The Atomic Decomposition of Strongly Connected Graphs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 7410 Graph Theory
Math 7410 Graph Theory Bogdan Oporowski Department of Mathematics Louisiana State University April 14, 2021 Definition of a graph Definition 1.1 A graph G is a triple (V,E, I) where ◮ V (or V (G)) is a finite set whose elements are called vertices; ◮ E (or E(G)) is a finite set disjoint from V whose elements are called edges; and ◮ I, called the incidence relation, is a subset of V E in which each edge is × in relation with exactly one or two vertices. v2 e1 v1 Example 1.2 ◮ V = v1, v2, v3, v4 e5 { } e2 e4 ◮ E = e1,e2,e3,e4,e5,e6,e7 { } e6 ◮ I = (v1,e1), (v1,e4), (v1,e5), (v1,e6), { v4 (v2,e1), (v2,e2), (v3,e2), (v3,e3), (v3,e5), e7 v3 e3 (v3,e6), (v4,e3), (v4,e4), (v4,e7) } Simple graphs Definition 1.3 ◮ Edges incident with just one vertex are loops. ◮ Edges incident with the same pair of vertices are parallel. ◮ Graphs with no parallel edges and no loops are called simple. v2 e1 v1 e5 e2 e4 e6 v4 e7 v3 e3 Edges of a simple graph can be described as v e1 v 2 1 two-element subsets of the vertex set. Example 1.4 e5 e2 e4 E = v1, v2 , v2, v3 , v3, v4 , e6 {{ } { } { } v1, v4 , v1, v3 . v4 { } { }} v e7 3 e3 Note 1.5 Graph Terminology Definition 1.6 ◮ The graph G is empty if V = , and is trivial if E = . ∅ ∅ ◮ The cardinality of the vertex-set of a graph G is called the order of G and denoted G . -
Ear Decomposition of Factor-Critical Graphs and Number of Maximum Matchings ∗
Ear Decomposition of Factor-critical Graphs and Number of Maximum Matchings ¤ Yan Liu, Shenlin Zhang Department of Mathematics, South China Normal University, Guangzhou, 510631, P.R. China Abstract A connected graph G is said to be factor-critical if G ¡ v has a perfect matching for every vertex v of G. Lov´asz proved that every factor-critical graph has an ear decomposition. In this paper, the ear decomposition of the factor-critical graphs G satisfying that G ¡ v has a unique perfect matching for any vertex v of G with degree at least 3 is characterized. From this, the number of maximum matchings of factor-critical graphs with the special ear decomposition is obtained. Key words maximum matching; factor-critical graph; ear decomposition 1 Introduction and terminology First, we give some notation and definitions. For details, see [1] and [2]. Let G be a simple graph. An edge subset M ⊆ E(G) is a matching of G if no two edges in M are incident with a common vertex. A matching M of G is a perfect matching if every vertex of G is incident with an edge in M. A matching M of G is a maximum matching if jM 0j · jMj for any matching M 0 of G. Let v be a vertex of G. The degree of v in G is denoted by dG(v) and ±(G) =minfdG(v) j v 2 V (G)g. Let P = u1u2 ¢ ¢ ¢ uk be a path and 1 · s · t · k. Then usus+1 ¢ ¢ ¢ ut is said to be a subpath of P , denoted by P (us; ut). -
Strong Subgraph Connectivity of Digraphs: a Survey
Strong Subgraph Connectivity of Digraphs: A Survey Yuefang Sun1 and Gregory Gutin2 1 Department of Mathematics, Shaoxing University Zhejiang 312000, P. R. China, [email protected] 2 School of Computer Science and Mathematics Royal Holloway, University of London Egham, Surrey, TW20 0EX, UK, [email protected] Abstract In this survey we overview known results on the strong subgraph k- connectivity and strong subgraph k-arc-connectivity of digraphs. After an introductory section, the paper is divided into four sections: basic results, algorithms and complexity, sharp bounds for strong subgraph k-(arc-)connectivity, minimally strong subgraph (k,ℓ)-(arc-) connected digraphs. This survey contains several conjectures and open problems for further study. Keywords: Strong subgraph k-connectivity; Strong subgraph k-arc- connectivity; Subdigraph packing; Directed q-linkage; Directed weak q-linkage; Semicomplete digraphs; Symmetric digraphs; Generalized k- connectivity; Generalized k-edge-connectivity. AMS subject classification (2010): 05C20, 05C35, 05C40, 05C70, 05C75, 05C76, 05C85, 68Q25, 68R10. 1 Introduction arXiv:1808.02740v1 [cs.DM] 8 Aug 2018 The generalized k-connectivity κk(G) of a graph G = (V, E) was intro- duced by Hager [14] in 1985 (2 ≤ k ≤ |V |). For a graph G = (V, E) and a set S ⊆ V of at least two vertices, an S-Steiner tree or, simply, an S-tree is a subgraph T of G which is a tree with S ⊆ V (T ). Two S-trees T1 and T2 are said to be edge-disjoint if E(T1) ∩ E(T2)= ∅. Two edge-disjoint S-trees T1 and T2 are said to be internally disjoint if V (T1) ∩ V (T2)= S. -
