substantially enhanced over the expected relationship. Our observations deepen the conundrum of magnetic activity in brown dwarfs, and suggest that a factor other than age is more important for determining radio emission in cool substellar objects. Subject headings: stars: activity – stars: coronae – stars: low mass, brown dwarfs – stars: pre-main-sequence – radio continuum 1Hubble Fellow –2– 1. -
Technion, Israel Abstract
JETS before, during, and after explosions and in powering intermediate luminosity optical transients (ILOTs) Noam Soker Technion, Israel Abstract I will describe recent results on the role of JETS in exploding core collapse supernovae (CCSNe) and in powering Intermediate Luminosity Optical Transients (ILOTs), and will compare the results with the most recent observations and with other theoretical studies. I will discuss new ideas of processes that become possible by jets, such as the jittering jets explosion mechanism of massive stars aided by neutrino heating, the formation of Type IIb CCSNe by the Grazing Envelope Evolution (GEE), and common envelope jets supernovae (CEJSNe). 1. Introduction JETS 2. Jets Before 2.1 Jets shape pre-explosion circumstellar matter Similar outer rings in SN 1987A and in the planetary nebula jet jet SN 1987A 19987A Broken inner ring in SN 1987A and in the Necklace planetary nebulae jet Necklace planetary nebula In both planetary nebulae there is a binary system at jet (Corradi et al. 2011) the center. The compact companion launches the SN 1987A jets as it accretes mass from the giant progenitor. 2.2 Jets launched by a companion power pre-explosion outbursts Can be a main sequence companion as in the Great Eruption of Eta Carinae (Kashi, A. & Soker, N. in several papers). Can be a neutron star that enters the envelope (Gilkis, A., Kashi, A., Soker, N. 2019), or that accretes from the inflated envelope (Danieli, B. & Soker, N. 2019) 2.3 Type IIb supernovae by the grazing envelope evolution Jet-driven mass loss prevents common envelope and leads to the formation of a Type IIb supernova. -
A Massive Bipolar Outflow and a Dusty Torus with Large Grains in the Preplanetary Nebula Iras 22036+5306 R
The Astrophysical Journal, 653:1241Y1252, 2006 December 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. A MASSIVE BIPOLAR OUTFLOW AND A DUSTY TORUS WITH LARGE GRAINS IN THE PREPLANETARY NEBULA IRAS 22036+5306 R. Sahai,1 K. Young,2 N. A. Patel,2 C. Sa´nchez Contreras,3 and M. Morris4 Received 2006 June 19; accepted 2006 August 10 ABSTRACT We report high angular resolution (100)COJ ¼ 3Y2 interferometric mapping using the Submillimeter Array (SMA) of IRAS 22036+5306 (I22036), a bipolar preplanetary nebula (PPN) with knotty jets discovered in our HST snapshot survey of young PPNs. In addition, we have obtained supporting lower resolution (1000) CO and 13CO J ¼ 1Y0 observations with the Owens Valley Radio Observatory (OVRO) interferometer, as well as optical long-slit echelle spectra at the Palomar Observatory. The CO J ¼ 3Y2 observations show the presence of a very fast (220 km sÀ1), 39 À1 highly collimated, massive (0.03 M ) bipolar outflow with a very large scalar momentum (about 10 gcms ), and the characteristic spatiokinematic structure of bow shocks at the tips of this outflow. The H line shows an absorption feature blueshifted from the systemic velocity by 100 km sÀ1, which most likely arises in neutral interface material between the fast outflow and the dense walls of the bipolar lobes at low latitudes. The fast outflow in I22036, as in most PPNs, cannot be driven by radiation pressure. We find an unresolved source of submillimeter (and millimeter- wave) continuum emission in I22036, implying a very substantial mass (0.02Y0.04 M ) of large (radius k1 mm), cold (P50 K) dust grains associated with I22036’s toroidal waist. -
Where Are the Hot Ion Lines in Classical T Tauri Stars Formed?
