Osimertinib in EGFR T790M Mutation–Positive Non–Small Cell Lung Cancer Ferdinandos Skoulidis and Vassiliki A

Total Page:16

File Type:pdf, Size:1020Kb

Osimertinib in EGFR T790M Mutation–Positive Non–Small Cell Lung Cancer Ferdinandos Skoulidis and Vassiliki A Published OnlineFirst November 7, 2016; DOI: 10.1158/1078-0432.CCR-15-2815 CCR Drug Updates Clinical Cancer Research Targeting the Gatekeeper: Osimertinib in EGFR T790M Mutation–Positive Non–Small Cell Lung Cancer Ferdinandos Skoulidis and Vassiliki A. Papadimitrakopoulou Abstract In 2015, the FDA approved an unprecedented number of new patients with metastatic EGFR T790M mutation–positive NSCLC, therapies for non–small cell lung cancer (NSCLC), among them as detected by an FDA-approved test, who have progressed on or therapies addressing specific genomic tumor subsets in the setting after EGFR tyrosine kinase inhibitor therapy. It received break- of development of resistance to first-line targeted therapy. Osimer- through therapy designation, priority review status, and accelerated tinib (Tagrisso, formerly AZD9291; AstraZeneca) is indicated for approval from the FDA. Clin Cancer Res; 23(3); 618–22. Ó2016 AACR. Introduction clinical doses required to effectively inhibit T790M in vivo. In a phase Ib clinical trial, afatinib in combination with the chimeric The treatment of non–small cell lung cancer (NSCLC) bearing monoclonal anti-EGFR antibody cetuximab in patients with activating mutations in EGFR with EGFR tyrosine kinase inhibi- acquired resistance to erlotinib or gefitinib resulted in a meaning- tors (TKI) represents a paradigm of science-driven personalized ful 32% objective response rate [ORR; 95% confidence interval cancer therapy. For patients bearing EGFR TKI–sensitizing muta- (CI), 21.8–44.5] and 4.6-month median progression-free survival tions, most commonly in-frame microdeletions in exon 19 (PFS) in EGFR T790-mutant patients, but it was associated with a (Ex19del) and point mutations in exon 21 (leading to L858R or 46% rate of grade 3/4 adverse events, mostly rash and diarrhea L861Q amino acid substitutions) or exon 18 (G719X), treatment (11). Thus, development of highly selective third-generation EGFR with the first-generation EGFR TKIs erlotinib (Tarceva; Genen- TKIs that potently inhibit mutant EGFR and T790M but spare the tech/Astellas Pharma) and gefitinib (Iressa; AstraZeneca) or the wild-type protein emerged as a major clinical need. second-generation inhibitor afatinib (Gilotrif; Boehringer Ingel- Osimertinib (Tagrisso, formerly AZD9291; AstraZeneca) is an heim) has resulted in objective responses in 56% to 74% of oral, third-generation, pyrimidine-based, irreversible EGFR TKI patients and confers clinical benefit compared with first-line that received accelerated approval from the FDA in November platinum-based doublet chemotherapy (1–6). However, initial 2015 for the treatment of patients with metastatic, EGFR T790M disease control in the majority of treated patients is inexorably mutation–positive NSCLC (as detected by an FDA-approved test) followed by the development of clinical resistance, with median who have progressed during or after EGFR TKI therapy. This progression-free survival of 9.2 to 14.0 months (1–6). In 50% to approval was followed shortly thereafter by approvals in the 60% of cases, this is attributable to de novo acquisition or expan- European Union in February 2016 (for patients with EGFR sion of preexisting clones bearing the gatekeeper T790M mutation T790M mutation–positive NSCLC, as determined by a tissue- or in EGFR, which increases the affinity of the mutant oncoprotein blood-based test, irrespective of previous treatment with an EGFR for ATP to near wild-type levels. Accordingly, drug development TKI) and the United Kingdom and Japan in December 2015 and efforts have focused on strategies to tackle T790M (7–9). March 2016, respectively, for patients with EGFR T790M muta- The second-generation irreversible EGFR TKIs afatinib and tion–positive NSCLC resistant to EGFR TKI therapy. dacomitinib bind covalently to Cys797 at the edge of the ATP- binding cleft and are effective at inhibiting T790M-mutant EGFR in vitro and in preclinical