Overcoming Resistance to Third-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in Non-Small Cell Lung Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Overcoming Resistance to Third-Generation Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in Non-Small Cell Lung Cancer 1190 Editorial Overcoming resistance to third-generation epidermal growth factor receptor tyrosine kinase inhibitor in non-small cell lung cancer Shoko Noda-Narita, Shintaro Kanda Department of Thoracic Oncology, National Cancer Center Hospital, Chuo-ku, Tokyo Correspondence to: Shintaro Kanda, MD. Department of Thoracic Oncology, National Cancer Center Hospital, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104- 0045, Japan. Email: [email protected]. Comment on: Uchibori K, Inase N, Araki M, et al. Brigatinib combined with anti-EGFR antibody overcomes osimertinib resistance in EGFR-mutated non-small-cell lung cancer. Nat Commun 2017;8:14768. Submitted Aug 31, 2017. Accepted for publication Sep 04, 2017. doi: 10.21037/tcr.2017.09.04 View this article at: http://dx.doi.org/10.21037/tcr.2017.09.04 In the treatment of non-small cell lung cancers (NSCLCs) in vivo studies (1,2). Based on the results of a phase 3 trial, with epidermal growth factor receptor (EGFR) mutations, which showed a response rate (RR) of approximately 71%, and EGFR-tyrosine kinase inhibitor (EGFR-TKI) is a key drug a progression-free survival (PFS) period of 10.1 months (3), that can prolong the survival of patients. However, resistance osimertinib obtained FDA and EMA approval for the treatment to EGFR-TKIs has become a new problem that must be of T790M-positive EGFR mutant NSCLC. solved. All patients with NSCLCs with an EGFR mutation However, third-generation EGFR-TKIs have also who have been treated with first- and second-generation created the next problem: acquired resistance to themselves. EGFR-TKIs eventually exhibit disease progression, even if In this article, we would like to describe this problem they have had a long period of response to the EGFR-TKI in detail and to discuss the promising strategies that are treatment. To overcome this resistance, various mechanisms now being investigated by many researchers, focusing on for the acquisition of the resistance to first- and second- brigatinib, an ALK inhibitor that shows activity toward generation EGFR-TKIs have been identified, including osimertinib-resistant EGFR mutant tumor cells. second site mutation in EGFR, bypass mechanism of other pathways (such as MET amplification, PIK3CA mutation, and Mechanisms of resistance to third-generation BRAF mutation), and transformation to small cell lung cancer. EGFR-TKIs T790M second site mutation is the most frequently detected mechanism in recurrent EGFR mutant NSCLCs after first- Tumors with double mutations consisting of T790M and line EGFR-TKI treatment. This second site mutation is a driver mutation that are treated with a third-generation substitution of threonine to methionine at the 790 site of EGFR-TKI eventually exhibit disease progression, even exon 20, leading structural change in the ATP binding site though they initially responded to the TKI. The mechanism of EGFR. T790M is called a “gate-keeper mutation” and is responsible for this resistance to third-generation EGFR- responsible for approximately 60% of acquired resistance to TKIs is now being investigated, and several mechanisms first- and second-generation EGFR-TKIs. that are similar to the resistance to first- and second- To overcome this most frequent mechanism of resistance, generation EGFR-TKIs conferred by the T790M mutation third-generation EGFR-TKIs have been investigated, and some have been found. The study of cell-free DNA in the AURA of these compounds have now fully conquered this problem. trial detected a C797S substitution in 6 out of 15 specimens Osimertinib, CO-1686 (rociletinib), HM61713 (olmutinib), from AZD9291 (osimertinib)-resistant patients and the loss and other third-generation EGFR-TKIs (EGF816, ASP8273) of the T790M mutation in 4 of the other specimens (4). selectively bind to the ATP binding site of T790M mutant Similar data were reported in an in vitro study investigating EGFR, and their efficacy has been shown in both in vitro and third-generation EGFR-TKI-resistant cell lines (5). © Translational Cancer Research. All rights reserved. tcr.amegroups.com Transl Cancer Res 2017;6(Suppl 7):S1187-S1190 S1188 Noda-Narita and Kanda. Overcoming resistance to 3rd generation EGFR-TKI in NSCLC The study detected 3 major acquired mutations (L718Q, not only ALK, but also other kinases, such as ROS1 and L844, and C797S) that occurred during treatment with FLT3 (8). Brigatinib is also known to show modest activity WZ4002, CO-1686, and AZD9291, although only the toward T790M mutant EGFR, and both in vitro and in vivo C797S mutation led to AZD9291 resistance. Other than data have shown the inhibition of T790M mutant tumor these EGFR point substitutions, HER2 amplification, cMET cells when brigatinib is administered at doses similar to those amplification, and other mechanisms were also detected active against ALK-rearranged NSCLC cells. In s phase 1/2 in osimertinib-resistant tumors (6). As osimertinib is now trial of brigatinib, patients with EGFR mutant NSCLCs used in clinical practice, the mechanisms of resistance are were enrolled, and a limited efficacy was demonstrated expected to become much more heterogeneous. in these patients (9). In this trial, 42 patients with EGFR Similar to the situation surrounding the acquisition of mutant NSCLCs, 39 (93%) of who had previously received the T790M mutation after first- and second-generation first-generation EGFR-TKIs, were enrolled in the phase 1 EGFR-TKI treatment, a strategy to overcome the cohort. Twenty-two of these patients (52%) had a T790M resistance conferred by the C797S mutation, which is mutation. Among the 42 patients, the response to treatment thought to be the most frequently acquired mechanism was assessed in 36 patients, with 2 patients (5.6%) exhibiting of resistance to third-generation EGFR-TKI treatment, a partial response and 14 patients (38.9%) exhibiting stable is now attracting our concerns. The cysteine residue at disease. This RR of 5.6% is quite small, compared with the the 797 site of the ATP binding pocket of EGFR forms a RR of 72% for patients with ALK-rearranged NSCLCs, covalent bond with third-generation EGFR-TKIs, and the even though half of the patients had EGFR mutant NSCLCs substitution of cysteine to serine at the 797 site obstructs that might have had mechanisms of resistance other than the bonding, resulting in resistance to those TKIs. To the T790M mutation. However, this data does confirm the overcome this mechanism of resistance, an EGFR allosteric limited efficacy of brigatinib against EGFR mutant NSCLCs. inhibitor (EAI)-045, which binds to an allosteric pocket of the EGFR structure, has been discovered and the efficacy of Efficacy of brigatinib against C797S triple this inhibitor against C797S/T790M/L858R triple mutant mutation in a preclinical study NSCLC cells when administered in combination with cetuximab has been shown (7). However, the inhibitor was Regarding the problem that EAI-045 is not effective against not effective against C797S/T790M/del19 triple mutant C797S/T790M/del19 triple mutant NSCLC cells, Uchibori NSCLC cells, since C797S/T790M/del19 triple mutant et al. screened 30 drugs to identify agents with activity EGFR has a different structure at the allosteric pocket against C797S/T790M/del19 triple mutant NSCLC cells from that of C797S/T790M/L858R triple mutant EGFR. and discovered that brigatinib, an ALK inhibitor, exhibited A “fourth-generation EGFR-TKI” that is effective against such activity. Though brigatinib was already known to have both C797S/T790M/L858R and C797S/T790M/del19 