4. Results for the Quantification of the Uncertainty on the Secondary Sodium Activation

Total Page:16

File Type:pdf, Size:1020Kb

4. Results for the Quantification of the Uncertainty on the Secondary Sodium Activation EXAMENSARBETE INOM TEKNISK FYSIK, AVANCERAD NIVÅ, 60 HP STOCKHOLM, SVERIGE 2018 Quantification of the uncertainty on the secondary sodium activation due to uncertainties on nuclear data Master thesis report COPPERE BENJAMIN KTH SKOLAN FÖR ARKITEKTUR OCH SAMHÄLLSBYGGNAD Résumé L’activation du sodium secondaire du cœur ASTRID est une problématique majeure du projet car cette activation nécessite la mise en place de protections neutroniques au niveau du cœur et de l’échangeur intermédiaire. Actuellement, le schéma de calcul fourni des résultats « best estimate », c'est-à-dire sans incertitudes. Pour pouvoir justifier l’utilisation de ces résultats dans les différents projets relatifs à ASTRID, il est nécessaire de connaître l’incertitude sur l’activation du sodium secondaire. Le logiciel NUDUNA a permis d’appliquer une méthode Total Monte-Carlo à notre problème pour déterminer l’incertitude sur l’activation du sodium secondaire. Cette méthode consiste à faire varier les paramètres importants de l’étude de manière aléatoire grâce à des tirages sur les matrices de covariance. Ces tirages aléatoires servent ensuite de données d’entrée au code stochastique MCNP. Après avoir effectué un très grand nombre de calculs MCNP, le principe de Wilks permet de déterminer l’incertitude sur l’activation du sodium secondaire due à l’incertitude sur les données nucléaires. L’application de cette méthode sur ASTRID et Superphénix permet d’aboutir à une valeur d’incertitude d’activation du sodium secondaire convergée. Cette incertitude est de 100% pour le réacteur ASTRID alors que l’incertitude sur l’activation du sodium secondaire est plus faible pour Superphénix avec 66%. L’incertitude due au spectre des neutrons est 9%, valeur plus faible comparée à l’impact des sections efficaces. L’origine de l’incertitude sur l’activation du sodium secondaire provient de l’incertitude sur la section efficace de diffusion élastique du 23Na. La comparaison entre le calcul et la mesure sur le réacteur Superphénix a prouvé que la méthode dans son ensemble est conservative, ce qui est confortant en termes de sureté. Abstract The activation of the sodium secondary circuit in the ASTRID core is a major concern because this activation leads to the setting up of protections on the core and the intermediate heat exchangers. Nowadays, the calculation scheme gives the best estimate values, that is to say, without uncertainties. To justify the use of these values on the different part of the ASTRID project, it is mandatory to evaluate the uncertainty on the activation of the secondary sodium. The software NUDUNA enables to apply a Total Monte-Carlo method which allows determining the uncertainty on the secondary sodium activation. The method consists of varying important parameters of the study by doing random samples on the covariance matrices. These random draws are then used as input to the stochastic code MCNP. After performing many MCNP calculations, the Wilks’s principle enables to determine the uncertainty on the activation of the secondary sodium due to uncertainties on nuclear data. The method is applied on the ASTRID and Superphénix reactors to obtain a converged value of the uncertainty on the activation of the secondary sodium. This uncertainty is 100% for the ASTRID reactor whereas the uncertainty is 66% for Superphénix which is a smaller value. The uncertainty due to the neutron spectrum on the ASTRID activation is 9%. This value is smaller compared to the uncertainty due to neutron cross sections. The origin of the uncertainty on the sodium activation comes from the inelastic scattering cross section of the 23Na nuclide. The comparison between calculations and measurements on the Superphénix reactors proves that the method applies conservatism, which is good in term of safety. COPPERE Benjamin MASTER THESIS REPORT Page: 2/49 Date: 02/2018 FRAMATOME – DTI PLN-F FFP/EP-9013INF/G/fr Acknowledgement My master thesis for the KTH Diploma in Nuclear Engineering took place in the Framatome Company and more precisely the "Neutron transport theory, Radioprotection and Criticality" section in Lyon for a period of 6 months. First of all, I would like to thank Jean-Michel Perrois as Head of the Safety & Processes Department. I would also like to acknowledge Amélie Hee-Duval, head of the "Neutron transport theory, Radioprotection and Criticality" section, for her welcome