models (10). However, their clinical utility Preclinical Data in this context is hampered by a lack of selectivity for T790M- Osimertinib is a mono-anilino-pyrimidine compound devel- mutant versus wild-type EGFR, which results in a narrow thera- oped by AstraZeneca as a mutant-selective, irreversible inhibitor peutic window with high rates of cutaneous and enteric toxicity at of EGFR. In keeping with the mode of action of other irreversible inhibitors, osimertinib binds covalently via its acrylamide group to Cys797 in the ATP-binding site, but it is structurally distinct Department of Thoracic/Head and Neck Medical Oncology, The University of from the other third-generation EGFR TKIs rociletinib (CO-1686) Texas MD Anderson Cancer Center, Houston, Texas. and WZ4002 (12). In EGFR recombinant enzyme assays, it Corresponding Author: Vassiliki A. Papadimitrakopoulou, The University of exhibited 184 times greater potency for L858R/T790M-mutant Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Box 432, Hous- compared with wild-type EGFR. It further demonstrated limited ton, TX 77030. Phone: 713-792-6363; Fax: 713-792-1220; E-mail: promiscuity when assayed across an extensive commercial bio- [email protected] chemical kinase panel with the exception of moderate inhibition doi: 10.1158/1078-0432.CCR-15-2815 of ERBB2/HER2 (erb-b2 receptor tyrosine kinase 2), ERBB4/HER4 Ó2016 American Association for Cancer Research. (erb-b2 receptor tyrosine kinase 4), and BLK (BLK proto- 618 Clin Cancer Res; 23(3) February 1, 2017 Downloaded from clincancerres.aacrjournals.org on October 2, 2021. © 2017 American Association for Cancer Research. Published OnlineFirst November 7, 2016; DOI: 10.1158/1078-0432.CCR-15-2815 Osimertinib in EGFR T790M Mutation–Positive NSCLC oncogene, Src family tyrosine kinase; ref.12). In vitro, osimertinib 2.1–4.3; 71% maturity) for T790M-negative patients. In the inhibited EGFR phosphorylation and reduced cell viability with overall population of 239 patients evaluable for response treated comparable potency with first-generation EGFR TKIs in NSCLC across all dose levels, the ORR was 51% (95% CI, 45–58; ref. 16). cell lines bearing typical EGFR-sensitizing mutations (Ex19del, Updated results with a January 4, 2016, data cutoff for 63 patients L858R), but not in those with wild-type EGFR, and exhibited with T790M treated in the 80 mg orally OD dose-expansion dramatically enhanced activity compared with first-generation cohort indicated investigator-assessed ORR of 71% (95% CI, TKIs in cell lines bearing the T790M resistance mutation (12). 57–82), with a median DoR of 9.6 months (95% CI, 7.7–15.6) In vivo antitumor activity was demonstrated across a wide spec- and median PFS of 9.7 months (95% CI, 8.3–13.6; ref. 15). trum of xenograft models representative of common sensitizing EGFR mutations, including PC-9 (Ex19del) and H3255 (L858R), Pharmacokinetics as well as the T790M gatekeeper mutation in H1975 (L858R/ Osimertinib can be taken with or without food and can be T790M) and PC-9VanR (Exon19del/T790M), and was further dispersed in noncarbonated water for patients unable to swallow confirmed in genetically engineered murine models of EgfrL858R tablets. Following single-dose administration of the capsule and EgfrL858R/T790M –driven NSCLC (12). formulation, Cmax is reached after a median of 6 hours, and dose-proportional exposure is observed over the 20- to 240-mg Clinical Data dose range with linear pharmacokinetics (17). Population-esti- mated mean half-life (t ) of osimertinib is 48 hours, and steady- The regulatory approval of osimertinib was based on efficacy 1/2 state accumulation following once daily dosing is reached after 15 results from two single-arm phase II clinical trials: the (or 22) days. The drug is metabolized by oxidation (mostly via the phase II extension of the pivotal AURA phase I/II clinical trial CYP3A pathway) and dealkylation to two active metabolites; (NCT01802632) and the confirmatory AURA2 trial therefore, strong CYP3A inducers or inhibitors should be avoided (NCT02094261). Both trials enrolled patients with locally (17). No dose adjustments are recommended for patients with advanced or metastatic