some efficacy against T790M double mutant NSCLCs, as triple mutant NSCLCs has not yet been discovered, and described above, this was the first report to indicate that further investigation is expected. brigatinib is also active against C797S/T790M/del19 triple mutant NSCLC cells, as well as T790M/del19 double Brigatinib, an ALK inhibitor harboring some mutant NSCLC cells. In the in vitro part of this study, brigatinib showed its activity toward T790M mutant EGFR activity against C797S/T790M/del19 triple mutant NSCLC Brigatinib was first investigated as an ALK inhibitor and is cells, and the growth of C797S/T790M/del19 triple mutant effective against ALK-rearranged NSCLCs that are resistant xenograft tumors in nude mice was also inhibited by to the ALK-TKI, crizotinib (8). This compound exhibited brigatinib. Furthermore, an in silico simulation showed that selectivity for the L1196M substitution in translocated brigatinib binds to the ATP binding pocket of C797S triple ALK, which is known to be a frequent mechanism of mutant EGFR. This result is interesting in that brigatinib resistance to crizotinib, in an in vitro study, and phase is the first TKI to be reported to bind to the ATP binding 1/2 trials have shown a relatively high RR of 50–70% for pocket of C797S triple mutant EGFR and to exert activity patients with ALK-rearranged NSCLC (9). A randomized against both C797S/T790M/del19 triple mutant NSCLC phase 2 trial targeting ALK-rearranged NSCLCs previously cells and C797S/T790M/L858R triple mutant cells. Thus, treated with crizotinib is presently ongoing. brigatinib might be a promising TKI for overcoming the In vitro studies of brigatinib have shown activity against resistance conferred by the C797S mutation, potentially © Translational Cancer Research. All rights reserved. tcr.amegroups.com Transl Cancer Res 2017;6(Suppl 7):S1187-S1190 Translational Cancer Research, Vol 6, Suppl 7 October 2017 S1189 enabling it to be called a “fourth-generation EGFR-TKI”. studies. The phase 1b trial of this combination regimen, However, the activity of brigatinib against C797S/ which enrolled patients who had been previously treated T790M/L858R triple mutation could not be confirmed with first-generation EGFR-TKI, reported a RR of in this preclinical in vitro study. Brigatinib was effective 32% and of 25% against T790M-positive and T790M- against C797S/T790M/L858R triple mutant cell lines to negative NSCLCs, respectively (11).
Recommended publications
  • YH25448, an Irreversible EGFR-TKI with Potent Intracranial Activity in EGFR Mutant Non-Small- Cell Lung Cancer
    Author Manuscript Published OnlineFirst on January 22, 2019; DOI: 10.1158/1078-0432.CCR-18-2906 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. YH25448, an irreversible EGFR-TKI with Potent Intracranial Activity in EGFR mutant non-small- cell lung cancer Jiyeon Yun1*, Min Hee Hong1,2*, Seok-Young Kim1, Chae-Won Park1, Soyoung Kim1, Mi Ran Yun1,3, Han Na Kang1,3, Kyoung-Ho Pyo1, Sung Sook Lee4, Jong Sung Koh5, Ho-Juhn Song5, Dong Kyun Kim6, Young-Sung Lee6, Se-Woong Oh6, Soongyu Choi6, Hye Ryun Kim1,2#, and Byoung Chul Cho1,2,3# 1Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. 2Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea. 3JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea. 4Department of Hematology-Oncology Inje University Haeundae Paik Hospital, Busan, Korea, 5Genosco Inc., Cambridge, MA. 6Yuhan R&D Institute, Yuhan Corporation, Seoul, Korea * These authors contributed equally to this work and should be considered co-first authors # These authors contributed equally to this work and should be considered co-corresponding authors Corresponding Author: Byoung Chul Cho, Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea. Phone: 82-2-2228-8126; Fax: 82-2-393-3562; E-mail: [email protected]; Hye Ryun Kim, M.D., Ph.D. Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea.