Associated Primes of Powers of Edge Ideals and Ear Decompositions Of
ASSOCIATED PRIMES OF POWERS OF EDGE IDEALS AND EAR DECOMPOSITIONS OF GRAPHS HA MINH LAM AND NGO VIET TRUNG Abstract. In this paper, we give a complete description of the associated primes of every power of the edge ideal in terms of generalized ear decompo- sitions of the graph. This result establishes a surprising relationship between two seemingly unrelated notions of Commutative Algebra and Combinatorics. It covers all previous major results in this topic and has several interesting consequences. Introduction This work is motivated by the asymptotic properties of powers of a graded ideal Q in a graded algebra S over a field. It is known that for t sufficiently large, the depth of S/Qt is a constant [3] and the Castelnuovo-Mumford regularity of Qt is a linear function [6], [24]. These results have led to recent works on the behavior of the whole functions depth S/Qt [16] and reg Qt [9], [10]. Inevitably, one has to address the problem of estimating depth S/Qt and reg Qt for initial values of t. This problem is hard because there is no general approach to study a particular power Qt. In order to understand the general case one has to study ideals with additional structures. Let R = k[x1, ..., xn] be a polynomial ring over a field k. Given a hypergraph Γ on the vertex set V = {1, ..., n}, one calls the ideal I generated by the monomials Qi∈F xi, where F is an edge of Γ, the edge ideal of Γ. This notion has provided a fertile ground to study powers of ideals because of its link to combinatorics (see e.g. -
Oriented Hypergraphs: Introduction and Balance
Oriented Hypergraphs: Introduction and Balance Lucas J. Rusnak Department of Mathematics Texas State University San Marcos, Texas, U.S.A. [email protected] Submitted: Oct 1, 2012; Accepted: Sep 13, 2013; Published: Sep 26, 2013 Mathematics Subject Classifications: 05C22, 05C65, 05C75 Abstract An oriented hypergraph is an oriented incidence structure that extends the con- cept of a signed graph. We introduce hypergraphic structures and techniques central to the extension of the circuit classification of signed graphs to oriented hypergraphs. Oriented hypergraphs are further decomposed into three families – balanced, bal- anceable, and unbalanceable – and we obtain a complete classification of the bal- anced circuits of oriented hypergraphs. Keywords: Oriented hypergraph; balanced hypergraph; balanced matrix; signed hypergraph 1 Introduction Oriented hypergraphs have recently appeared in [8] as an extension of the signed graphic incidence, adjacency, and Laplacian matrices to examine walk counting and provide a combinatorial model for matrix algebra. It is known that the cycle space of a graph is characterized by the dependent columns of its oriented incidence matrix — we further expand the theory of oriented hypergraphs by examining the extension of the cycle space of a graph to oriented hypergraphs. In this paper we divide the problem of structurally classifying minimally dependent columns of incidence matrices into three categories – balanced, balanceable, and unbal- anceable – and introduce new hypergraphic structures to obtain a classification of the minimal dependencies of balanced oriented hypergraphs. The balanceable and unbal- anceable cases will be addressed in future papers. The concept of a balanced matrix plays an important role in combinatorial optimiza- tion and integral programming, for a proper introduction see [3, 4, 10, 14]. -
