Probing Star Formation and Radio Activity Using Faint Galaxy Redshift Surveys

Total Page:16

File Type:pdf, Size:1020Kb

Probing Star Formation and Radio Activity Using Faint Galaxy Redshift Surveys Durham E-Theses Probing star formation and radio activity using faint galaxy redshift surveys Davies, Gregory Tudor How to cite: Davies, Gregory Tudor (2008) Probing star formation and radio activity using faint galaxy redshift surveys, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/2224/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Probing Star Formation and Radio Activity using Faint Galaxy Redshift Survey by Gregory Tudor Davies A thesis submitted to the University of Durham in accordance with the regulations for admittance to the Degree of Doctor of Philosophy. Department of Physics University of Durham October 2008 The copyright of this thesis rests with the author or the university to which it was submitted. No quotation from it, or information derived from it may be published without the prior written consent of the author or university, and any information derived from it should be acknowledged. 2 6 JAN 2009 Probing Star Formation and Radio Activity using Faint Galaxy Redshift Surveys Gregory Tudor Davies Abstract In this thesis, we study the evolution of radio luminosity functions (RLF) for AGN and star forming galaxies (SFG), the colour-magnitude distributions of radio and X-ray sources at redshift z ~1, the star formation rate density in dwarf galaxies at z ~1 and investigate downsizing. In chapter 1 we give the background to our studies. We describe the Big Bang model before going on to examine different types of galaxies and looking at their star formation rates and the variation of their properties with their environments. We summarise the elements of modern astronomy methodology used throughout this thesis in chapter 2. In this chapter we describe the methods of measuring star formation rates, galaxy environments and luminosity functions. In chapter 3 we match the AEGIS20 radio survey to the DEEP2 optical spectroscopic survey in the extended Groth Strip (EGS) to create a sample of radio-emitting galax• ies that we separate into AGN and SFGs. We derive the RLFs of each of these at two redshift intervals and measure their evolution out to z ~1. We also compare the colour- magnitude distribution of the radio sources to that of the general galaxy population at this redshift and compare these to their local Universe equivalents. We found the evolution of the RLFs to be consistent with pure luminosity evolution with the form L oc (1 + z)a where a = 1.0 ± 0.9 for the AGN and a = 3.7 ± 0.3 for the SFGs. We analyse the variations of these radio sources' properties with their environments in chapter 4. Using the projected nth nearest neighbour method to estimate the density of the envi• ronments, we find a strong trend of SFG numbers dropping with density. The final science chapter is chapter 5 in which we describe the Redshift One LDSS3 Emission-line Survey (ROLES). This survey targets the [Oil] emission line in dwarf galaxies with log(M*/MG )<9.5. We convert the [Oil] luminosity to a star formation rate (SFR) and then proceed to analyse the mass-dependence of the global star forma• tion rate at redshift z ~1. We find that SFR turns over with stellar mass at this redshift. By also comparing to similar studies in the local Universe, we investigate the empirical "downsizing" picture of galaxy evolution. Finally, we present our conclusions and suggestions for future work in chapter 6. Contents 1 Introduction 1 1.1 The Big Bang Model 1 1.1.1 Inflation 4 1.1.2 Nucleosynthesis 7 1.1.3 The Cosmic Microwave Background Radiation 8 1.1.4 Dark Matter and Structure Formation 9 1.1.5 The Cosmological Constant: Dark Energy? 