UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
UC Santa Cruz UC Santa Cruz Electronic Theses and Dissertations Title Shaping Galaxy Evolution with Galaxy Structure Permalink https://escholarship.org/uc/item/9sq624hk Author Cheung, Edmond Publication Date 2014 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA SANTA CRUZ SHAPING GALAXY EVOLUTION WITH GALAXY STRUCTURE A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in ASTRONOMY & ASTROPHYSICS by Edmond Cheung June 2014 The Dissertation of Edmond Cheung is approved: Professor Sandra M. Faber, Chair Professor David C. Koo Professor Charlie Conroy Dean Tyrus Miller Vice Provost and Dean of Graduate Studies Copyright c by Edmond Cheung 2014 Table of Contents List of Figures vi List of Tables viii Abstract ix Dedication xi Acknowledgments xii 1 Introduction1 2 The Dependence of Quenching upon the Inner Structure of Galaxies at 0:5 ≤ z < 0:8 in the DEEP2/AEGIS Survey7 2.1 Introduction....................................7 2.2 Data........................................ 16 2.2.1 CFHT BRI Photometric Catalog..................... 16 2.2.2 HST ACS V+I Imaging and SExtractor Photometry........... 16 2.2.3 GIM2D.................................. 17 2.2.4 DEEP2 + DEEP3 Redshift Survey.................... 19 2.2.5 Photometric Redshifts.......................... 20 2.2.6 Rest-frame Absolute B Magnitudes and U - B Colors.......... 20 2.2.7 Stellar Masses.............................. 22 2.2.8 Error Estimates.............................. 24 2.3 Sample Selection................................. 26 2.3.1 Completeness............................... 29 2.4 Results....................................... 32 2.4.1 The Most Discriminating Color Parameter................ 32 2.4.2 Properties of Galaxies in the M∗=re Overlap Region........... 36 2.4.3 Sérsic Index and Inner Surface Density................. 41 2.5 Discussion..................................... 48 2.5.1 Merger Model.............................. 49 iii 2.5.2 Disk Instabilities: Violent and Otherwise................ 54 2.5.3 Secular Evolution............................. 56 2.5.4 Morphological Quenching........................ 59 2.5.5 Critical Halo Mass............................ 62 2.5.6 The Relationship Between Color and Star Formation.......... 65 2.6 Conclusion.................................... 66 3 Galaxy Zoo: Observing Secular Evolution Through Bars 71 3.1 Introduction.................................... 71 3.2 Data........................................ 77 3.2.1 SDSS................................... 77 3.2.2 Galaxy Zoo................................ 79 3.2.3 GIM2D.................................. 83 3.2.4 MPA-JHU................................. 88 3.3 Results....................................... 89 3.3.1 Bar Likelihood Trends.......................... 89 3.3.2 Bar Length Trends............................ 91 3.4 Comparison to Theory.............................. 92 3.4.1 Theoretical Reminders.......................... 92 3.4.2 The Effect of Gas Content on Bar Formation.............. 97 3.4.3 The Effects of Classical Bulges and Disky Pseudobulges on Bar Formation 97 3.4.4 Evidence for Secular Evolution..................... 100 3.5 Discussion..................................... 102 3.5.1 Are We Observing Secular Evolution?.................. 102 3.5.2 Can Bars Quench Star Formation?.................... 104 3.6 Conclusion.................................... 106 4 Galaxy Zoo: Bars are not Responsible for the Feeding of Active Galactic Nuclei at 0:2 < z < 1:0 112 4.1 Introduction.................................... 112 4.2 Data........................................ 114 4.2.1 Galaxy Zoo: Hubble........................... 116 4.3 Sample Selection................................. 119 4.3.1 Face-on Disk Selection.......................... 119 4.3.2 AGN Selection.............................. 120 4.3.3 Control Selection............................. 121 4.4 Results & Discussion............................... 126 4.5 Conclusion.................................... 130 A Completeness of Chapter 1 188 A.1 Surface Brightness Limits............................. 188 A.2 GIM2D Measurement Quaility.......................... 189 A.3 Sérsic Index Bias?................................. 190 iv B Completeness of Chapter 2 208 B.0.1 Galaxy Zoo 2 Disk Sample........................ 208 B.0.2 Bar Length Sample............................ 213 B.1 Bar Length Scaled by Isophotal Radii...................... 214 B.2 R90/R50...................................... 216 v List of Figures 1.1 The original diagram of the Hubble sequence..................2 2.1 Residuals of absolute B-band magnitude MB, rest-frame U - B, and stellar mass M∗ against rest-frame U - B ............................ 