Accretion, winds and jets: High-energy emission from young stellar objects Dissertation zur Erlangung des Doktorgrades des Departments Physik der Universit¨at Hamburg vorgelegt von Hans Moritz G¨unther aus Hamburg Hamburg 2009 ii Gutachter der Dissertation: Prof. Dr. J. H. M. M. Schmitt Prof. Dr. E. Feigelson Gutachter der Disputation: Prof. Dr. P. H. Hauschildt Prof. Dr. G. Wiedemann Datum der Disputation: 13.03.2009 Vorsitzender des Pr¨ufungsausschusses: Dr. R. Baade Vorsitzender des Promotionsausschusses: Prof. Dr. R. Klanner Dekan der MIN Fakult¨at: Prof. Dr. A. Fr¨uhwald (bis 28.02.2009) Prof. Dr. H. Graener (ab 01.03.2009) iii Zusammenfassung Sterne entstehen durch Gravitationsinstabilit¨aten in molekularen Wolken. Wegen der Erhaltung des Drehimpulses geschieht der Kollaps nicht sph¨arisch, sondern das Material f¨allt zun¨achst auf eine Akkretionsscheibe zusammen. In dieser Doktorarbeit wird hochenergetische Strahlung von Sternen untersucht, die noch aktiv Material von ihrer Scheibe akkretieren, aber nicht mehr von einer Staub- und Gash¨ulle verdeckt sind. In dieser Phase nennt man Sterne der Spektraltypen A und B Herbig Ae/Be (HAeBe) Sterne, alle sp¨ateren Sterne heißen klassische T Tauri Sterne (CTTS); eigentlich werden beide Typen ¨uber spektroskopische Merkmale definiert, aber diese fallen mit den hier genannten Entwicklungsstadien zusammen. In dieser Arbeit werden CTTS und HAeBes mit hochaufl¨osender Spektroskopie im R¨ontgen- und UV-Bereich untersucht und Simulationen f¨ur diese Stadien gezeigt. F¨ur zwei Sterne werden R¨ontgenspektren reduziert und vorgestellt: Der CTTS V4046 Sgr wurde mit Chandra f¨ur 100 ks beobachtet. Die Lichtkurve dieser Beobachtung zeigt einen Flare und die Triplets der He Isosequenz (Si xiii, Ne ix und O vii) deuten auf hohe Dichten im emittierenden Plasma hin. -
VLBI Monitoring Observations of Water Masers Around the Semi
VLBI Monitoring Observations of Water Masers Around the Semi-Regular Variable Star R Crateris Jos´eK. Ishitsuka ,1 Hiroshi Imai,2,3 Toshihiro Omodaka,4 Munetaka Ueno,1 Osamu Kameya,2,3 Tetsuo Sasao,3 Masaki Morimoto,5 Takeshi Miyaji,3,6 Jun-ichi Nakajima,7 and Teruhiko Watanabe4 1Department of Earth Science and Astronomy, University of Tokyo, Komaba, Tokyo 153-8902 [email protected] 2Mizusawa Astrogeodynamics Observatory, National Astronomical Observatory, Mizusawa, Iwate 023-0861 3VERA Project Office, National Astronomical Observatory, Mitaka, Tokyo 181-8588 4Faculty of Science, Kagoshima University, Kagoshima, Kagoshima 890-0065 5Nishi-Harima Astronomical Observatory, Sayo, Hyogo 679-5313 6Nobeyama Radio Observatory, National Astronomical Observatory, Minamisaku, Nagano 384-1305 7Kashima Space Research Center, Communications Research Laboratory, Kashima, Ibaraki 314-0012 (Received 2000 December 8; accepted 2001 September 24) Abstract We monitored water-vapor masers around the semi-regular variable star R Crateris with the Japanese VLBI Network (J-Net) at the 22 GHz band during four epochs with intervals of one month. The relative proper motions and Doppler- velocity drifts of twelve maser features were measured. Most of them existed for longer than 80 days. The 3-D kinematics of the features indicates a bipolar expanding flow. The major axis of the asymmetric flow was estimated to be at P.A. = 136◦. The existence of a bipolar outflow suggests that a Mira variable star had already formed a bipolar outflow. The water masers are in a region of apparent minimum radii of arXiv:astro-ph/0112302v1 13 Dec 2001 1.3 × 1012 m and maximum radii of 2.6 × 1012 m, between which the expansion ve- locity ranges from 4.3 to 7.4 km s−1. -
Stellar Evolution
AccessScience from McGraw-Hill Education Page 1 of 19 www.accessscience.com Stellar evolution Contributed by: James B. Kaler Publication year: 2014 The large-scale, systematic, and irreversible changes over time of the structure and composition of a star. Types of stars Dozens of different types of stars populate the Milky Way Galaxy. The most common are main-sequence dwarfs like the Sun that fuse hydrogen into helium within their cores (the core of the Sun occupies about half its mass). Dwarfs run the full gamut of stellar masses, from perhaps as much as 200 solar masses (200 M,⊙) down to the minimum of 0.075 solar mass (beneath which the full proton-proton chain does not operate). They occupy the spectral sequence from class O (maximum effective temperature nearly 50,000 K or 90,000◦F, maximum luminosity 5 × 10,6 solar), through classes B, A, F, G, K, and M, to the new class L (2400 K or 3860◦F and under, typical luminosity below 10,−4 solar). Within the main sequence, they break into two broad groups, those under 1.3 solar masses (class F5), whose luminosities derive from the proton-proton chain, and higher-mass stars that are supported principally by the carbon cycle. Below the end of the main sequence (masses less than 0.075 M,⊙) lie the brown dwarfs that occupy half of class L and all of class T (the latter under 1400 K or 2060◦F). These shine both from gravitational energy and from fusion of their natural deuterium. Their low-mass limit is unknown. -
The UV Perspective of Low-Mass Star Formation