11 1.2 Galaxies: types, properties and their spectra 12 1.2.1 Early Type Galaxies 13 1.2.2 Late Type Galaxies 15 1.2.3 AGN 20 1.2.3.1 The Unified Model 21 1.2.3.2 Radio Emission from AGN 22 1.2.3.3 Sub-classifications of Radio-Loud AGN and Accretion Disks 24 1.2.3.4 X-ray Emission from AGN 25 1.2.3.5 Visible Emission from AGN 26 1.3 Star Formation 26 1.3.1 The Star Formation History of the Universe 26 1.4 Galaxy Environments and their relationship with star formation 29 1.4.1 Galaxy trends with Environment 29 1.4.2 The dependence of SFR on Environment: Nature or Nurture? ... 30 1.5 Motivation for and Structure of this thesis 32 2 The Astronomer's Toolbox 35 2.1 Measuring Star Formation Rates 35 2.1.1 The IMF 36 i 2.1.2 Reddening Corrections 37 2.1.3 HQ 39 2.1.4 [Oil] 41 2.1.5 Far-infrared 41 2.1.6 UV 42 2.1.7 Star Formation and Radio Emission 42 2.1.8 The FIR-Radio Correlation 44 2.1.9 Separating Radio Emission from Star Formation from that from AGN 44 2.2 Measuring Galaxy Environment 46 2.2.1 Issues affecting Environment measures 47 2.2.2 Measures of Environment Density 48 2.3 Measuring the Luminosity Function 50 2.3.1 What is a Luminosity Function? 50 2.3.2 The 1/Vmax method 53 2.4 Galaxy Surveys: Suitability for a Purpose 54 The Evolution of the Radio Luminosity Function and the Colours of Radio Sources at z ~ 1 59 3.1 Introduction 59 3.2 The AEGIS Survey 61 3.2.1 The optical, radio and X-ray surveys 61 3.2.2 Matching the optical and radio surveys 63 3.2.3 Local comparison sample 65 3.3 Separating the Radio Source Populations 66 3.3.1 Colour distribution 66 3.3.2 Separating the two populations 68 3.3.3 Comparison with other measures of AGN activity 73 3.3.3.1 X-ray and FIR 73 3.3.3.2 Optical spectroscopy 76 3.3.3.3 Optical morphologies 77 3.3.3.4 Classification summary 78 3.4 Radio Luminosity Functions 81 3.4.1 Constructing the radio luminosity function 81 3.4.2 The total radio luminosity function 83 ii 3.4.3 AGN and SFG radio luminosity functions 85 3.5 Discussion 88 3.5.1 Comparison with SFRD evolution 89 3.5.2 Star Formation, Radio and X-ray Emission 90 3.5.3 Future Improvements 91 3.6 Conclusions 91 4 The Environments of radio-powered AGN and star forming galaxies at z ~1 93 4.1 Introduction 93 4.2 Analysis 96 4.2.1 Sample Selection 96 4.2.2 Selection completeness Correction 97 4.2.3 Edge Effects 97 4.2.4 A Test of the Environment Density Calculation 98 4.3 Results 99 4.3.1 The Relation between Environment Density and Radio Emission Mechanism 99 4.3.2 The Relation between Environment Density and Galaxy Colour . 101 4.3.3 The Relation between Environment Density and Radio Luminosity 103 4.4 Discussion 105 4.5 Conclusions 108 5 The ROLES Survey HI 5.1 Introduction HI 5.2 Method 113 5.2.1 Survey Design 113 5.2.2 Sample selection & Spectroscopic Observations 114 5.2.3 Spectroscopic data reduction 117 5.2.3.1 Pre-processing 117 5.2.3.2 Sky-subtraction 118 5.2.3.3 Noise estimation 118 5.2.4 Line Detection 121 5.2.4.1 Optimal filtering 121 5.2.4.2 Catalogue cleaning 122 5.2.4.3 Tests of emission line catalogue 124 iii 5.2.4.4 The Final Sample 125 5.2.5 Line identification 125 5.2.5.1 Flux measurement 130 5.3 Analysis & Results 132 5.3.1 L([OII]) to SFR Conversion 132 5.3.2 Spectroscopic completeness 132 5.3.3 Survey volume 134 5.3.3.1 if-band flux limit 135 5.3.3.2 [Oil] flux limit 135 5.3.4 Stellar Masses 137 5.3.5 Star formation rate density 139 5.4 Discussion 141 5.4.1 Comparison with GDDS: Specific Star Formation Rates at z ~ 1 . 141 5.4.2 Star Formation Rate Density as a Function of Mass at z~ 1 145 5.4.3 [Oil] SFR versus total SFR: A study in the local Universe 146 5.4.4 Downsizing 147 5.4.5 Metallicity and Reddening Effects 148 5.5 Conclusions 155 6 Conclusions and Future Work 157 6.1 Radio Luminosity Functions 157 6.2 The Colour-magnitude Distribution of Radio and X-Ray Sources at z ~1 . 158 6.3 The Environments of Radio Sources in DEEP2 159 6.4 The SFRD of Low-Mass galaxies at z ~1 159 6.5 Downsizing 160 6.6 Future Work 161 A Cosmography 163 A.l Hubble's Parameter 163 A.2 Expansion factor, redshift and velocity of recession 163 A.3 The Friedmann Equations 164 A.4 Testing the Flatness of the Universe 166 A.5 The Evolution of the Hubble Parameter 167 A.6 The Comoving Radial Distance Dc 168 A.7 The Angular Diameter Distance DA 168 iv A.8 The Luminosity Distance 169 A.9 The Comoving Volume 170 A.10 The Evolution of the Expansion Factor and of the Energy Density 170 A.10.1 Evolution in a Radiation-dominated Universe 171 A.10.2 Evolution in a Matter-dominated Universe 172 v List of Figures 1.1 The famous Hubble "Tuning Fork Diagram" showing the classification of galaxies.
