Math 725, Spring 2016 Lecture Notes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coloring Problems in Graph Theory Kacy Messerschmidt Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2018 Coloring problems in graph theory Kacy Messerschmidt Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Messerschmidt, Kacy, "Coloring problems in graph theory" (2018). Graduate Theses and Dissertations. 16639. https://lib.dr.iastate.edu/etd/16639 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Coloring problems in graph theory by Kacy Messerschmidt A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Bernard Lidick´y,Major Professor Steve Butler Ryan Martin James Rossmanith Michael Young The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2018 Copyright c Kacy Messerschmidt, 2018. All rights reserved. TABLE OF CONTENTS LIST OF FIGURES iv ACKNOWLEDGEMENTS vi ABSTRACT vii 1. INTRODUCTION1 2. DEFINITIONS3 2.1 Basics . .3 2.2 Graph theory . .3 2.3 Graph coloring . .5 2.3.1 Packing coloring . .6 2.3.2 Improper coloring . -
Three Topics in Online List Coloring∗
Three Topics in Online List Coloring∗ James Carraher†, Sarah Loeb‡, Thomas Mahoney‡, Gregory J. Puleo‡, Mu-Tsun Tsai‡, Douglas B. West§‡ February 15, 2013 Abstract In online list coloring (introduced by Zhu and by Schauz in 2009), on each round the set of vertices having a particular color in their lists is revealed, and the coloring algorithm chooses an independent subset to receive that color. The paint number of a graph G is the least k such that there is an algorithm to produce a successful coloring with no vertex being shown more than k times; it is at least the choice number. We study paintability of joins with complete or empty graphs, obtaining a partial result toward the paint analogue of Ohba’s Conjecture. We also determine upper and lower bounds on the paint number of complete bipartite graphs and characterize 3-paint- critical graphs. 1 Introduction The list version of graph coloring, introduced by Vizing [18] and Erd˝os–Rubin–Taylor [2], has now been studied in hundreds of papers. Instead of having the same colors available at each vertex, each vertex v has a set L(v) (called its list) of available colors. An L-coloring is a proper coloring f such that f(v) L(v) for each vertex v. A graph G is k-choosable if an ∈ L-coloring exists whenever L(v) k for all v V (G). The choosability or choice number | | ≥ ∈ χℓ(G) is the least k such that G is k-choosable. Since the lists at vertices could be identical, always χ(G) χ (G). -
Strong Subgraph Connectivity of Digraphs: a Survey
Strong Subgraph Connectivity of Digraphs: A Survey Yuefang Sun1 and Gregory Gutin2 1 Department of Mathematics, Shaoxing University Zhejiang 312000, P. R. China, [email protected] 2 School of Computer Science and Mathematics Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK, [email protected] Abstract In this survey we overview known results on the strong subgraph k- connectivity and strong subgraph k-arc-connectivity of digraphs. After an introductory section, the paper is divided into four sections: basic results, algorithms and complexity, sharp bounds for strong subgraph k-(arc-)connectivity, minimally strong subgraph (k,ℓ)-(arc-) connected digraphs. This survey contains several conjectures and open problems for further study. Keywords: Strong subgraph k-connectivity; Strong subgraph k-arc- connectivity; Subdigraph packing; Directed q-linkage; Directed weak q-linkage; Semicomplete digraphs; Symmetric digraphs; Generalized k- connectivity; Generalized k-edge-connectivity. AMS subject classification (2010): 05C20, 05C35, 05C40, 05C70, 05C75, 05C76, 05C85, 68Q25, 68R10. 1 Introduction arXiv:1808.02740v1 [cs.DM] 8 Aug 2018 The generalized k-connectivity κk(G) of a graph G = (V, E) was intro- duced by Hager [14] in 1985 (2 ≤ k ≤ |V |). For a graph G = (V, E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or, simply, an S-tree is a subgraph T of G which is a tree with S ⊆ V (T ). Two S-trees T1 and T2 are said to be edge-disjoint if E(T1) ∩ E(T2)= ∅. Two edge-disjoint S-trees T1 and T2 are said to be internally disjoint if V (T1) ∩ V (T2)= S. -
A Survey of Graph Coloring - Its Types, Methods and Applications
FOUNDATIONS OF COMPUTING AND DECISION SCIENCES Vol. 37 (2012) No. 3 DOI: 10.2478/v10209-011-0012-y A SURVEY OF GRAPH COLORING - ITS TYPES, METHODS AND APPLICATIONS Piotr FORMANOWICZ1;2, Krzysztof TANA1 Abstract. Graph coloring is one of the best known, popular and extensively researched subject in the eld of graph theory, having many applications and con- jectures, which are still open and studied by various mathematicians and computer scientists along the world. In this paper we present a survey of graph coloring as an important subeld of graph theory, describing various methods of the coloring, and a list of problems and conjectures associated with them. Lastly, we turn our attention to cubic graphs, a class of graphs, which has been found to be very