and her help throughout this internship. I would like to thank my work placement mentors, Guillaume Nolin and Pierre-Marie Demy, for their availability, their help and their sympathies that they gave me during these 6 months. I am grateful to Dr. Oliver Buss for his cooperation and commitment during my master thesis, for his availability and his presence to help me with the NUDUNA software. I have a gratitude for Anne-Claire Scholer, Guillaume Vandermoere, Matthieu Culioli, Florent Beck, Pierre Boisseau, François Mollier and Denis Verrier for their wise advice that allowed me to complete my studies. I especially thank Guillaume Testard with whom I shared my office during these 6 months for his good mood and his precious advice. Finally, I would like to warmly thank all the members of the section for their welcome and good humor on a daily basis. COPPERE Benjamin MASTER THESIS REPORT Page: 3/49 Date: 02/2018 FRAMATOME – DTI PLN-F FFP/EP-9013INF/G/fr Table of contents Résumé ......................................................................................................................................................................... 2 Abstract ........................................................................................................................................................................ 2 Acknowledgement ........................................................................................................................................................ 3 1. Introduction ......................................................................................................................................................... 8 1.1. Context ......................................................................................................................................................... 8 1.2. Choice of tools based on current methods .................................................................................................. 9 2. Problematic of the secondary sodium activation on SFR reactors ...................................................................... 9 2.1. Issues due to the activation of the sodium secondary circuit ...................................................................... 9 2.2. Calculation of the secondary sodium activation ........................................................................................ 10 2.3. ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration) .................................... 10 2.4. Superphénix ................................................................................................................................................ 12 3. Methodology and tools used for the evaluation of the uncertainties .............................................................. 13 3.1. Procedures to determine uncertainties due to nuclear data ..................................................................... 13 3.2. Uncertainty propagation theory ................................................................................................................. 14 3.3. Methodology to determine uncertainties due to nuclear data ................................................................. 17 3.3.1. Creation of a nuclide database ........................................................................................................... 17 3.3.2. Variance and covariance information from the ENDF6 file ................................................................ 19 3.3.3. Random draws on the input parameters ........................................................................................... 19 3.3.4. The sum rules ...................................................................................................................................... 21 3.3.5. Creation of the random libraries ........................................................................................................ 24 3.3.6. Stochastic calculations with a transport code .................................................................................... 25 3.3.7. Analysis of the stochastic code results ............................................................................................... 25 3.4. Uncertainty due to the neutron source spectrum ..................................................................................... 27 3.5. Different tools for the study of sodium fast reactors ................................................................................. 28 3.5.1. Stochastic calculation tool: MCNP ...................................................................................................... 28 3.5.2. ADVANTG ............................................................................................................................................ 29 3.5.3. NUDUNA: NUclear Data UNcertainty Analysis ................................................................................... 29 4. Results for the quantification of the uncertainty on the secondary sodium activation .................................... 30 4.1. Procedure to determine uncertainties on the secondary sodium