Recommended publications
  • Estimating the Redshift Distribution of Photometric Galaxy Samples
    Mon. Not. R. Astron. Soc. 390, 118–130 (2008) doi:10.1111/j.1365-2966.2008.13510.x Estimating the redshift distribution of photometric galaxy samples Marcos Lima,1,2 Carlos E. Cunha,2,3 Hiroaki Oyaizu,2,3 Joshua Frieman,2,3,4 Huan Lin4 and Erin S. Sheldon5 1Department of Physics, University of Chicago, Chicago, IL 60637, USA 2Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA 3Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA 4Center for Particle Astrophysics, Fermi National Accelerator Laboratory, Batavia, IL 60510, USA 5Center for Cosmology and Particle Physics and Department of Physics, New York University, New York, NY 10003, USA Accepted 2008 May 29. Received 2008 May 20; in original form 2008 January 24 ABSTRACT We present an empirical method for estimating the underlying redshift distribution N(z)of galaxy photometric samples from photometric observables. The method does not rely on photometric redshift (photo-z) estimates for individual galaxies, which typically suffer from biases. Instead, it assigns weights to galaxies in a spectroscopic subsample such that the weighted distributions of photometric observables (e.g. multiband magnitudes) match the corresponding distributions for the photometric sample. The weights are estimated using a nearest neighbour technique that ensures stability in sparsely populated regions of colour– magnitude space. The derived weights are then summed in redshift bins to create the redshift distribution. We apply this weighting technique to data from the Sloan Digital Sky Survey as well as to mock catalogues for the Dark Energy Survey, and compare the results to those from the estimation of photo-zs derived by a neural network algorithm.
    [Show full text]
  • A Catalog of Mid-Infrared Sources in the Extended Groth Strip
    A catalog of mid-infrared sources in the Extended Groth Strip P. Barmby,1,2 J.-S. Huang,1 M.L.N. Ashby,1 P.R.M. Eisenhardt,3 G.G. Fazio,1 S.P. Willner,1 E.L. Wright4 ABSTRACT The Extended Groth Strip (EGS) is one of the premier fields for extragalactic deep surveys. Deep observations of the EGS with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope cover an area of 0.38 deg2 to a 50% completeness limit of 1.5 µJy at 3.6 µm. The catalog comprises 57434 objects detected at 3.6 µm, with 84%, 28%, and 24% also detected at 4.5, 5.8, and 8.0 µm. Number counts are consistent with results from other Spitzer surveys. Color distributions show that the EGS IRAC sources comprise a mixture of populations: low-redshift star-forming galaxies, quiescent galaxies dominated by stellar emission at a range of redshifts, and high redshift galaxies and AGN. Subject headings: infrared: galaxies — galaxies: high-redshift — surveys — catalogs 1. Introduction Observations of unbiased, flux-limited galaxy samples via ‘blank-field’ extragalactic sur- veys have been a mainstay in the field of galaxy formation and evolution for several decades, with the well-known Hubble Deep Field (Williams et al. 1996) and Sloan Digital Sky Survey (York et al. 2000) exemplifying two very different types of galaxy survey. Extending the wavelength coverage as broadly as possible has led to numerous changes in the understand- ing of how galaxies form, evolve, and interact over cosmic time. New technologies and larger telescopes continually increase the volume of discovery space, making some ‘state-of-the-art’ observations obsolete in just a few years.
