Geophysical Or. Guide. Along the Colorado Mineral Belt* > Y J. K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Statement of Dan Gibbs Executive Director Colorado Department Of
Statement of Dan Gibbs Executive Director Colorado Department of Natural Resources Before The Subcommittee on National Parks, Forests, and Public Lands of The House Natural Resources Committee April 2, 2019 Chairwoman Haaland, Ranking Member Young, and Members of the Subcommittee: On behalf of Governor Polis and the State of Colorado, we appreciate the opportunity to provide testimony on the Colorado Outdoor Recreation and Economy Act (H.R. 823). We strongly support the CORE Act and hope Congress will move swiftly to enact it. Governor Polis would have liked to be here today with his former colleagues to express his strong support for this legislation. As you know, as a member of Congress, Governor Polis had sponsored the Continental Divide Recreation, Wilderness and Camp Hale Legacy Act, which has now been incorporated into the broader CORE Act. Introduction This legislation—the product of years of collaboration among elected officials, businesses, community members, and a myriad of other interested and affected stakeholders across Colorado—would protect some of the most beloved public lands in Colorado for their unsurpassed recreation, scenery, wildlife, watersheds, historic, and other unique values. As the Executive Director of the Colorado Department of Natural Resources, I support this bill because it will benefit our wildlife by protecting critical habitat and migration corridors; it will protect the outstanding recreational experiences that bring people from across Colorado—and the world—to these special places; it will help safeguard Colorado’s water resources by protecting key watersheds and all water rights; it strikes the right balance by protecting key public lands from development, while protecting all existing mineral rights and leaving other appropriate lands available for mining, oil, and gas development; and because it complements the values and opportunities associated with our state lands. -
Denudation History and Internal Structure of the Front Range and Wet Mountains, Colorado, Based on Apatite-Fission-Track Thermoc
NEW MEXICO BUREAU OF GEOLOGY & MINERAL RESOURCES, BULLETIN 160, 2004 41 Denudation history and internal structure of the Front Range and Wet Mountains, Colorado, based on apatitefissiontrack thermochronology 1 2 1Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801Shari A. Kelley and Charles E. Chapin 2New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM 87801 Abstract An apatite fissiontrack (AFT) partial annealing zone (PAZ) that developed during Late Cretaceous time provides a structural datum for addressing questions concerning the timing and magnitude of denudation, as well as the structural style of Laramide deformation, in the Front Range and Wet Mountains of Colorado. AFT cooling ages are also used to estimate the magnitude and sense of dis placement across faults and to differentiate between exhumation and faultgenerated topography. AFT ages at low elevationX along the eastern margin of the southern Front Range between Golden and Colorado Springs are from 100 to 270 Ma, and the mean track lengths are short (10–12.5 µm). Old AFT ages (> 100 Ma) are also found along the western margin of the Front Range along the Elkhorn thrust fault. In contrast AFT ages of 45–75 Ma and relatively long mean track lengths (12.5–14 µm) are common in the interior of the range. The AFT ages generally decrease across northwesttrending faults toward the center of the range. The base of a fossil PAZ, which separates AFT cooling ages of 45– 70 Ma at low elevations from AFT ages > 100 Ma at higher elevations, is exposed on the south side of Pikes Peak, on Mt. -
Geochronology Database for Central Colorado
Geochronology Database for Central Colorado Data Series 489 U.S. Department of the Interior U.S. Geological Survey Geochronology Database for Central Colorado By T.L. Klein, K.V. Evans, and E.H. DeWitt Data Series 489 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: T.L. Klein, K.V. Evans, and E.H. DeWitt, 2009, Geochronology database for central Colorado: U.S. Geological Survey Data Series 489, 13 p. iii Contents Abstract ...........................................................................................................................................................1 Introduction.....................................................................................................................................................1 -
Primitive Areas Gore Range-Eagles Nest And