    [Show full text]
  • EGFR Mutant-Specific Inhibitor, in T790M+ NSCLC: #378 Efficacy and Safety at the RP2D
    Olmutinib (BI 1482694; HM61713), an EGFR mutant-specific inhibitor, in T790M+ NSCLC: #378 efficacy and safety at the RP2D Keunchil Park,1* Jong-Seok Lee,2 Ki Hyeong Lee,3 Joo-Hang Kim,4 Byoung Chul Cho,5 Young Joo Min,6 Jae Yong Cho,7 Ji-Youn Han,8 Bong-Seog Kim,9 Jin-Soo Kim,10 Dae Ho Lee,11 Jin Hyoung Kang,12 Eun Kyung Cho,13 Hoon-Gu Kim,14 Kyung Hee Lee,15 Hoon Kyo Kim,16 In-Jin Jang,17 Hyo-Yeon Kim,18 Jeewoong Son,18 Dong-Wan Kim17 1Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; 2Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; 3Chungbuk National University Hospital, Cheongju, North Chungcheong, South Korea; 4CHA Bundang Medical Center, CHA University, Gyeonggi-Do, South Korea; 5Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea; 6Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea; 7Gangnam Severance Hospital, Seoul, South Korea; 8Center for Lung Cancer, National Cancer Center, Goyang, South Korea; 9VHS Medical Center, Seoul, South Korea; 10Seoul National University, Boramae Medical Center, Seoul, South Korea; 11Asan Medical Center, Seoul, South Korea; 12Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; 13Gachon University Gil Medical Center, Incheon, South Korea; 14Gyeongsang National University Hospital, Jinju, South Gyeongsang, South Korea; 15Yeungnam University Medical Center, Gyeonsan, North Gyeongsang, South Korea; 16St. Vincent's Hospital, Suwon, South Korea; 17Seoul National University Hospital, Seoul, South Korea; 18Hanmi Pharmaceutical Co., Ltd., Seoul, South Korea INTRODUCTION RESULTS Table 2.
    [Show full text]
  • Structural Insights Into Characterizing Binding Sites in EGFR Kinase Mutants
    Structural insights into characterizing binding sites in EGFR kinase mutants Zheng Zhao1, Lei Xie2,3 and Philip E. Bourne*,1,4 1. Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States of America 2. Department of Computer Science, Hunter College, The City University of New York, New York, New York 10065, United States of America 3.The Graduate Center, The City University of New York, New York, New York 10016, United States of America 4. Data Science Institute, University of Virginia, Charlottesville, Virginia 22904, United States of America *Corresponding author Philip E. Bourne: phone, (434) 924-6867; e-mail, [email protected] 1 Abstract Over the last two decades epidermal growth factor receptor (EGFR) kinase has become an important target to treat non-small cell lung cancer (NSCLC). Currently, three generations of EGFR kinase-targeted small molecule drugs have been FDA approved. They nominally produce a response at the start of treatment and lead to a substantial survival benefit for patients. However, long-term treatment results in acquired drug resistance and further vulnerability to NSCLC. Therefore, novel EGFR kinase inhibitors that specially overcome acquired mutations are urgently needed. To this end, we carried out a comprehensive study of different EGFR kinase mutants using a structural systems pharmacology strategy. Our analysis shows that both wild-type and mutated structures exhibit multiple conformational states that have not been observed in solved crystal structures. We show that this conformational flexibility accommodates diverse types of ligands with multiple types of binding modes. These results provide insights for designing a new- generation of EGFR kinase inhibitor that combats acquired drug-resistant mutations through a multi-conformation-based drug design strategy.
    [Show full text]
  • Receptor Tyrosine Kinase-Targeted Cancer Therapy
    International Journal of Molecular Sciences Review Receptor Tyrosine Kinase-Targeted Cancer Therapy Toshimitsu Yamaoka 1,* , Sojiro Kusumoto 2, Koichi Ando 2, Motoi Ohba 1 and Tohru Ohmori 2 1 Advanced Cancer Translational Research Institute (Formerly, Institute of Molecular Oncology), Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; [email protected] 2 Division of Allergology and Respiratory Medicine, Department of Medicine, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; [email protected] (S.K.); [email protected] (K.A.); [email protected] (T.O.) * Correspondence: [email protected]; Tel.: +81-3-3784-8146 Received: 25 September 2018; Accepted: 2 November 2018; Published: 6 November 2018 Abstract: In the past two decades, several molecular targeted inhibitors have been developed and evaluated clinically to improve the survival of patients with cancer. Molecular targeted inhibitors inhibit the activities of pathogenic tyrosine kinases. Particularly, aberrant receptor tyrosine kinase (RTK) activation is a potential therapeutic target. An increased understanding of genetics, cellular biology and structural biology has led to the development of numerous important therapeutics. Pathogenic RTK mutations, deletions, translocations and amplification/over-expressions have been identified and are currently being examined for their roles in cancers. Therapies targeting RTKs are categorized as small-molecule inhibitors and monoclonal antibodies. Studies are underway to explore abnormalities in 20 types of RTK subfamilies in patients with cancer or other diseases. In this review, we describe representative RTKs important for developing cancer therapeutics and predicting or evaluated resistance mechanisms.