    [Show full text]
  • 16Th HEAD Meeting Session Table of Contents
    16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113
    [Show full text]
  • Important Events in Chile
    No. 87 – March 1997 Important Events in Chile R. GIACCONI, Director General of ESO The political events foreseen in the December 1996 issue of The Messenger did take place in Chile in the early part of December 1996. On December 2, the Minister of Foreign Affairs of the Republic of Chile, Mr. Miguel Insulza, and the Director General of ESO, Professor Riccardo Giacconi, exchanged in Santiago Instruments of Ratification of the new “Interpretative, Supplementary and Amending Agreement” to the 1963 Convention between the Government of Chile and the European Southern Observatory. This agreement opens a new era of co-operation between Chilean and European Astronomers. On December 4, 1996, the “Foundation Ceremony” for the Paranal Observatory took place on Cerro Paranal, in the presence of the President of Chile, Mr. Eduardo Frei Ruiz-Tagle, the Royal couple of Sweden, King Carl XVI Gustaf and Queen Silvia, the Foreign Minister of the Republic of Chile, Mr. José Miguel Insulza, the Ambassadors of the Member States, members of the of the ESO Executive, ESO staff and the Paranal contractors’ workers. The approximately 250 guests heard addresses by Dr. Peter Creo- la, President of the ESO Council, Professor Riccardo Giacconi, Direc- tor General of ESO, Foreign Minis- ter José Miguel Insulza and Presi- dent Eduardo Frei Ruiz-Tagle. The original language version of the four addresses follows this introduction. (A translation in English of the Span- ish text is given on pages 58 and 59 in this issue of The Messenger.) A time capsule whose contents are described in Dr. Richard West's article was then deposited by Presi- dent Frei with the works being bless- ed by the Archbishop of Antofagas- ta, Monsignor Patricio Infante.
    [Show full text]
  • Hubble Space Telescope's
    Hubble Space Telescope’s Top Science Findings When Galileo used his homemade telescope 400 years ago to view mountains on the Moon, satellites cir- cling Jupiter, and a myriad of stars in our Milky Way Galaxy, he launched a revolution that changed our view of an Earth-cen- tered universe. The launch of NASA’s Hubble Space Telescope aboard the space shuttle Discovery 17 years ago initiated another revolution in astronomy. For the first time, a large telescope that sees in visible light be- gan orbiting above Earth’s distorting atmosphere, which blurs starlight and makes images appear fuzzy. Astronomers anticipated great discoveries from Hubble. The telescope has delivered as promised and continues serving up new discoveries. Astronomers and astrophysicists using Hubble data have published more than 4,000 scientific papers, on top- ics from the solar system to the very distant universe. The following list highlights some of Hubble’s greatest achievements. 2 Hubble Space Telescope’s Top Science Findings Shining a Light on Dark Matter Astronomers used Hubble to make the first three-dimensional map of dark matter, which is considered the construction scaffolding of the universe. Dark matter’s invisible gravity allows normal matter in the form of gas and dust to collect and build up into stars and galaxies. The Hubble telescope played a starring role in helping to shed light on dark matter, which is much more abundant than normal matter. Although astronomers cannot see dark matter, they can detect it in galaxy clusters by observ- ing how its gravity bends the light of more distant background galaxies, a phenomenon called gravitational lensing.