OC1 LO STUDIES RELATED TO WILDERNESS PRIMITIVE AREAS OHIO GEOLOGICAL SURVEt OCT 2 r iQ70 GORE RANGE-EAGLES NEST AND VICINITY, COLORADO GEOLOGICAL SURVEY BULLETIN 1319-C f* MINERAL RESOURCES of the GORE RANGE-EAGLES NEST PRIMITIVE AREA and VICINITY, COLORADO Crest of Gore Range and head of middle fork of Black Creek. View is westward. Mount Powell (alt 13,534 ft) is massive peak at right of cen ter. Eagles Nest Mountain is at far right. Duck Lake is in right foreground. Trough above right end of lake marks fault zone of north-northwest trend. Dark area on steep front of rock glacier at left in photograph is typical "wet front" suggesting ice core in rock glacier. Mineral Resources of the Gore Range-Eagles Nest Primitive Area and Vicinity, Summit and Eagle Counties, Colorado By OGDEN TWETO and BRUCE BRYANT, U.S. GEOLOGICAL SURVEY, and by FRANK E. WILLIAMS, U.S. BUREAU OF MINES c STUDIES RELATED TO WILDERNESS PRIMITIVE AREAS GEOLOGICAL SURVEY BULLETIN 1319-C An evaluation of the mineral potential of the area UNITED STATES GOVERNMENT PRINTING OFFICE. WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress catalog-card No. 78-607129 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 ^. STUDIES RELATED TO WILDERNESS PRIMITIVE AREAS The Wilderness Act (Public Law 88-577, Sept. 3, 1964) and the Conference Report on Senate bill 4, 88th Congress, direct the U.S. Geological Survey and the U.S. Bureau of Mines to make mineral surveys of wilderness and primitive areas. -
Profiles of Colorado Roadless Areas
PROFILES OF COLORADO ROADLESS AREAS Prepared by the USDA Forest Service, Rocky Mountain Region July 23, 2008 INTENTIONALLY LEFT BLANK 2 3 TABLE OF CONTENTS ARAPAHO-ROOSEVELT NATIONAL FOREST ......................................................................................................10 Bard Creek (23,000 acres) .......................................................................................................................................10 Byers Peak (10,200 acres)........................................................................................................................................12 Cache la Poudre Adjacent Area (3,200 acres)..........................................................................................................13 Cherokee Park (7,600 acres) ....................................................................................................................................14 Comanche Peak Adjacent Areas A - H (45,200 acres).............................................................................................15 Copper Mountain (13,500 acres) .............................................................................................................................19 Crosier Mountain (7,200 acres) ...............................................................................................................................20 Gold Run (6,600 acres) ............................................................................................................................................21 -
Trails Plan | 2009 Town of Breckenridge | Trails Plan
TOWN OF BRECKENRIDGE | TRAILS PLAN | 2009 TOWN OF BRECKENRIDGE | TRAILS PLAN TOWN OF BRECKENRIDGE TRAILS PLAN Introduction 4 Plan Philosophy 4 Plan Prioritization 5 Plan Goals and Objectives 5 Role of the Plan 5 Plan Assumptions 6 Plan Implementation 6 Plan Organization 6 How This PlanW as Developed 6 Winter and Summer Elements 7 Disclaimer 7 Planning Areas 7 Area 1: Ski Hill Road/Peak 7/8 Base Area 7 Peaks Trailhead and Trails 7 Freeride Park 8 Shock Hill/Nordic Center 8 Cucumber Gulch Preserve 9 Claimjumper/Recreation Center Connection 9 Peak 7 Neighborhood Connection 10 New Nordic World/Peak 6 Expansion 10 Iowa Hill Trailhead 10 American Way Access 10 Area 2: Core/Upper Four Seasons Area 11 Riverwalk Connection 11 Klack Placer 11 The Cedars/Trails End Connection 11 F&D Placer to Burro Connection 12 Maggie Pond Access 12 Four O’Clock Ski Run 12 Timber Trail 12 Maggie Placer Trail 13 Area 3: Breckenridge South 13 Aspen Grove/Aspen Alley Trail 13 Wakefield Trailhead 13 Little Mountain 13 Blue River/Hoosier Pass Recpath 14 The Burro Trail Accesses 14 Bekkedal/Gold King (lots 1&2) to Burro Connection 14 Ski Area Equestrian Trails 14 Now Colorado/Silver Queen Connection 15 Riverwood Trail 15 PAGE 1 TRAILS PLAN | TOWN OF BRECKENRIDGE TOWN OF BRECKENRIDGE | TRAILS PLAN Area 3: Breckenridge South (continued) Breckenridge Park Estates Trailhead 15 Fredonia Gulch Trailhead 16 Bemrose Ski Circus 16 Wheeler Trail Resurrection 16 Pennsylvania Gulch and Indiana Creek Road Winter Access 16 Spruce Creek Trail Spur 16 Lehman Gulch Trail 17 Monte Cristo -
Isotopic Age Determinations, Unaltered and Hydrothermally Altered Igneous Rocks, North-Central Colorado Mineral Belt A.A