interesting to study and color. A brief review of graph coloring methods (in Polish) was given by Kubale in [32] and a more detailed one in a book by the same author. We extend this review and explore the eld of graph coloring further, describing various results obtained by other authors and show some interesting applications of this eld of graph theory. Keywords: graph coloring, vertex coloring, edge coloring, complexity, algorithms 1 Introduction Graph coloring is one of the most important, well-known and studied subelds of graph theory. An evidence of this can be found in various papers and books, in which the coloring is studied, and the problems and conjectures associated with this eld of research are being described and solved. Good examples of such works are [27] and [28]. In the following sections of this paper, we describe a brief history of graph coloring and give a tour through types of coloring, problems and conjectures associated with them, and applications. -
Shattering, Graph Orientations, and Connectivity
Shattering, Graph Orientations, and Connectivity [Extended Abstract] László Kozma Shay Moran Saarland University Max Planck Institute for Informatics Saarbrücken, Germany Saarbrücken, Germany [email protected] [email protected] ABSTRACT ing orientations with forbidden subgraphs. These problems We present a connection between two seemingly disparate have close ties with the theory of random graphs. An exam- fields: VC-theory and graph theory. This connection yields ple of work of this type is the paper of Alon and Yuster [4], natural correspondences between fundamental concepts in concerned with the number of orientations that do not con- VC-theory, such as shattering and VC-dimension, and well- tain a copy of a fixed tournament. studied concepts of graph theory related to connectivity, combinatorial optimization, forbidden subgraphs, and oth- In this paper we prove statements concerning properties of ers. orientations and subgraphs of a given graph by introducing a connection between VC-theory and graph theory. The In one direction, we use this connection to derive results following are a few examples of the statements that we prove: in graph theory. Our main tool is a generalization of the Sauer-Shelah Lemma [30, 10, 12]. Using this tool we obtain 1. Let G be a graph. Then: a series of inequalities and equalities related to properties of orientations of a graph. Some of these results appear to be the number the number the number of connected of strong of 2-edge- new, for others we give new and simple proofs. ≥ ≥ subgraphs orientations connected In the other direction, we present new illustrative examples of G of G subgraphs of G. -
One-Way Trail Orientations
One-wasy trail orientation Aamand, Anders; Hjuler, Niklas; Holm, Jacob; Rotenberg, Eva Published in: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018 DOI: 10.4230/LIPIcs.ICALP.2018.6 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Aamand, A., Hjuler, N., Holm, J., & Rotenberg, E. (2018). One-wasy trail orientation. In C. Kaklamanis, D. Marx, I. Chatzigiannakis, & D. Sannella (Eds.), 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018 [6] Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. Leibniz International Proceedings in Informatics, LIPIcs Vol. 107 https://doi.org/10.4230/LIPIcs.ICALP.2018.6 Download date: 26. Sep. 2021 One-Way Trail Orientations Anders Aamand1 University of Copenhagen, Copenhagen, Denmark [email protected] https://orcid.org/0000-0002-0402-0514 Niklas Hjuler2 University of Copenhagen, Copenhagen, Denmark [email protected] https://orcid.org/0000-0002-0815-670X Jacob Holm3 University of Copenhagen, Copenhagen, Denmark [email protected] https://orcid.org/0000-0001-6997-9251 Eva Rotenberg4 Technical University of Denmark, Lyngby, Denmark [email protected] https://orcid.org/0000-0001-5853-7909 Abstract Given a graph, does there exist an orientation of the edges such that the resulting directed graph is strongly connected? Robbins’ theorem [Robbins, Am. Math. Monthly, 1939] asserts that such an orientation exists if and only if the graph is 2-edge connected. A natural extension of this problem is the following: Suppose that the edges of the graph are partitioned into trails. Can the trails be oriented consistently such that the resulting directed graph is strongly connected? We show that 2-edge connectivity is again a sufficient condition and we provide a linear time algorithm for finding such an orientation. -
List Coloring Under Some Graph Operations 1