galaxies Review The UV Perspective of Low-Mass Star Formation P. Christian Schneider 1,* , H. Moritz Günther 2 and Kevin France 3 1 Hamburger Sternwarte, University of Hamburg, 21029 Hamburg, Germany 2 Massachusetts Institute of Technology, Kavli Institute for Astrophysics and Space Research; Cambridge, MA 02109, USA; [email protected] 3 Department of Astrophysical and Planetary Sciences Laboratory for Atmospheric and Space Physics, University of Colorado, Denver, CO 80203, USA; [email protected] * Correspondence: [email protected] Received: 16 January 2020; Accepted: 29 February 2020; Published: 21 March 2020 Abstract: The formation of low-mass (M? . 2 M ) stars in molecular clouds involves accretion disks and jets, which are of broad astrophysical interest. Accreting stars represent the closest examples of these phenomena. Star and planet formation are also intimately connected, setting the starting point for planetary systems like our own. The ultraviolet (UV) spectral range is particularly suited for studying star formation, because virtually all relevant processes radiate at temperatures associated with UV emission processes or have strong observational signatures in the UV range. In this review, we describe how UV observations provide unique diagnostics for the accretion process, the physical properties of the protoplanetary disk, and jets and outflows. Keywords: star formation; ultraviolet; low-mass stars 1. Introduction Stars form in molecular clouds. When these clouds fragment, localized cloud regions collapse into groups of protostars. Stars with final masses between 0.08 M and 2 M , broadly the progenitors of Sun-like stars, start as cores deeply embedded in a dusty envelope, where they can be seen only in the sub-mm and far-IR spectral windows (so-called class 0 sources). -
GEORGE HERBIG and Early Stellar Evolution
GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study. -
Stellar Properties of Embedded Protostars
Stellar Properties of Embedded Protostars R. J. White University of Alabama in Huntsville T. P. Greene National Aeronautics and Space Administration at Ames Research Center G. W. Doppmann Gemini Observatory K. R. Covey University of Washington L. A. Hillenbrand California Institute of Technology Protostars are precursors to the nearly fully assembled T-Tauri and Herbig Ae/Be type stars undergoing quasi-static contraction towards the zero-age main sequence; they are in the process of acquiring the majority of their stellar mass. Although numerous young stars with spatially extended envelope-like structures appear to fit this description, their high extinction has inhibited observers from directly measuring their stellar and accretion properties and confirming that they are in fact in the main phase of mass accretion (i.e., true protostars). Recently, however, high dispersion spectrographs on large aperture telescopes have allowed observers to begin studying the stellar and accretion properties of a subset of these stars, commonly referred to as Class I stars. In this Chapter, we summarize the newly determined properties of Class I stars and compare them with observations of Class II stars, which are the more optically revealed T Tauri stars, to better understand the relative evolutionary state of the two classes. Class I stars have distributions of spectral types and stellar luminosities that are similar to those of Class II stars, suggesting similar masses and ages. The stellar luminosity and resulting age estimates, however, are especially uncertain given the difficulty in accounting for the large extinctions, scattered light emission and continuum excesses typical of Class I stars. -
The Origin of Nonradiative Heating/Momentum in Hot Stars
NASA Conference Publication 2358 NASA-CP-2358 19850009446 The Origin of Nonradiative Heating/Momentum in Hot Stars Proceedings of a workshop held at NASA Goddard Space Flight Center Greenbelt, Maryland June 5-7, 1984 NI_SA NASA Conference Publication 2358 The Origin of Nonradiative Heating/Momentum in Hot Stars Edited by A. B. Underhill and A. G. Michalitsianos Goddard Space Flight Center Greenbelt, Maryland Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and the American Astronomical Society, Washington, D.C., and held at NASA Goddard Space Flight Center Greenbelt, Maryland June 5-7, 1984 N/LS/X NationalAeronautics and SpaceAdministration ScientificandTechnical InformationBranch J 1985 TABLE OF CONTENTS ORGANIZING COMMITTEE v LIST OF PARTICIPANTS vi OPENING REMARKS A.B. Underhill I SESSION I. - EVIDENCE FOR NONRADIATIVE ACTIVITY IN STARS EVIDENCE FOR NONRADIATIVE ACTIVITY IN HOT STARS J.P. Cassinelli (Invited review) 2 EVIDENCE FOR NON-RADIATIVE ACTIVITY IN STARS WITH Tef f < i0,000 K Jeffrey L. Linsky (Invited review) 24 OBSERVATIONS OF NONTHERMAL RADIO EMISSION FROM EARLY TYPE STARS D.C. Abbott, J.H. Bieging and E. Churehwell 47 NONRADIAL PULSATION AND MASS LOSS IN EARLY B STARS G. Donald Penrod and Myron A. Smith 53 NARROW ABSORPTION COMPONENTS IN Be STAR WINDS C.A. Grady 57 LIGHT VARIATIONS OF THE B-TYPE STAR HD 160202 Gustav A. Bakos 62 ULTRAVIOLET SPECTRAL MORPHOLOGY OF 0-TYPE STELLAR WINDS Nolan R. Walborn 66 NONTHERMAL RADIO EMISSION AND THE HR DIAGRAM D.M. Gibson 70 X-RAY ACTIVITY IN PRE-MAIN SEQUENCE STARS Eric D. Feigelson 75 ACTIVE PHENOMENA IN THE PRE-MAIN SEQUENCE STAR AB AUR F.