    [Show full text]
  • Osimertinib in EGFR T790M Mutation–Positive Non–Small Cell Lung Cancer Ferdinandos Skoulidis and Vassiliki A
    Published OnlineFirst November 7, 2016; DOI: 10.1158/1078-0432.CCR-15-2815 CCR Drug Updates Clinical Cancer Research Targeting the Gatekeeper: Osimertinib in EGFR T790M Mutation–Positive Non–Small Cell Lung Cancer Ferdinandos Skoulidis and Vassiliki A. Papadimitrakopoulou Abstract In 2015, the FDA approved an unprecedented number of new patients with metastatic EGFR T790M mutation–positive NSCLC, therapies for non–small cell lung cancer (NSCLC), among them as detected by an FDA-approved test, who have progressed on or therapies addressing specific genomic tumor subsets in the setting after EGFR tyrosine kinase inhibitor therapy. It received break- of development of resistance to first-line targeted therapy. Osimer- through therapy designation, priority review status, and accelerated tinib (Tagrisso, formerly AZD9291; AstraZeneca) is indicated for approval from the FDA. Clin Cancer Res; 23(3); 618–22. Ó2016 AACR. Introduction clinical doses required to effectively inhibit T790M in vivo. In a phase Ib clinical trial, afatinib in combination with the chimeric The treatment of non–small cell lung cancer (NSCLC) bearing monoclonal anti-EGFR antibody cetuximab in patients with activating mutations in EGFR with EGFR tyrosine kinase inhibi- acquired resistance to erlotinib or gefitinib resulted in a meaning- tors (TKI) represents a paradigm of science-driven personalized ful 32% objective response rate [ORR; 95% confidence interval cancer therapy. For patients bearing EGFR TKI–sensitizing muta- (CI), 21.8–44.5] and 4.6-month median progression-free survival tions, most commonly in-frame microdeletions in exon 19 (PFS) in EGFR T790-mutant patients, but it was associated with a (Ex19del) and point mutations in exon 21 (leading to L858R or 46% rate of grade 3/4 adverse events, mostly rash and diarrhea L861Q amino acid substitutions) or exon 18 (G719X), treatment (11).
    [Show full text]
  • Kinase Drug Discovery 20 Years After Imatinib: Progress and Future Directions
    REVIEWS Kinase drug discovery 20 years after imatinib: progress and future directions Philip Cohen 1 ✉ , Darren Cross 2 ✉ and Pasi A. Jänne 3 ✉ Abstract | Protein kinases regulate nearly all aspects of cell life, and alterations in their expression, or mutations in their genes, cause cancer and other diseases. Here, we review the remarkable progress made over the past 20 years in improving the potency and specificity of small-molecule inhibitors of protein and lipid kinases, resulting in the approval of more than 70 new drugs since imatinib was approved in 2001. These compounds have had a significant impact on the way in which we now treat cancers and non- cancerous conditions. We discuss how the challenge of drug resistance to kinase inhibitors is being met and the future of kinase drug discovery. Protein kinases In 2001, the first kinase inhibitor, imatinib, received FDA entered clinical trials in 1998, changed the perception Enzymes that catalyse transfer approval, providing the catalyst for an article with the of protein kinases as drug targets, which had previously of the γ- phosphate of ATP provocative title ‘Protein kinases — the major drug tar- received scepticism from many pharmaceutical com- to amino acid side chains in gets of the twenty- first century?’1. Imatinib inhibits the panies. Since then, hundreds of protein kinase inhibi- substrate proteins, such as serine, threonine and tyrosine Abelson (ABL) tyrosine kinase, which is expressed as a tors have been developed and tested in humans and, at residues. deregulated fusion protein, termed BCR–ABL, in nearly the time of writing, 76 have been approved for clinical all cases of chronic myeloid leukaemia (CML)2 and is use, mainly for the treatment of various cancers (FiG.