Isotopic age determinations, unaltered and hydrothermally altered igneous rocks, north-central Colorado mineral belt A.A. Bookstrom, C.W. Naeser, and J.R. Shannon Isochron/West, Bulletin of Isotopic Geochronology, v. 49, pp. 13-20 Downloaded from: https://geoinfo.nmt.edu/publications/periodicals/isochronwest/home.cfml?Issue=49 Isochron/West was published at irregular intervals from 1971 to 1996. The journal was patterned after the journal Radiocarbon and covered isotopic age-dating (except carbon-14) on rocks and minerals from the Western Hemisphere. Initially, the geographic scope of papers was restricted to the western half of the United States, but was later expanded. The journal was sponsored and staffed by the New Mexico Bureau of Mines (now Geology) & Mineral Resources and the Nevada Bureau of Mines & Geology. All back-issue papers are available for free: https://geoinfo.nmt.edu/publications/periodicals/isochronwest This page is intentionally left blank to maintain order of facing pages. 13 ISOTOPIC AGE DETERMINATIONS, UNALTERED AND HYDROTHERMALLY ALTERED IGNEOUS ROCKS, NORTH-CENTRAL COLORADO MINERAL BELT ARTHUR A. BOOKSTROM 1805 Glen Ayr Dr., Lakewood, CO 80215 CHARLES W. NAESER U.S. Geological Survey, Denver, CO 80225 JAMES R. SHANNON Department of Geology, Colorado School of Mines, Golden, CO 80401 Monzonite and granodiorite intrusions of the Empire Fission-track age determinations were done in the fission- district are early Tertiary (65 Ma) in age, as dated by track laboratory of the U.S. Geological Survey in Denver, Simmons and Hedge (1978). Monzonite and granodiorite and at the University of Utah Research Institute. People intrusions of the Alma district have yielded isotopic ages who cooperated in this study include Mark Coolbaugh, ranging from 71 to 41 Ma (Bookstrom, in press). -
Abstracts, Posters and Program
Gold and Silver Deposits in Colorado Symposium Abstracts, posters And program Berthoud Hall, Colorado School of Mines Golden, Colorado July 20-24, 2017 GOLD AND SILVER DEPOSITS IN COLORADO SYMPOSIUM July 20-24, 2017 ABSTRACTS, POSTERS AND PROGRAM Principle Editors: Lewis C. Kleinhans Mary L. Little Peter J. Modreski Sponsors: Colorado School of Mines Geology Museum Denver Regional Geologists’ Society Friends of the Colorado School of Mines Geology Museum Friends of Mineralogy – Colorado Chapter Front Cover: Breckenridge wire gold specimen (photo credit Jeff Scovil). Cripple Creek Open Pit Mine panorama, March 10, 2017 (photo credit Mary Little). Design by Lew Kleinhans. Back Cover: The Mineral Industry Timeline – Exploration (old gold panner); Discovery (Cresson "Vug" from Cresson Mine, Cripple Creek); Development (Cripple Creek Open Pit Mine); Production (gold bullion refined from AngloGold Ashanti Cripple Creek dore and used to produce the gold leaf that was applied to the top of the Colorado Capital Building. Design by Lew Kleinhans and Jim Paschis. Berthoud Hall, Colorado School of Mines Golden, Colorado July 20-24, 2017 Symposium Planning Committee Members: Peter J. Modreski Michael L. Smith Steve Zahony Lewis C. Kleinhans Mary L. Little Bruce Geller Jim Paschis Amber Brenzikofer Ken Kucera L.J.Karr Additional thanks to: Bill Rehrig and Jim Piper. Acknowledgements: Far too many contributors participated in the making of this symposium than can be mentioned here. Notwithstanding, the Planning Committee would like to acknowledge and express appreciation for endorsements from the Colorado Geological Survey, the Colorado Mining Association, the Colorado Department of Natural Resources and the Colorado Division of Mine Safety and Reclamation. -
Origin of the Colorado Mineral Belt
Origin and Evolution of the Sierra Nevada and Walker Lane themed issue Origin of the Colorado Mineral Belt Charles E. Chapin New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA ABSTRACT Laramide plutons (ca. 75–43 Ma) are mainly may have aided the rise of magma bodies into alkaline monzonites and quartz monzonites in the upper crust from batholiths at depth, but had The Colorado Mineral Belt (CMB) is a the northeastern CMB, but dominantly calc- no role in the generation of those batholiths. northeast-trending, ~500-km-long, 25–50-km- alkaline granodiorites in the central CMB. There is the crux of the enigma. wide belt of plutons and mining districts (Colo- Geochemical and isotopic studies indicate From several decades of fi eld work in the rado, United States) that developed within that CMB magmas were generated mainly states of Colorado, New Mexico, and Wyoming, an ~1200-km-wide Late Cretaceous–Paleo- in metasomatized Proterozoic intermediate I became aware of signifi cant differences in geo- gene magma gap overlying subhorizontally to felsic lower crustal granulites and mafi c logic features on opposite sides of the CMB. My subducted segments of the Farallon plate. rocks (± mantle). Late Eocene–Oligo cene roll- goal in this paper is to summarize these differ- Of the known volcanic gaps overlying fl at back magmatism superimposed on the CMB ences, integrate them with the regional tectonic slabs in subduction zones around the Pacifi c during waning of Laramide compression and geochronologic framework, and thereby Basin, none contains zones of magmatism (ca. -
COLORADO MAGAZINE Published Quarterly by Vol