Recommended publications
  • Framatome in Latin America Strong History and Partnerships
    SEN – Semana da Engenharia Nuclear UFRJ 17/10/2019 Framatome– 2019 1 © Framatome All right reserved Framatome– 2019 2 © Framatome All right reserved Framatome at a glance 60 years of experience, alongside our customers, in developing safe and competitive nuclear power worldwide Design Supply Manufacture Integrate Maintain Framatome– 2019 3 © Framatome All right reserved Framatome at a glance High-performing people and technologies for safe and competitive nuclear plants worldwide 92 14 000 250 3.3 NPPs PEOPLE REACTORS € BILLION As OEM Servicing … All over the world 2017 turnover Framatome– 2019 4 © Framatome All right reserved Our values More than principles, our values guide our actions and describe how we work each other, with our customers and business partners Safety Future Performance Integrity Passion Framatome– 2019 5 © Framatome All right reserved Framatome worldwide presence Germany 4 sites France 17 sites USA 7 sites China 8 sites 58 locations Argentina Japan Sweden 21 Belgium Republic of South Switzerland countries Others Brazil Africa The Netherlands locations Bulgaria Russia Ukraine Canada Slovakia United Arab Emirates Framatome– 2019 Czech Republic Slovenia United Kingdom 6 Finland South Korea © Framatome Hungary Spain All right reserved Our customers Asia CNNC Nawah CGN Tepco North & South America Doosan Hitachi Bruce Power Exelon OPG KHNP Dominion Corporation PSEG Africa MHI Duke Energy Luminant TVA Entergy NA-SA Eskom ETN NextEra Europe ANAV EDF Energy Skoda CNAT Engie TVO CEA EPZ Vattenfall CEZ Iberdrola DCNS KKG EnBW NEK Framatome– 2019 7 EDF RWE © Framatome All right reserved Framatome shareholder structure 19,5% 75,5% 5% • Stock-listed company • Majority shareholder: French state 100% Framatome Inc.
    [Show full text]
  • Jules Horowitz Reactor (JHR), a High-Performance Material Test Reactor in Cadarache, France
    The Swedish-French collaboration on the research reactors ASTRID & JHR Prof. Christophe Demazière Chalmers University of Technology Department of Applied Physics Division of Nuclear Engineering [email protected] Background − the ESS project • ESS: European Spallation Source – a European Union facility. • Will be built in Lund. • Participation of France is formalized in a contract between France and Sweden. • Sweden has to spend 400 MSEK on joint research in subjects relevant to France (energy and environment). • Out of this, 100 MSEK is devoted to fission-based nuclear energy. Background – the European research program • Vision: Sustainable Nuclear Energy Technology Platform (SNETP). • Planned facilities: – Jules Horowitz Reactor (JHR), a high-performance material test reactor in Cadarache, France. Start of operation: 2014. – MYRRHA facility in Mol, Belgium, a fast spectrum irradiation facility working as an ADS. Start of operation: ca. 2023. – ASTRID (Advanced Sodium Technological Reactor for Industrial Demonstration), a prototype Gen-IV sodium-cooled fast reactor to be built in France. Start of operation: ca. 2020. – VHTR, a first-of-a kind Very High Temperature Reactor for, among others, hydrogen production. VR Multi-project Grant in Nuclear Energy Research • 3 multi-grant projects granted by the Swedish Research Council in the spring of 2012 (projects in collaboration with CEA, France – French Alternative Energies and Atomic Energy Commission): – DEMO-JHR (coordinator: Prof. Christophe Demazière, Chalmers): 3 PhD projects. – ASTRID
    [Show full text]
  • Presentation Title (On One Or Two Lines)