Kragujevac Journal of Mathematics Volume 46(3) (2022), Pages 417–431. LIST COLORING UNDER SOME GRAPH OPERATIONS KINKAR CHANDRA DAS1, SAMANE BAKAEIN2, MOSTAFA TAVAKOLI2∗, FREYDOON RAHBARNIA2, AND ALIREZA ASHRAFI3 Abstract. The list coloring of a graph G = G(V, E) is to color each vertex v ∈ V (G) from its color set L(v). If any two adjacent vertices have different colors, then G is properly colored. The aim of this paper is to study the list coloring of some graph operations. 1. Introduction Throughout this paper, our notations are standard and can be taken from the famous book of West [16]. The set of all positive integers is denoted by N, and for a set X, the power set of X is denoted by P (X). All graphs are assumed to be simple and finite, and if G is such a graph, then its vertex and edge sets are denoted by V (G) and E(G), respectively. The graph coloring is an important concept in modern graph theory with many applications in computer science. A function α : V (G) → N is called a coloring for G. The coloring α is said to be proper, if for each edge uv ∈ E(G), α(u) 6= α(v). If the coloring α uses only the colors [k] = {1, 2, . , k}, then α is called a k-coloring for G, and if such a proper k-coloring exists, then the graph G is said to be k-colorable. The smallest possible number k for which the graph G is k-colorable is the chromatic number of G and is denoted by χ(G). -
Unilateral Orientation of Mixed Graphs
Unilateral Orientation of Mixed Graphs Tamara Mchedlidze and Antonios Symvonis Dept. of Mathematics, National Technical University of Athens, Athens, Greece {mchet,symvonis}@math.ntua.gr Abstract. AdigraphD is unilateral if for every pair x, y of its ver- tices there exists a directed path from x to y, or a directed path from y to x, or both. A mixed graph M =(V,A,E) with arc-set A and edge- set E accepts a unilateral orientation, if its edges can be oriented so that the resulting digraph is unilateral. In this paper, we present the first linear-time recognition algorithm for unilaterally orientable mixed graphs. Based on this algorithm we derive a polynomial algorithm for testing whether a unilaterally orientable mixed graph has a unique uni- lateral orientation. 1 Introduction A large body of literature has been devoted to the study of mixed graphs (see [1] and the references therein). A mixed graph is strongly orientable when its undi- rected edges can be oriented in such a way that the resulting directed graph is strongly connected, while, it is unilaterally orientable when its undirected edges can be oriented in such a way that for every pair of vertices x, y there exists apathfromx to y,orfromy to x,orboth. Several problems related to the strong orientation of mixed graphs have been studied. Among them are the problems of “recognition of strongly orientable mixed graphs” [2] and “determining whether a mixed graph admits a unique strong orientation” [3,5]. In this paper we answer the corresponding questions for unilateral orientations of mixed graphs, that is, firstly we develop a linear-time algorithm for recogniz- ing whether a mixed graph is unilaterally orientable and, secondly, we provide a polynomial algorithm for testing whether a mixed graph accepts a unique unilateral orientation. -
The Atomic Decomposition of Strongly Connected Graphs
The atomic decomposition of strongly connected graphs Bruno Courcelle LaBRI, Bordeaux University and CNRS Email : [email protected] July 2, 2013 Abstract We define and study a new canonical decomposition of strongly con- nected graphs that we call the atomic decomposition. We can construct it in linear time from the decomposition in 3-connected components of the considered graph. In a companion article, we use it to characterize, up to homeomorphism, all closed curves in the plane having a given Gauss word. 1 Introduction There are many types of hierarchical graph decompositions. They are useful for studying the structure and properties of certain graphs and for building efficient graph algorithms. These algorithms exploit the tree structure of the considered decomposition of the input graph. Here are some examples. The modular decom- position [MoRad] (also called substitution decomposition) has been introduced by Gallai [Gal] for studying comparability graphs and their transitive orienta- tions. The split decomposition introduced by Cunnigham [Cun] (its definition is in Section 4) helps to understand and recognize circle graphs [Cou08, GPTCb]. Tree-decompositions are essential for the proof by Robertson and Seymour of the Graph Minor Theorem (see [Die] for an overview). They yield the notion of tree-width, an integer graph invariant that can be used as parameter in many fixed parameter tractable (FPT) algorithms (see the books [CouEng, DF, FG]). Clique-width is another integer graph invariant based on hierchical decomposi- tions, that can also be used as parameter in FPT algorithms [CouEng, CMR]. Each type of decomposition is based on a set of elementary graphs and of oper- ations on graphs. -
Parallel Strong Orientation of an Undirected Graph