    [Show full text]
  • NASA-ATP09-Submitted
    Cover Page for Proposal NASA Proposal Number Submitted to the National Aeronautics and 09-ATP09-0189 Space Administration NASA PROCEDURE FOR HANDLING PROPOSALS This proposal shall be used and disclosed for evaluation purposes only, and a copy of this Government notice shall be applied to any reproduction or abstract thereof. Any authorized restrictive notices that the submitter places on this proposal shall also be strictly complied with. Disclosure of this proposal for any reason outside the Government evaluation purposes shall be made only to the extent authorized by the Government. SECTION I - Proposal Information Principal Investigator E-mail Address Phone Number Joel Primack [email protected] 831-459-2580 Street Address (1) Street Address (2) 1156 High St Physics Department City State / Province Postal Code Country Code Santa Cruz CA 95064-1077 US Proposal Title : Evolution of Structure and of the Cosmic Population of Galactic Spheroids Proposed Start Date Proposed End Date Total Budget Year 1 Budget Year 2 Budget Year 3 Budget Year 4 Budget 01 / 01 / 2010 12 / 31 / 2012 577090.00 168877.00 200832.00 207381.00 0.00 SECTION II - Application Information NASA Program Announcement Number NASA Program Announcement Title NNH09ZDA001N-ATP Astrophysics Theory For Consideration By NASA Organization (the soliciting organization, or the organization to which an unsolicited proposal is submitted) Astrophysics Date Submitted Submission Method Grants.gov Application Identifier Applicant Proposal Identifier 05 / 29 / 2009 Electronic Submission
    [Show full text]
  • Morphological Classification of Local Luminous Infrared Galaxies
    A&A 591, A1 (2016) Astronomy DOI: 10.1051/0004-6361/201628093 & c ESO 2016 Astrophysics Morphological classification of local luminous infrared galaxies A. Psychogyios1, V. Charmandaris1; 2, T. Diaz- Santos3, L. Armus4, S. Haan5, J. Howell6, E. Le Floc’h7, S. M. Petty8, and A. S. Evans9; 10 1 Department of Physics, University of Crete, 71003 Heraklion, Greece e-mail: [email protected] 2 IAASARS, National Observatory of Athens, 15236 Penteli, Greece 3 Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago, Chile 4 Spitzer Science Center, Calfornia Institute of Technology, MS 220-6, Pasadena, CA 91125, USA 5 CSIRO Astronomy and Space Science, ATNF, PO Box 76, Epping 1710, Australia 6 Infrared Processing and Analysis Center, California Institute of Technology, MS 100-22, Pasadena, CA 91125, USA 7 CEA Saclay, DSM/Irfu/Service d’Astrophysique, Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France 8 Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA 9 Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA 10 National Radio Astronomy Observatory, Charlottesville, VA 22903, USA Received 8 January 2016 / Accepted 22 February 2016 ABSTRACT We present analysis of the morphological classification of 89 luminous infrared galaxies (LIRGs) from the Great Observatories All-sky LIRG Survey (GOALS) sample, using non-parametric coefficients and compare their morphology as a function of wavelength. We rely on images that were obtained in the optical (B- and I-band) as well as in the infrared (H-band and 5.8 µm). Our classification is based on the calculation of Gini and the second order of light (M20) non-parametric coefficients, which we explore as a function of stellar mass (M?), infrared luminosity (LIR), and star formation rate (SFR).