    Energy Business Technology Strategy Yukihiko Kazao Executive Officer and Corporate Senior Vice President Energy Systems & Solutions Company Chief Technology Executive Toshiba Corporation October 18, 2016 © 2016 Toshiba Corporation Energy Business Technology Strategy Pursue clean energy and the related management system グリーンエネルギーの追求とそのマネジメントシステムでand aim to realize sustainable energy for society 持続可能なエネルギー社会の実現を目指す Variable power sources Generate Low carbon Nuclear Hydro- Geothermal Solar Hydrogen thermal power power power power Wind power Transmit Store ・Hydropower ・variable speed Rechargeable batteries Hydrogen water pumps Transformers Short-term Long-term storage storage Transmission Substations Storage and distribution systems Smart use Factories Transport Homes Buildings © 2016 Toshiba Corporation 2 Advancing Toward a Society Supported by Sustainable Energy I. Green energy ・ That pursues the world‘s highest level of safety in nuclear power ・ That aims for zero emissions by introducing high efficiency systems and carbon capture technologies in thermal power ・ That contributes to the stabilization of the power system with hydropower II. Energy management ・ Use next-generation technologies to pursue optimal control of the supply and demand balance Ⅲ. Cutting-edge technologies ・ Lead the world in cutting-edge technologies © 2016 Toshiba Corporation 3 Toshiba Group’s Nuclear Power Plants Global expansion with two reactors offering the world's highest safety levels High capacity BWR: ABWR Innovative PWR: AP1000™ ・ Dynamic + static safety
    [Show full text]
  • RIL AMT Workshop Summary
    RIL 2021-03 NRC WORKSHOP ON ADVANCED MANUFACTURING TECHNOLOGIES FOR NUCLEAR APPLICATIONS Part I – Workshop Summary Date Published: Draft April 2021 Prepared by: A. Schneider M. Hiser M. Audrain A. Hull Research Information Letter Office of Nuclear Regulatory Research Disclaimer This report was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party’s use, or the results of such use, of any information, apparatus, product, or process disclosed in this publication, or represents that its use by such third party complies with applicable law. This report does not contain or imply legally binding requirements. Nor does this report establish or modify any regulatory guidance or positions of the U.S. Nuclear Regulatory Commission and is not binding on the Commission. EXECUTIVE SUMMARY Advanced manufacturing technologies (AMTs) are defined by the U.S. Nuclear Regulatory Commission (NRC) as those techniques and material processing methods that have not been traditionally used or formally standardized/codified by the nuclear industry. In June 2020, the NRC released Revision 1 to the Agency Action Plan for AMTs (AMT AP) (Agencywide Documents Access and Management System Accession No. ML19333B980 (package)). The AMT AP is a strategic plan that responds to the rapid pace of developments in respective AMTs and industry implementation plans. The NRC’s AMT activities are driven by industry interest in implementing specific AMTs and ensuring that the NRC staff are prepared to review potential AMT applications efficiently and effectively.
    [Show full text]
  • ITER Project Garching for the Fusion Community an Historic Milestone Was Achieved at the Eighth ITER Negotiations Meeting on February 18-19, 2003 in St
    newsletternewsletter Vol 2003 / 2 April 5, 2003 EUROPEAN FUSION DEVELOPEMENT AGREEMENT News Issued by the EFDA Close Support Unit China and the US as New Partners in the ITER Project Garching For the fusion community an historic milestone was achieved at the Eighth ITER Negotiations Meeting on February 18-19, 2003 in St. Petersburg (Russian Federation), when delega- tions from the People’s Republic of China and the United States of America joined those from Canada, the European Union, Japan and the Russian Federation in their efforts to reach agreement on the implementation of the ITER pro- ject. The Head of the Chinese Delegation indicated that Contents China, as the largest developing country in the world, has a great need to pursue alternative energy sources. China . Interview: believes that ITER can potentially lead to new forms of ener- Dr. Joseph V. Minervini gy and contribute to the peaceful and sustainable development page 2 of the world in the long-term. China expressed its strong wishes to be a valuable member of the ITER family, to make joint efforts with . Interview: other partners to the successful exploitation of fusion energy. Prof. Huo Yuping At their St. Petersburg meeting the ITER Negotiators approved the Report on the page 3 Joint Assessment of Specific Sites (JASS). The JASS Report provided as a main con- clusion and despite the differences between the candidate sites (Clarington in Canada, . ITER: Cadarache in France, Vandellos in Spain and Rokkasho-mura in Japan) that the JASS First Full Scale Primary assessment ascertained that all four sites are sound and fully capable to respond to all First Wall Panel ITER Site Requirements and Design Assumptions, as approved by the ITER Council in its January 2000 meeting.