    [Show full text]
  • Novel Third-Generation EGFR Tyrosine Kinase Inhibitors And
    Published OnlineFirst February 4, 2019; DOI: 10.1158/0008-5472.CAN-18-1281 Cancer Review Research Novel Third-Generation EGFR Tyrosine Kinase Inhibitors and Strategies to Overcome Therapeutic Resistance in Lung Cancer Ayesha Murtuza, Ajaz Bulbul, John Paul Shen, Parissa Keshavarzian, Brian D. Woodward, Fernando J. Lopez-Diaz, Scott M. Lippman, and Hatim Husain Abstract EGFR-activating mutations are observed in approximately (PF-0647775), and AC0010. However, therapeutic resistance 15% to 20% of patients with non–small cell lung cancer. after the administration of third-generation inhibitors is com- Tyrosine kinase inhibitors have provided an illustrative exam- plex and not fully understood, with significant intertumoral ple of the successes in targeting oncogene addiction in cancer and intratumoral heterogeneity. Repeat tissue and plasma and the role of tumor-specific adaptations conferring thera- analyses on therapy have revealed insights into multiple peutic resistance. The compound osimertinib is a third- mechanisms of resistance, including novel second site generation tyrosine kinase inhibitor, which was granted full EGFR mutations, activated bypass pathways such as MET FDA approval in March 2017 based on targeting EGFR T790M amplification, HER2 amplification, RAS mutations, BRAF resistance. The compound has received additional FDA mutations, PIK3CA mutations, and novel fusion events. approval as first-line therapy with improvement in progres- Strategies to understand and predict patterns of mutagenesis sion-free survival by suppressing the activating mutation are still in their infancy; however, technologies to under- and preventing the rise of the dominant resistance clone. stand synthetically lethal dependencies and track cancer Drug development has been breathtaking in this space with evolution through therapy are being explored.
    [Show full text]
  • B1218-5,25 Olmutinib
    BioVision 010/16 RELATED PRODUCTS: PRODUCT: Olmutinib A 83-01 (Cat. No. 1725-1) ABT-869 (Cat. No. 1615-1,5) ALTERNATE NAME: N-(3-((2-((4-(4-methylpiperazin-1-yl)phenyl)amino)thieno[3,2- Axitinib (Cat. No. 1581-5, 25) d]pyrimidin-4-yl)oxy)phenyl)acrylamide; HM61713; BI1482694 BIBW2992 (Cat. No. 1616-1,5) BMS-599626 (Cat. No. 1614-1,5) CATALOG #: B1218-5,25 Bosutinib (Cat. No. 1584-5, 25) Canertinib (Cat. No. 1617-5) AMOUNT: 5 mg, 25 mg Cediranib (Cat. No. 1613-1,5) CP-690550 (Cat. No. 1622-5,25) Dasatinib (Cat. No. 1586-25, 100) STRUCTURE: Emodin (Cat. No. 1875-25, 100) Enzastaurin (LY317615) (Cat. No. 1619-1,5) Erlotinib, Hydrochloride Salt (Cat. No. 1588-100,1000) EZSolution™ Staurosporine (Cat. No. 1745-01) Gefitinib (Cat. No. 1589-5,25) MOLECULAR FORMULA: C26H26N6O2S Genistein (Cat. No. 1533-10, 100) Go 6976 (Cat. No. 1711-500) MOLECULAR WEIGHT: 486.59 Imatinib Mesylate (Cat. No. 1625-100, 1000) Lapatinib Ditosylate (Cat. No. 1624-25,100) CAS NUMBER: 1353550-13-6 Nilotinib (Cat. No. 1750-25, 100) Olmutinib (Cat. No. B1218-5,25) PD 153035, Hydrochloride (Cat. No. 1656-2) APPEARANCE: Pale yellow solid PD173074 (Cat. No. 1675-1) SOLUBILITY: DMSO (>40 mg/ml) Saracatinib (Cat. No. 1582-5, 25) SB-431542 (Cat. No. 1674-1) PURITY: 98% by HPLC Sorafenib (Cat. No. 1594-5, 25) Staurosporine (Cat. No. 1048-01,1) Tamoxifen Citrate (Cat. No. 1551-1000) STORAGE: Store at -20℃. Protect from air and light. SU 1498 (Cat. No. 1836-1,5) SU-5402 (Cat.