    [Show full text]
  • The Evolution of Galaxy Mergers and Morphology at Z< 1.2 in The
    accepted to the Astrophysical Journal A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE EVOLUTION OF GALAXY MERGERS AND MORPHOLOGY AT Z < 1.2 IN THE EXTENDED GROTH STRIP Jennifer M. Lotz1,2, M. Davis3, S.M. Faber4, P. Guhathakurta4, S. Gwyn5, J. Huang6, D.C. Koo4, E. Le Floc’h7,8,9, Lihwai Lin4, J. Newman10, 11 K. Noeske4, C. Papovich9,12, C.N.A. Willmer12, A. Coil11, 12, C. J. Conselice13, M. Cooper3, A. M. Hopkins14, A. Metevier4, 15, J. Primack16, G. Rieke12, B. J. Weiner12 accepted to the Astrophysical Journal ABSTRACT We present the quantitative rest-frame B morphological evolution and galaxy merger fractions at 0.2 <z< 1.2 as observed by the All-wavelength Extended Groth Strip International Survey (AEGIS). We use the Gini coefficent and M20 to identify major mergers and classify galaxy morphology for a ∗ volume-limited sample of 3009 galaxies brighter than 0.4LB, assuming pure luminosity evolution of 1.3 MB per unit redshift. We find that the merger fraction remains roughly constant at 10 ± 2% for 0.2 <z< 1.2. The fraction of E/S0/Sa increases from 21 ± 3% at z ∼ 1.1 to 44 ± 9% at z ∼ 0.3, while the fraction of Sb-Ir decreases from 64 ± 6% at z ∼ 1.1 to 47 ± 9% at z ∼ 0.3. The majority of z < 1.2 11 Spitzer MIPS 24 µm sources with L(IR) > 10 L⊙ are disk galaxies, and only ∼ 15% are classified as major merger candidates. Edge-on and dusty disk galaxies (Sb-Ir) are almost a third of the red sequence at z ∼ 1.1, while E/S0/Sa make up over 90% of the red sequence at z ∼ 0.3.
    [Show full text]
  • An IRAF Package for the Quantitative Morphology Analysis of Distant Galaxies
    Astronomical Data Analysis Software and Systems VII ASP Conference Series, Vol. 145, 1998 R. Albrecht, R. N. Hook and H. A. Bushouse, eds. GIM2D: An IRAF package for the Quantitative Morphology Analysis of Distant Galaxies Luc Simard UCO/Lick Observatory, Kerr Hall, University of California, Santa Cruz, CA 95064, Email: [email protected] Abstract. This paper describes the capabilities of GIM2D, an IRAF package for the quantitative morphology analysis of distant galaxies. GIM2D automatically decomposes all the objects on an input image as the sum of a S´ersic profile and an exponential profile. Each decompo- sition is then subtracted from the input image, and the results are a “galaxy-free” image and a catalog of quantitative structural parameters. The heart of GIM2D is the Metropolis Algorithm which is used to find the best parameter values and their confidence intervals through Monte- Carlo sampling of the likelihood function. GIM2D has been successfully used on a wide range of datasets: the Hubble Deep Field, distant galaxy clusters and compact narrow-emission line galaxies. 1. Introduction GIM2D (Galaxy IMage 2D) is an IRAF package written to perform detailed bulge/disk decompositions of low signal-to-noise images of distant galaxies. GIM2D consists of 14 tasks which can be used to fit 2D galaxy profiles, build residual images, simulate realistic galaxies, and determine multidimensional galaxy selection functions. This paper gives an overview of GIM2D capabili- ties. 2. Image Modelling The first component (“bulge”) of the 2D surface brightness used by GIM2D to model galaxy images is a S´ersic (1968) profile of the form: Σ(r)=Σexp b[(r/r )1=n 1] (1) e {− e − } where Σ(r) is the surface brightness at r.
