Partial list colouring of certain graphs Jeannette Janssen Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada - B3H 3J5.
[email protected] Rogers Mathew∗ Department of Computer Science and Engineering, Indian Institute of Technology, Kharagpur 721302, West Bengal, India.
[email protected] Deepak Rajendraprasady Department of Computer Science, Caesarea Rothschild Institute, University of Haifa, 31905 Haifa, Israel.
[email protected] Submitted: Apr 13, 2013; Accepted: Sep 9, 2015; Published: Sep 20, 2015 Mathematics Subject Classifications: 05C15 Abstract The partial list colouring conjecture due to Albertson, Grossman, and Haas [1] states that for every s-choosable graph G and every assignment of lists of size t, tjV (G)j 1 6 t 6 s, to the vertices of G there is an induced subgraph of G on at least s vertices which can be properly coloured from these lists. In this paper, we show that the partial list colouring conjecture holds true for certain classes of graphs like jV (G)|−1 claw-free graphs, graphs with chromatic number at least 2 , chordless graphs, and series-parallel graphs. ∗While this work was done, the author was an AARMS postdoctoral fellow in the Department of Mathematics and Statistics, Dalhousie University, Halifax, Canada - B3H 3J5. yWhile this work was done, the author was supported by a VATAT Postdoctoral Fellowship and the Israel Science Foundation (grant number 862/10). the electronic journal of combinatorics 22(3) (2015), #P3.41 1 1 Introduction Consider a simple, undirected, and finite graph G. Let L = fl(v): v 2 V (G)g denote an assignment of a list of admissible colours for each vertex in G.