    [Show full text]
  • Dabrafenib in Patients with BRAF-Mutated Non-Small Cell Lung Cancer
    Commentary Dabrafenib in patients with BRAF-mutated non-small cell lung cancer Takahisa Kawamura, Haruyasu Murakami Division of Thoracic Oncology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan Correspondence to: Haruyasu Murakami, MD, PhD. Division of Thoracic Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka 411-8777, Japan. Email: [email protected]. Comment on: Planchard D, Kim TM, Mazieres J, et al. Dabrafenib in patients with BRAF(V600E)-positive advanced non-small-cell lung cancer: a single- arm, multicentre, open-label, phase 2 trial. Lancet Oncol 2016;17:642-50. Submitted Jun 30, 2016. Accepted for publication Jul 14, 2016. doi: 10.21037/tcr.2016.07.41 View this article at: http://dx.doi.org/10.21037/tcr.2016.07.41 Lung cancer is the leading cause of cancer death worldwide phase III trials (2,3). Dabrafenib significantly improved and non-small cell lung cancer (NSCLC) accounts for more progression-free survival compared with dacarbazine, and than 85% of all cases of lung cancer. Molecular targeted dabrafenib plus trametinib, as compared with dabrafenib drugs, which specifically inhibit a particular molecular plus placebo, significantly improved overall survival in target, have been developed actively and have contributed patients with BRAF-mutated melanoma. BRAF mutation to improved outcomes of advanced NSCLC patients. is a targetable oncogene in melanoma, but not in all non- Epidermal growth factor receptor (EGFR) tyrosine kinase melanoma cancers. The therapeutic efficacy of vemurafenib, inhibitors (TKIs) (e.g., gefitinib, erlotinib, icotinib, afatinib, an adenosine triphosphate-competitive BRAF inhibitor, in olmutinib and osimertinib) and anaplastic lymphoma BRAF-mutated colorectal cancer was disappointing (4).
    [Show full text]
  • Investigation of the Metabolic Stability of Olmutinib by Validated LC-MS/MS: Quantification in Human Cite This: RSC Adv.,2018,8,40387 Plasma
    RSC Advances View Article Online PAPER View Journal | View Issue Investigation of the metabolic stability of olmutinib by validated LC-MS/MS: quantification in human Cite this: RSC Adv.,2018,8,40387 plasma Mohamed W. Attwa, a Adnan A. Kadi,a Hany W. Darwish*ab and Ali S. Abdelhameeda Olmutinib (OTB, Olita™) is an orally available third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR TKI). It was developed by Boehringer Ingelheim and Hanmi Pharmaceutical Co. Ltd for the cure of non-small cell lung cancer (NSCLC). In May 2016, OTB was approved in South Korea for the treatment of patients suffering from metastatic or locally advanced EGFR T790M mutation-positive NSCLC. A LC-MS/MS methodology was validated for OTB quantification in human plasma. An extended application for this validated LC-MS/MS is OTB metabolic stability evaluation. Chromatographic separation of OTB and ponatinib (PNT, IS) was attained using a reversed phase with isocratic elution. The linearity of the developed LC-MS/MS method ranged from 5.00 to 500.00 ng mLÀ1 with r2 $ 0.9999 in À1 Creative Commons Attribution 3.0 Unported Licence. human plasma. LOD and LOQ were 1.12 and 3.39 ng mL , respectively. The intra-day and inter-day Received 2nd October 2018 precision and accuracy were 1.17 to 2.75% and 97.86 to 101.48%, respectively. The intrinsic clearance Accepted 15th November 2018 À1 À1 (CLint) was 2.71 mL min kg and the in vitro half-life (t1/2) was 48.80 min. A review of the literature DOI: 10.1039/c8ra08161a revealed that there are no previous articles about the quantification of OTB in human plasma using LC- rsc.li/rsc-advances MS/MS or its metabolic stability assessment.