Purdue University Purdue e-Pubs Department of Computer Science Technical Reports Department of Computer Science 1983 Parallel Strong Orientation of an Undirected Graph Mikhail J. Atallah Purdue University, [email protected] Report Number: 83-441 Atallah, Mikhail J., "Parallel Strong Orientation of an Undirected Graph" (1983). Department of Computer Science Technical Reports. Paper 362. https://docs.lib.purdue.edu/cstech/362 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Parallel Strong Orientation of an Undirected Graph Mikhail J. Atallah Department of Computer Science Purdue University 1\rest-Lafayette, IN 47907 .Paral~el computation, graph algorithms 1. Introduction There has recently been an increasing interest in designing parallel solu- tions to graph problems, and some of the proposed solutions differ radically from the standard sequential algorithms (e.g. [H7B], [SJB1], [JSB2]. ... ). Various models of computation have been proposed: The one we use here is the shared memory model, where the processors operate synchronously and share a com- mon memory, and read conflicts are allowed but write conflicts are not allowed (i.e. no two processors should simultaneously attempt to ·write in the same memory cell). The graph problem we consider is the follOWing one: Given a con- nected, bridgeless undirected graph, assign directions to its edges so that the resulting digraph is strong (recall tbat a bridge in a connected undirected graph is an edge whose removal disconnects the graph, and that a directed graph is strong iiI for every two vertices u,v there is a u-v directed path). -
Directed Graphs
Swarthmore College Works Mathematics & Statistics Faculty Works Mathematics & Statistics 2000 Directed Graphs Stephen B. Maurer , '67 Swarthmore College, [email protected] Follow this and additional works at: https://works.swarthmore.edu/fac-math-stat Part of the Discrete Mathematics and Combinatorics Commons Let us know how access to these works benefits ouy Recommended Citation Stephen B. Maurer , '67. (2000). "Directed Graphs". Handbook Of Discrete Mathematics. 526-539. https://works.swarthmore.edu/fac-math-stat/109 This work is brought to you for free by Swarthmore College Libraries' Works. It has been accepted for inclusion in Mathematics & Statistics Faculty Works by an authorized administrator of Works. For more information, please contact [email protected]. 526 Chapters GRAPH THEORY 8.2.1 ATTRIBUTES OF A GRAPH MODEL Definitions: A mathematical representation of a physical or behavioral phenomenon is a corre spondence between the parts and processes of that phenomenon and a mathematical system of objects and functions. A model of a physical or behavioral phenomenon is the mathematical object or function assigned to that phenomenon under a mathematical representation. Modeling is the mathematical activity of designing models and comprehensive math ematical representations of physical and behavioral phenomena. A graph model is a mathematical representation that involves a graph. Examples: 1. Table 1 gives many examples of graph models. Each example states what the vertices and edges (or arcs) represent and where in the Handbook details on the application can be found. 8.3 DIRECTED GRAPHS Assigning directions to the edges of a graph greatly enhances modeling capability, and is natural whenever order is important, e.g., in a hierarchical structure or a one-way road system. -
The Two-Coloring Number and Degenerate Colorings of Planar Graphs∗
SIAM J. DISCRETE MATH. c 2009 Society for Industrial and Applied Mathematics Vol. 0, No. 0, pp. 000–000 THE TWO-COLORING NUMBER AND DEGENERATE COLORINGS OF PLANAR GRAPHS∗ HAL KIERSTEAD†, BOJAN MOHAR‡,SIMONSPACAPANˇ §, DAQING YANG¶, AND XUDING ZHU Abstract. The two-coloring number of graphs, which was originally introduced in the study of the game chromatic number, also gives an upper bound on the degenerate chromatic number as introduced by Borodin. It is proved that the two-coloring number of any planar graph is at most nine. As a consequence, the degenerate list chromatic number of any planar graph is at most nine. It is also shown that the degenerate diagonal chromatic number is at most 11 and the degenerate diagonal list chromatic number is at most 12 for all planar graphs. Key words. two-coloring number, degenerate coloring, planar graph AMS subject classification. 05C15 DOI. 10.1137/070703697 1. Introduction. The two-coloring number of a graph was introduced by Chen and Schelp [6] in the study of Ramsey properties of graphs and used later in the study of the game chromatic number [9, 10, 15, 16]. In [10] it was shown that the two-coloring number is related to the acyclic chromatic number. It turns out that the two-coloring number is also related to the notion of degenerate colorings introduced by Borodin [1], which was the starting motivation for the results of this paper. Let G be a graph, and let L be a linear ordering of V (G). A vertex x is k-reachable from y if x<L y and there is an xy-path P of length at most k such that y<L z for all interior vertices z of P .LetRL,k(y) be the set of all vertices x that are k-reachable from y with respect to the linear order L.Thek-coloring number of G is defined as colk(G)=1+min max |RL,k(y)|, L y∈V (G) where the minimum is taken over all linear orderings L of V (G).