    [Show full text]
  • Olkiluoto 3: Framatome Teams All Set for Fuel Loading
    PRESS RELEASE March 26, 2021 Olkiluoto 3: Framatome teams all set for fuel loading March 26, 2021 – The Olkiluoto 3 EPR reactor completes a decisive stage of its commissioning. The Finnish safety authority (STUK) has authorized the fuel load for the Olkiluoto 3 EPR reactor. Loading operations led by plant operator TVO, with the support from AREVA and Framatome, can begin. "Fuel loading is a major milestone for the project. Reaching this milestone illustrates the expertise and know-how of our teams," said Bernard Fontana, CEO of Framatome. "Framatome's teams are fully mobilized alongside AREVA and TVO to finalize and deliver the nuclear power plant while meeting the highest safety and security standards. I thank them for their engagement.” To carry out the loading operations, an integrated team made up of approximately 40 employees from TVO, AREVA and Framatome has been formed. It includes around 15 fuel handlers, employees specializing in the fuel handling operations, and four neutronics engineers in charge of monitoring the core during loading. A total of 241 fuel assemblies manufactured in Framatome's plants in Germany and in France will be loaded in the reactor vessel to constitute the first core. The Areva NP and Areva NP GmbH Olkiluoto 3 project teams, who will later join Framatome, are supported by over 110 Framatome employees permanently based on the site, and by Framatome engineering teams located in France and in Germany. Completion of the fuel loading will be followed by a new series of hot functional tests before the first criticality and commissioning for commercial operation.
    [Show full text]
  • Specials Steels and Superalloys for Nuclear Industry
    Specials Steels and Superalloys for Nuclear Industry Enhancing your performance or almost 60 years Aubert & Duval has been a key partner for the development Aubert & Duval: Your partner F of forged and rolled products, especially those customized for the nuclear market. to energize your success With full vertical integration from melting, to remelting, hot converting and machining (rough machining through to near-net-shape parts), Aubert & Duval offers wide-ranging cutting edge capabilities for nuclear application. Equipment Process flow . MELTING Melting furnaces (EAF, AOD, LF) Melting up to 60 tons Vacuum Induction Melting (VIM) HPS NiSA up to 20 tons Remelting furnaces (ESR, VAR) up to 30 tons powder atomization (Gaz, VIM) . FORGING Open-die forging presses Remelting Powder atomization from 1,500 to 10,000 tons Closed-die forging presses from 4,500 to 65,000 tons . ROLLING MILL HPS 7-200 mm diameter bars High Performance Steels: Conversion . HEAT TREATMENT A range of alloyed steels with Solution and ageing furnaces tightly controlled characteristics HPS Ti NiSA AL PM Horizontal and vertical quenching offering optimum value for equipment customers. TESTING Forging Closed-die Hot Isostatic Immersion UT up to 13 tons and/or rolling Forging Forging Pressing (HIP) ©Valinox-Franck Dunouau (28,000 lbs) Automated contact UT up to 20 tons NiSA Aubert & Duval has also put in place over many decades dedicated skills to co-design re-engineered Nickel-base Superalloys: Nickel-based superalloys: materials metallurgical solutions with our clients. keeping high surface integrity while Sales of alloys and superalloys have progressively expanded across a broad spectrum of primary withstanding severe mechanical circuit contractors and their subcontractors.