    [Show full text]
  • A Catalog of Mid-Infrared Sources in the Extended Groth Strip
    A catalog of mid-infrared sources in the Extended Groth Strip P. Barmby,1;2 J.-S. Huang,1 M.L.N. Ashby,1 P.R.M. Eisenhardt,3 G.G. Fazio,1 S.P. Willner,1 E.L. Wright4 ABSTRACT The Extended Groth Strip (EGS) is one of the premier ¯elds for extragalac- tic deep surveys. Deep observations of the EGS with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope detect 30174 objects at 3.6 ¹m to an 80% completeness limit of 3.0 ¹Jy in an area of 0.38 deg2. Of these, 91%, 41%, and 32% are also detected to the 80% completeness limits at 4.5, 5.8, and 8.0 ¹m. Number counts are consistent with results from other Spitzer surveys. Color distributions show that the EGS IRAC sources comprise a mixture of popula- tions: low-redshift star-forming galaxies, quiescent galaxies dominated by stellar emission at a range of redshifts, and high redshift galaxies and AGN. Subject headings: infrared: galaxies | galaxies: high-redshift | surveys | catalogs 1. Introduction Observations of unbiased, flux-limited galaxy samples via `blank-¯eld' extragalactic sur- veys have been a mainstay in the ¯eld of galaxy formation and evolution for several decades, with the well-known Hubble Deep Field (Williams et al. 1996) and Sloan Digital Sky Survey (York et al. 2000) exemplifying two very di®erent types of galaxy survey. Extending the wavelength coverage as broadly as possible has led to numerous changes in the understand- ing of how galaxies form, evolve, and interact over cosmic time.
    [Show full text]
  • Future of Hubble Data NASA Award for ST-ECF Staff Finding Solar
    ST-ECF December 2006 NEWSLETTER 41 Future of Hubble Data Finding Solar System Bodies NASA Award for ST-ECF Staff NNL41_15.inddL41_15.indd 1 113/12/20063/12/2006 110:54:450:54:45 HUBBLE’S BEQUEST TO ASTRONOMY Robert Fosbury & Lars Lindberg Christensen Although the Hubble Space Telescope is currently in its 17th year of operation, it is not yet time for its obituary. Far from it: Hubble has been granted a new lease of life with the recent announcement by Michael Griffi n, NASA’s Chief Administrator, that Servicing Mission 4 (SM4) is scheduled for 2008. The purpose of this article is to refl ect a little on what Hubble has already achieved and, rather more importantly, to remind ourselves what still needs to be done to ensure that the full legacy of this great project can be properly realised. Following musings on the advantages of a telescope in space by lesson from Hubble, however, is that the ability to maintain and refi t Hermann Oberth in the 1920s and by Lyman Spitzer in the 1940s, an observatory in space can multiply its scientifi c productivity and serious studies of a “Large Space Telescope” were started by NASA effective lifetime by large factors. Were it not for the success of Ser- in 1974. In 1976 NASA formed a partnership with ESA to carry to vicing Mission 1, the HST would still be regarded as the embarrassing low Earth orbit a large optical/ultraviolet telescope on the Space disaster it nearly became when spherical aberration was discovered Shut tle.
    [Show full text]
  • Hydrogen 21-Cm Intensity Mapping at Redshift
    Hydrogen 21-cm Intensity Mapping at redshift 0.8 Tzu-Ching Chang1,2, Ue-Li Pen2, Kevin Bandura3, & Jeffrey B. Peterson3 1IAA, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan 2CITA, University of Toronto, 60 St.George St., Toronto, ON, M5S 3H8, Canada 3Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA Observations of 21-cm radio emission by neutral hydrogen at redshifts z ∼ 0.5 to ∼ 2.5 are expected to provide a sensitive probe of cosmic dark energy 1 2. This is particularly true around the onset of acceleration at z ∼ 1, where traditional optical cosmology becomes very difficult because of the infrared opacity of the atmosphere. Hitherto, 21-cm emission has been detected only to z=0.24 3. More distant galaxies generally are too faint for individual detections but it is possible to measure the aggregate emission from many unresolved galaxies in the ’cosmic web’. Here we report a three dimensional 21-cm intensity field at z=0.53 to 1.12. We then co-add HI emission from the volumes surrounding about ten thousand galaxies arXiv:1007.3709v1 [astro-ph.CO] 21 Jul 2010 (from the DEEP2 optical galaxy redshift survey 4). We detect the aggregate 21-cm glow at a significance of ∼ 4 sigma. The DEEP2 optical redshift survey 4 provides a rich sample for study of the Universe at redshifts near one. The team recorded optical spectra for 50,000 faint galaxies out to redshift z =1.4, utilizing the DEIMOS spectrograph on the Keck II telescope.
    [Show full text]