Ear-Slicing for Matchings in Hypergraphs
Ear-Slicing for Matchings in Hypergraphs Andr´as Seb˝o CNRS, Laboratoire G-SCOP, Univ. Grenoble Alpes December 12, 2019 Abstract We study when a given edge of a factor-critical graph is contained in a matching avoiding exactly one, pregiven vertex of the graph. We then apply the results to always partition the vertex-set of a 3-regular, 3-uniform hypergraph into at most one triangle (hyperedge of size 3) and edges (subsets of size 2 of hyperedges), corresponding to the intuition, and providing new insight to triangle and edge packings of Cornu´ejols’ and Pulleyblank’s. The existence of such a packing can be considered to be a hypergraph variant of Petersen’s theorem on perfect matchings, and leads to a simple proof for a sharpening of Lu’s theorem on antifactors of graphs. 1 Introduction Given a hypergraph H = (V, E), (E ⊆ P(V ), where P(V ) is the power-set of V ) we will call the elements of V vertices, and those of E hyperedges, n := |V |. We say that a hypergraph is k- uniform if all of its hyperedges have k elements, and it is k-regular if all of its vertices are contained in k hyperedges. Hyperedges may be present with multiplicicities, for instance the hypergraph H = (V, E) with V = {a, b, c} consisting of the hyperedge {a, b, c} with multiplicity 3 is a 3-uniform, 3-regular hypergraph. The hereditary closure of the hypergraph H = (V, E) is Hh = (V, Eh) where Eh := {X ⊆ e : e ∈ E}, and H is hereditary, if Hh = H. -
Circuit and Bond Polytopes on Series-Parallel Graphs$
Circuit and bond polytopes on series-parallel graphsI Sylvie Bornea, Pierre Fouilhouxb, Roland Grappea,∗, Mathieu Lacroixa, Pierre Pesneauc aUniversit´eParis 13, Sorbonne Paris Cit´e,LIPN, CNRS, (UMR 7030), F-93430, Villetaneuse, France. bSorbonne Universit´es,Universit´ePierre et Marie Curie, Laboratoire LIP6 UMR 7606, 4 place Jussieu 75005 Paris, France. cUniversity of Bordeaux, IMB UMR 5251, INRIA Bordeaux - Sud-Ouest, 351 Cours de la lib´eration, 33405 Talence, France. Abstract In this paper, we describe the circuit polytope on series-parallel graphs. We first show the existence of a compact ex- tended formulation. Though not being explicit, its construction process helps us to inductively provide the description in the original space. As a consequence, using the link between bonds and circuits in planar graphs, we also describe the bond polytope on series-parallel graphs. Keywords: Circuit polytope, series-parallel graph, extended formulation, bond polytope. In an undirected graph, a circuit is a subset of edges inducing a connected subgraph in which every vertex has degree two. In the literature, a circuit is sometimes called simple cycle. Given a graph and costs on its edges, the circuit problem consists in finding a circuit of maximum cost. This problem is already NP-hard in planar graphs [16], yet some polynomial cases are known, for instance when the costs are non-positive. Although characterizing a polytope corresponding to an NP-hard problem is unlikely, a partial description may be sufficient to develop an efficient polyhedral approach. Concerning the circuit polytope, which is the convex hull of the (edge-)incidence vectors of the circuits of the graph, facets have been exhibited by Bauer [4] and Coulard and Pulleyblank [10], and the cone has been characterized by Seymour [23]. -
Shattering, Graph Orientations, and Connectivity