    [Show full text]
  • Press Kit Inauguration of the Conversion Orano Tricastin BP 16 26 701 Pierrelatte Plant 10 September 2018
    Press kit Inauguration of the conversion Orano Tricastin BP 16 26 701 Pierrelatte plant 10 September 2018 Contacts Presse Nathalie Bonnefoy +33 (0)6 23 17 24 24 [email protected] Gilles Crest +33 (0)6 71 08 11 54 [email protected] www.orano.group Oranogroup EDITORIAL The plant we are opening today is a major industrial investment for Orano, for the French nuclear industry and for the industry of our country. ith the Georges Besse II enrichment plant on the same site, it is probably the largest industrial investment made in France in recent years. The Comurhex W II project was launched to give France an industrial facility offering cutting- edge safety, security, and environmental and industrial performance. A facility that gives us a global competitive advantage and guarantees an uninterrupted electricity supply for our markets. A tool integrating technological innovations in terms of safety, environment, and improvement of industrial performance: recycling of chemical reagents, reduction by 90% of water consumption, automated control-command system to improve the process control. It is an exceptional project that has required the best of our expertise from the teams of Orano Chemistry and Enrichment as well as Orano Projets, and throughout our group alongside our industrial partners. The project successfully completed at the same time as our group was reinventing itself to create a new flagship technology business to give nuclear materials all their value. While an important debate is taking place on France's multi-year energy program, the investment we have made in the Tricastin site and its plants shows the confidence we have in the future of nuclear energy.
    [Show full text]
  • The Jules Horowitz Reactor Core and Cooling System Design
    The Jules Horowitz Reactor core and cooling system design M. Boyard*, JM. Cherel**, C. Pascal*, B. Guigon*** * AREVA-Technicatome, 1100 rue Jean René Guillibert Gautier de la Lauzière 13100 Aix en Provence, FRANCE ** AREVA-Framatome-ANP, 9-10 rue Juliette Récamier 69006 Lyon, FRANCE *** Commissariat à l’Energie Atomique, 13108 Saint-Paul-lez-Durance cedex, FRANCE ABSTRACT The CEA (Commissariat à l’Energie Atomique) is planning to build a new MTR called the Jules Horowitz Reactor (JHR). JHR at Cadarache will become by 2014 and for decades a major research infrastructure in Europe for supporting existing power plants operation and lifetime extension as well as future reactor developments [1]. AREVA (Technicatome and Framatome- ANP) and EDF are performing the design studies. The JHR will be a tank pool type reactor using light water as coolant and moderator. The reactor has been designed to provide a neutron flux strong enough to carry out irradiation relevant for generations 2, 3 and 4 power plants: flexibility and adaptability, high neutron flux, instrumented experiments, loops to reproduce environments representatives of the different power plant technologies . Updated safety requirements and LEU fuel elements have been taken into account in the design of this high flux reactor. This paper presents the guidelines for the design of the main items, the various options considered and the choices made at the end of the detailed studies phase regarding: − Core shape, − Fuel element and core pitch, − Reflector and core-reflector interface, − Normal and emergency cooling systems, − Reactivity control system. MAIN OBJECTIVES OF THE REACTOR The “Jules Horowitz Reactor” (JHR) will be a structuring infrastructure of the European research area.
    [Show full text]
  • Operational and Decommissioning Experience with Fast Reactors
    IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 IAEA-TECDOC-1405 Operational and decommissioning experience with fast reactors Proceedings of a technical meeting held in Cadarache, France, 11–15 March 2002 August 2004 The originating Section of this publication in the IAEA was: Nuclear Power Technology Development Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria OPERATIONAL AND DECOMMISSIONING EXPERIENCE WITH FAST REACTORS IAEA, VIENNA, 2004 IAEA-TECDOC-1405 ISBN 92–0–107804–8 ISSN 1011–4289 © IAEA, 2004 Printed by the IAEA in Austria August 2004 FOREWORD The fast reactor, which can generate electricity and breed additional fissile material for future fuel stocks, is a resource that will be needed when economic uranium supplies for the advanced water cooled reactors or other thermal-spectrum options diminish. Further, the fast-fission fuel cycle in which material is recycled offers the flexibility needed to contribute decisively towards solving the problem of growing ‘spent’ fuel inventories by greatly reducing the volume of high level waste that must be disposed of in long term repositories. This is a waste management option that also should be retained for future generations. The fast reactor has been the subject of research and development programmes in a number of countries for more than 50 years. Now, despite early sharing and innovative worldwide research and development, ongoing work is confined to China, France, India, Japan, the Republic of Korea, and the Russian Federation. Information generated worldwide will be needed in the future.