    [Show full text]
  • Patient-Derived Cells to Guide Targeted Therapy for Advanced
    www.nature.com/scientificreports OPEN Patient-Derived Cells to Guide Targeted Therapy for Advanced Lung Adenocarcinoma Seok-Young Kim1,2, Ji Yeon Lee2, Dong Hwi Kim1,2, Hyeong -Seok Joo1,2, Mi Ran Yun1,2, Dongmin Jung3, Jiyeon Yun2, Seong Gu Heo2, Beung -Chul Ahn2, Chae Won Park2, Kyoung Ho Pyo2, You Jin Chun2, Min Hee Hong 2, Hye Ryun Kim 2* & Byoung Chul Cho2* Adequate preclinical model and model establishment procedure are required to accelerate translational research in lung cancer. We streamlined a protocol for establishing patient-derived cells (PDC) and identifed efective targeted therapies and novel resistance mechanisms using PDCs. We generated 23 PDCs from 96 malignant efusions of 77 patients with advanced lung adenocarcinoma. Clinical and experimental factors were reviewed to identify determinants for PDC establishment. PDCs were characterized by driver mutations and in vitro sensitivity to targeted therapies. Seven PDCs were analyzed by whole-exome sequencing. PDCs were established at a success rate of 24.0%. Utilizing cytological diagnosis and tumor colony formation can improve the success rate upto 48.8%. In vitro response to a tyrosine kinase inhibitor (TKI) in PDC refected patient treatment response and contributed to identifying efective therapies. Combination of dabrafenib and trametinib was potent against a rare BRAF K601E mutation. Afatinib was the most potent EGFR-TKI against uncommon EGFR mutations including L861Q, G719C/S768I, and D770_N771insG. Aurora kinase A (AURKA) was identifed as a novel resistance mechanism to olmutinib, a mutant-selective, third-generation EGFR-TKI, and inhibition of AURKA overcame the resistance. We presented an efcient protocol for establishing PDCs.
    [Show full text]
  • Olmutinib Induced Lichen Planus Like Eruption Pissn 1013-9087ㆍeissn 2005-3894 Ann Dermatol Vol
    Olmutinib Induced Lichen Planus Like Eruption pISSN 1013-9087ㆍeISSN 2005-3894 Ann Dermatol Vol. 30, No. 4, 2018 https://doi.org/10.5021/ad.2018.30.4.451 CASE REPORT Olmutinib Induced Lichen Planus Like Eruption Seung Hwan Oh, Hyun Jeong Byun, Se Jin Oh, Ji-Young Jun, Ji-Hye Park, Jong Hee Lee, Dong-Youn Lee, Joo-Heung Lee, Jun-Mo Yang Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea Drug induced lichen planus like eruption is an uncommon INTRODUCTION cutaneous adverse effect of several drugs. This appears sym- metric eruption of erythematous or violaceous plaques re- Olmutinib is an oral, third-generation epidermal growth sembling lichen planus on the trunk and extremities. A factor receptor-tyrosine kinase inhibitor (EGFR-TKI) for lo- 50-year-old male presented with scaly, violaceous plaques cally advanced or metastatic EGFR T790M mutation-pos- and dusky brown macules on whole body. For four months, itive non-small cell lung cancer. This received its first the patient was treated with olmutinib, an oral, third-gen- global approval in South Korea in May 20161. We present eration epidermal growth factor receptor-tyrosine kinase a case of lichen planus (LP) like eruption in a man after ol- inhibitor. In May 2016, olmutinib received its first global ap- mutinib treatment. To our knowledge, this is the first re- proval in South Korea for the treatment of patients with lo- ported case of olmutinib induced LP like eruption. cally advanced or metastatic epidermal growth factor re- ceptor T790M mutation-positive non-small cell lung cancer.
    [Show full text]