Shattering, Graph Orientations, and Connectivity [Extended Abstract] László Kozma Shay Moran Saarland University Max Planck Institute for Informatics Saarbrücken, Germany Saarbrücken, Germany [email protected] [email protected] ABSTRACT ing orientations with forbidden subgraphs. These problems We present a connection between two seemingly disparate have close ties with the theory of random graphs. An exam- fields: VC-theory and graph theory. This connection yields ple of work of this type is the paper of Alon and Yuster [4], natural correspondences between fundamental concepts in concerned with the number of orientations that do not con- VC-theory, such as shattering and VC-dimension, and well- tain a copy of a fixed tournament. studied concepts of graph theory related to connectivity, combinatorial optimization, forbidden subgraphs, and oth- In this paper we prove statements concerning properties of ers. orientations and subgraphs of a given graph by introducing a connection between VC-theory and graph theory. The In one direction, we use this connection to derive results following are a few examples of the statements that we prove: in graph theory. Our main tool is a generalization of the Sauer-Shelah Lemma [30, 10, 12]. Using this tool we obtain 1. Let G be a graph. Then: a series of inequalities and equalities related to properties of orientations of a graph. Some of these results appear to be the number the number the number of connected of strong of 2-edge- new, for others we give new and simple proofs. ≥ ≥ subgraphs orientations connected In the other direction, we present new illustrative examples of G of G subgraphs of G. -
3-Flows with Large Support Arxiv:1701.07386V2 [Math.CO]
3-Flows with Large Support Matt DeVos∗ Jessica McDonald† Irene Pivotto‡ Edita Rollov´a§ Robert S´amalˇ ¶ Abstract We prove that every 3-edge-connected graph G has a 3-flow φ with 5 the property that supp(φ) 6 E(G) . The graph K4 demonstrates 5 j j ≥ j j 5 that this 6 ratio is best possible; there is an infinite family where 6 is tight. arXiv:1701.07386v2 [math.CO] 18 Feb 2021 ∗Department of Mathematics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6, [email protected]. †Department of Mathematics and Statistics, Auburn University, Auburn, AL, USA 36849, [email protected]. ‡School of Mathematics and Statistics, University of Western Australia, Perth, WA, Aus- tralia 6009, [email protected]. §European Centre of Excellence, NTIS- New Technologies for Information Society, Faculty of Applied Sciences, University of West Bohemia, Pilsen, [email protected]. ¶Computer Science Institute of Charles University, Prague, [email protected]ff.cuni.cz. 1 Contents 1 Introduction 3 2 Flow and Colouring Bounds 7 3 Ears 9 3.1 Ear Decomposition . 9 3.2 Weighted Graphs and Ear Labellings . 10 4 Setup 12 4.1 Framework . 13 4.2 Minimal Counterexample . 14 4.3 Contraction . 15 4.4 Deletion . 17 4.5 Pushing a 3-Edge Cut . 18 4.6 Creating G• ............................. 20 5 Forbidden Configurations 23 5.1 Endpoint Patterns . 25 5.2 Forbidden Configurations . 26 6 Taming Triangles 30 6.1 The Graph G∆ ........................... 32 6.2 Type 222 and 112 Triangles . 35 7 Cycles and Edge-Cuts of Size Four 37 7.1 Removing Adjacent Vertices of G∆ . -
One-Way Trail Orientations
One-wasy trail orientation Aamand, Anders; Hjuler, Niklas; Holm, Jacob; Rotenberg, Eva Published in: 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018 DOI: 10.4230/LIPIcs.ICALP.2018.6 Publication date: 2018 Document version Publisher's PDF, also known as Version of record Document license: CC BY Citation for published version (APA): Aamand, A., Hjuler, N., Holm, J., & Rotenberg, E. (2018). One-wasy trail orientation. In C. Kaklamanis, D. Marx, I. Chatzigiannakis, & D. Sannella (Eds.), 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018 [6] Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik. Leibniz International Proceedings in Informatics, LIPIcs Vol. 107 https://doi.org/10.4230/LIPIcs.ICALP.2018.6 Download date: 26. Sep. 2021 One-Way Trail Orientations Anders Aamand1 University of Copenhagen, Copenhagen, Denmark [email protected] https://orcid.org/0000-0002-0402-0514 Niklas Hjuler2 University of Copenhagen, Copenhagen, Denmark [email protected] https://orcid.org/0000-0002-0815-670X Jacob Holm3 University of Copenhagen, Copenhagen, Denmark [email protected] https://orcid.org/0000-0001-6997-9251 Eva Rotenberg4 Technical University