    [Show full text]
  • Audition Sur Les Conséquences De L'arrêt Du Programme ASTRID
    Paris, le 25 novembre 2020 Audition sur les conséquences de l’arrêt du programme ASTRID Audition de Madame Valérie Faudon, déléguée générale de la Société française d’énergie nucléaire (Sfen) par les parlementaires de l’Office parlementaire d'évaluation des choix scientifiques et technologiques (OPECST). Tout d’abord je souhaiterais vous remercier, au nom de la Sfen, de nous recevoir aujourd’hui. La Sfen est une société savante, qui rassemble les scientifiques et ingénieurs du nucléaire depuis 1973. Notre raison d’être est de « permettre aux esprits curieux de se faire de nouvelles idées sur le nucléaire » et notre nouvelle signature est « faire avancer le nucléaire ». La décision de l’arrêt du programme ASTRID et de la mise en place d’un nouveau programme structurant « Promouvoir une économie circulaire au sein de la filière » a été actée par la signature du Contrat stratégique de la filière nucléaire le 28 janvier 2019. Pour rappel, le Comité stratégique de la filière nucléaire (CSFN), qui a rédigé ce projet, a, comme tous les comités stratégiques de filière, une configuration tripartite : organisations syndicales – Etat – Industriels. Parmi ces derniers, on peut citer EDF, le CEA, et Orano. Il est important de rappeler qu’il y a eu consensus, au sein des industriels de la filière, sur cet accord. Au niveau de la Sfen, cette décision a d’abord été une déception pour beaucoup de nos adhérents, attachés à l’excellence de la recherche nucléaire française dans le domaine des réacteurs à neutrons rapides. L’avant-projet sommaire (APS) d’ASTRID a reçu en 2016 le grand prix Sfen, qui est la plus haute récompense française en matière de recherche scientifique sur le nucléaire.
    [Show full text]
  • Status of Astrid Architecture in Starting of Basic Design Phase P
    Status of astrid architecture in starting of basic design phase P. Amphoux, P. Gama, L. Raquin, B. Levoir To cite this version: P. Amphoux, P. Gama, L. Raquin, B. Levoir. Status of astrid architecture in starting of basic design phase. ICAPP 2017, Apr 2017, Fukui And Kyoto, Japan. cea-02435092 HAL Id: cea-02435092 https://hal-cea.archives-ouvertes.fr/cea-02435092 Submitted on 10 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Proceedings of ICAPP 2017 April 24-28, 2017 - Fukui and Kyoto (Japan) Status of ASTRID architecture in starting of Basic Design phase Philippe AMPHOUX 1, Philippe GAMA 2, Loïc RAQUIN 3, Benoît LEVOIR 3 1: CEA Cadarache, DEN/DER/CPA, 13108 Saint-Paul lez Durance Cedex, France 2: AREVA NP, 10 rue Juliette Récamier 69456 Lyon Cedex 06, France 3 : NOX, 45/47 Bd Paul Vaillant-Couturier 94200 Ivry-sur-Seine, France Contact author: Philippe AMPHOUX, +3344225711, [email protected] Abstract - Sodium-cooled Fast Reactors (SFR) is one of the Generation IV reactor concepts selected to secure the I. INTODUCTION nuclear fuel resources and to manage radioactive waste. In the frame of the June 2006 French act on sustainable After 6 years of Conceptual Design phase (AVP), management of radioactive materials and wastes, French the Project is involved since January 2016 in Basic Government entrusted CEA (French Commission for Design.
    [Show full text]