22 2.2 M∗=LB vs. observed V - I and rest frame U - B in three redshift bins...... 25 2.3 Rest-frame UVJ diagram............................. 26 2.4 U - B vs. M∗ in completeness bins........................ 27 2 ∗ 2.5 U - B vs. MB, M∗, M∗=re, M∗=re , n, and Σ1kpc .................. 33 2.6 U - B vs. global and disk/bulge properties for galaxies in the overlap region.. 37 ∗ 2.7 U - B vs. n and Σ1kpc, focusing on the outliers.................. 40 2 2.8 U - B vs. n separated by M∗, M∗=re, and M∗=re ................. 44 2.9 Gallery of outliers................................. 70 3.1 Gallery of barred galaxies............................. 79 3.2 n vs. fracDeV................................... 85 3.3 Bar likelihood trends............................... 86 3.4 Scaled bar length trends.............................. 89 3.5 Simulations of bar evolution........................... 94 3.6 Schematic of bar evolution............................ 95 3.7 Scaled bar length separated by bulge type.................... 98 4.1 Histograms of the difference in each matched parameter between AGN-control galaxies...................................... 115 4.2 Images of sets of matched AGN-control galaxies................ 118 4.3 X-ray luminosity vs. spectroscopic redshift................... 120 4.4 Bar fraction of AGN and control samples.................... 124 4.5 AGN fraction of bar and control samples..................... 128 A.1 Semimajor axis effective radius vs. V and I.................... 191 A.2 V and I magnitude errors as a function of V;I, and log M∗ ............ 192 A.3 Sérsic index error, effective radius fractional error, and bulge-to-total ratio er- rors as a function of V;I, and log M∗ ....................... 193 vi A.4 n vs. µ(V), µ(I), and M∗ ............................. 195 B.1 Number density distribution of SSFR and M∗ .................. 208 B.2 The ratio of the number of galaxies in the GZ2D sample to the edge-on GZ2 disk sample.................................... 209 B.3 The number density distribution of the Bar Length sample........... 214 B.4 Plots of Lbar=r25 .................................. 215 B.5 Plots of Lbar=r25 .................................. 215 B.6 Plots with R90/R50................................ 217 vii List of Tables 3.1 Sample Selection................................. 77 4.1 Sample Statistics................................. 125 A.1 Galaxy Properties................................. 194 A.1 Galaxy Properties................................. 196 A.1 Galaxy Properties................................. 197 A.2 Subcomponent Properties............................. 198 A.2 Subcomponent Properties............................. 199 A.3 GIM2D: Single n Catalog............................. 200 A.3 GIM2D: Single n Catalog............................. 201 A.4 GIM2D: n = 4 Bulge Catalog........................... 202 A.4 GIM2D: n = 4 Bulge Catalog........................... 203 A.4 GIM2D: n = 4 Bulge Catalog........................... 204 A.5 GIM2D: n = 2 Bulge Catalog........................... 205 A.5 GIM2D: n = 2 Bulge Catalog........................... 206 A.5 GIM2D: n = 2 Bulge Catalog........................... 207 viii Abstract Shaping Galaxy Evolution with Galaxy Structure by Edmond Cheung A fundamental pursuit of astronomy is to understand galaxy evolution. The enor- mous scales and complex physics involved in this endeavor guarantees a never-ending journey that has enamored both astronomers and laymen alike. But despite the difficulty of this task, astronomers have still attempted to further this goal. Among of these astronomers is Edwin Hubble. His work, which includes the famous Hubble sequence, has immeasurably influenced our understanding of galaxy evolution. In this thesis, we present three works that continues Hubble’s line of study by using galaxy structure to learn about galaxy evolution. First, we examine the dependence of galaxy quiescence on inner galactic structure with the AEGIS/ DEEP2 survey at 0:5 < z < 0:8. We developed a method to compare the efficacy of several parameters at distinguishing star-forming galaxies from quiescent galaxies. Our method indicates that the inner stellar mass is the most correlated parameter of quenching, implying that the process that quenches galaxies must also buildup their inner structure. Second, we explore the relationship between galactic bars and their host galaxies with Galaxy Zoo 2 at z ∼ 0. The correlations of bar properties and galaxy properties are consistent with simulations of bar formation and evolution, indicating that bars affect their host galaxies. Finally, we investigate whether bars can drive supermassive black hole growth with data from Chandra and Galaxy Zoo: Hubble at 0:2 < z < 1:0. Comparing