of Denmark, Lyngby, Denmark [email protected] https://orcid.org/0000-0001-5853-7909 Abstract Given a graph, does there exist an orientation of the edges such that the resulting directed graph is strongly connected? Robbins’ theorem [Robbins, Am. Math. Monthly, 1939] asserts that such an orientation exists if and only if the graph is 2-edge connected. A natural extension of this problem is the following: Suppose that the edges of the graph are partitioned into trails. Can the trails be oriented consistently such that the resulting directed graph is strongly connected? We show that 2-edge connectivity is again a sufficient condition and we provide a linear time algorithm for finding such an orientation. -
Unilateral Orientation of Mixed Graphs
Unilateral Orientation of Mixed Graphs Tamara Mchedlidze and Antonios Symvonis Dept. of Mathematics, National Technical University of Athens, Athens, Greece {mchet,symvonis}@math.ntua.gr Abstract. AdigraphD is unilateral if for every pair x, y of its ver- tices there exists a directed path from x to y, or a directed path from y to x, or both. A mixed graph M =(V,A,E) with arc-set A and edge- set E accepts a unilateral orientation, if its edges can be oriented so that the resulting digraph is unilateral. In this paper, we present the first linear-time recognition algorithm for unilaterally orientable mixed graphs. Based on this algorithm we derive a polynomial algorithm for testing whether a unilaterally orientable mixed graph has a unique uni- lateral orientation. 1 Introduction A large body of literature has been devoted to the study of mixed graphs (see [1] and the references therein). A mixed graph is strongly orientable when its undi- rected edges can be oriented in such a way that the resulting directed graph is strongly connected, while, it is unilaterally orientable when its undirected edges can be oriented in such a way that for every pair of vertices x, y there exists apathfromx to y,orfromy to x,orboth. Several problems related to the strong orientation of mixed graphs have been studied. Among them are the problems of “recognition of strongly orientable mixed graphs” [2] and “determining whether a mixed graph admits a unique strong orientation” [3,5]. In this paper we answer the corresponding questions for unilateral orientations of mixed graphs, that is, firstly we develop a linear-time algorithm for recogniz- ing whether a mixed graph is unilaterally orientable and, secondly, we provide a polynomial algorithm for testing whether a mixed graph accepts a unique unilateral orientation. -
Chapter 5 Connectivity
Chapter 5 Connectivity 5.1 Introduction The (strong) connectivity corresponds to the fact that a (directed) (u,v)-path exists for any pair of vertices u and v. However, imagine that the graphs models a network, for example the vertices correspond to computers and edges to links between them. An important issue is that the connectivity remains even if some computers and links fail. This will be measured by the notion of k-connectivity. Let G be a graph. Let W be an set of edges (resp. of vertices). If G W (resp. G W) is not \ − connected, then W separates G, and W is called an edge-separator (resp. vertex-separator) or simply separator of G. For any k 1, G is k-connected if it has order at least k + 1 and no set of k 1 vertices ≥ − is a separator. In particular, the complete graph Kk+1 is the only k-connected graph with k + 1 vertices. The connectivity of G, denoted by κ(G), is the maximum integer k such that G is k-connected. Similarly, a graph is k-edge connected if it has at least two vertices and no set of k 1 edges is a separator. The edge-connectivity of G, denoted by κ (G), is the maximum − integer k such that G is k-edge-connected. For any vertex x, if S is a vertex-separator of G x then S x is a vertex-separator of G, − ∪{ } hence κ(G) κ(G x)+1. ≤ − However, the connecivity of G x may not be upper bounded by a function of κ(G); see Exer- − cise 5.3 (ii).