The State Historical Society of Colorado THE COLORADO MAGAZINE Published Quarterly by Vol. XXXIX Denver, Colorado, October, 1962 Number 4 Gold Boats on The Swan The Story of Ben Stanley Revett, Gold Dredger By Belle Turnbull* At the time that the material for use in writing about Revett was first examined, a number of papers were kept for reference. Of other papers, notes were made and the papers returned to Mrs. Melissa Hayden. At the time, since the objective was to use the notes for background in a story, notes were made sometimes without much attention to dates and sources, though they were kept in chronological order by year, only. For color and background the author is deeply indebted to the following, not one of whom is still living in 1962: George Robinson, dredgemaster, and later County Treasurer of Summit County and Mayor of Breckenridge; Mrs. Melissa Hayden, widow of Revett's secre tary, and herself Clerk of the District Court for many years; and George Robert Johnson, mining engineer, who permitted my presence on a gold dredge against the wishes of his swing shift crew, to whom a woman on board was anathema. Mr. Johnson's explanations of the operation of a gold dredge were lucid and helpful, even to a woman author. Thanks are also due to Gordon Goodridge, who dug in the Summit County records for data on placer grounds.-Author. In the history of deep mining for gold in Colorado, Ben Stanley Revett ranks as First Gold Dredger. Not only was he the first to carry through the financing, the building, and the management of the first dredge in Colorado to dig for gold; his resourcefulness and bulldog tenacity drove him on, year after year, to finish what he had begun: to find the best possible method of driving to bedrock and to bring up the gold. -
The Rocky Mountain Front, Southwestern USA
The Rocky Mountain Front, southwestern USA Charles E. Chapin, Shari A. Kelley, and Steven M. Cather New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA ABSTRACT northeast-trending faults cross the Front thrust in southwest Wyoming and northern Range–Denver Basin boundary. However, Utah. A remarkable attribute of the RMF is The Rocky Mountain Front (RMF) trends several features changed from south to north that it maintained its position through multi- north-south near long 105°W for ~1500 km across the CMB. (1) The axis of the Denver ple orogenies and changes in orientation from near the U.S.-Mexico border to south- Basin was defl ected ~60 km to the north- and strength of tectonic stresses. During the ern Wyoming. This long, straight, persistent east. (2) The trend of the RMF changed from Laramide orogeny, the RMF marked a tec- structural boundary originated between 1.4 north–northwest to north. (3) Structural tonic boundary beyond which major contrac- and 1.1 Ga in the Mesoproterozoic. It cuts style of the Front Range–Denver Basin mar- tional partitioning of the Cordilleran fore- the 1.4 Ga Granite-Rhyolite Province and gin changed from northeast-vergent thrusts land was unable to penetrate. However, the was intruded by the shallow-level alkaline to northeast-dipping, high-angle reverse nature of the lithospheric fl aw that underlies granitic batholith of Pikes Peak (1.09 Ga) faults. (4) Early Laramide uplift north of the RMF is an unanswered question. in central Colorado. -
Rocky Mountain National Park Geologic Resource Evaluation Report
National Park Service U.S. Department of the Interior Geologic Resources Division Denver, Colorado Rocky Mountain National Park Geologic Resource Evaluation Report Rocky Mountain National Park Geologic Resource Evaluation Geologic Resources Division Denver, Colorado U.S. Department of the Interior Washington, DC Table of Contents Executive Summary ...................................................................................................... 1 Dedication and Acknowledgements............................................................................ 2 Introduction ................................................................................................................... 3 Purpose of the Geologic Resource Evaluation Program ............................................................................................3 Geologic Setting .........................................................................................................................................................3 Geologic Issues............................................................................................................. 5 Alpine Environments...................................................................................................................................................5 Flooding......................................................................................................................................................................5 Hydrogeology .............................................................................................................................................................6