NSCLC bearing sensitizing activating mild or moderate renal impairment (CLcr 30–89 mL/minute) or EGFR mutations that had progressed following prior EGFR TKI mild hepatic impairment [bilirubin < upper limit of normal therapy and were positive for the T790M gatekeeper mutation (ULN) and AST between 1 and 1.5Â ULN or total bilirubin on central testing, using the cobas EGFR Mutation Test (Roche between 1.0 and 1.5 ULN and any AST], but no data are available Molecular Systems). Patients with asymptomatic, stable central for patients with severe renal impairment or moderate/severe nervous system (CNS) metastases were eligible for both studies. hepatic impairment (17). At the data cutoff (May 1, 2015), the ORR (by RECIST 1.1) to osimertinib at the recommended dose of 80 mg orally once daily (tablet formulation) among 199 of 201 evaluable patients in the Drug Safety phase II extension cohort of AURA was 61% (95% CI, 54–68) by In the dose-escalation phase of AURA, no dose-limiting blinded independent central review (BICR), for an overall disease toxicities were identified at any of the prespecified osimertinib control rate [DCR: complete response (CR) þ partial response dose levels. Commensurate with the selectivity of osimertinib for (PR) þ stable disease 6 weeks] of 91% (95% CI, 85–94; ref. 13). mutant EGFR, the frequency and severity of reported "on-target" The median duration of response (DoR) and median PFS had not adverse events of the 80-mg dose in AURA and AURA2 were reached maturity (13). Comparable results were obtained in significantly reduced compared with historical data with first- and AURA2. At the same data cutoff, the BICR ORR to osimertinib second-generation EGFR TKIs. In the AURA phase II extension among 199 of 210 patients evaluable for response was 71% (95% (N ¼ 201), the most common adverse events were diarrhea (45% CI, 64–77), for a DCR of 92% (95% CI, 87–95; ref. 14).
Recommended publications
  • Mechanism of Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy
    cells Review Mechanism of Resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors and a Potential Treatment Strategy Tatsuya Nagano * , Motoko Tachihara and Yoshihiro Nishimura Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan; [email protected] (M.T.); [email protected] (Y.N.) * Correspondence: [email protected]; Tel.: +81-78-382-5660 Received: 25 October 2018; Accepted: 15 November 2018; Published: 15 November 2018 Abstract: Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) improves the overall survival of patients with EGFR-mutated non-small-cell lung cancer (NSCLC). First-generation EGFR-TKIs (e.g., gefitinib and erlotinib) or second-generation EGFR-TKIs (e.g., afatinib and dacomitinib) are effective for the treatment of EGFR-mutated NSCLC, especially in patients with EGFR exon 19 deletions or an exon 21 L858R mutation. However, almost all cases experience disease recurrence after 1 to 2 years due to acquired resistance. The EGFR T790M mutation in exon 20 is the most frequent alteration associated with the development of acquired resistance. Osimertinib—a third-generation EGFR-TKI—targets the T790M mutation and has demonstrated high efficacy against EGFR-mutated lung cancer. However, the development of acquired resistance to third-generation EGFR-TKI, involving the cysteine residue at codon 797 mutation, has been observed. Other mechanisms of acquired resistance include the activation of alternative pathways or downstream targets and histological transformation (i.e., epithelial–mesenchymal transition or conversion to small-cell lung cancer).
    [Show full text]
  • The Impact of EGFR T790M Mutations and BIM Mrna Expression On
    Author Manuscript Published OnlineFirst on February 3, 2014; DOI: 10.1158/1078-0432.CCR-13-2233 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. The impact of EGFR T790M mutations and BIM mRNA expression on outcome in patients with EGFR-mutant NSCLC treated with erlotinib or chemotherapy in the randomized phase III EURTAC trial Carlota Costa1, Miguel Angel Molina1, Ana Drozdowskyj2, Ana Giménez-Capitán1, Jordi Bertran-Alamillo1, Niki Karachaliou1, Radj Gervais3, Bartomeu Massuti4, Jia Wei1,5, Teresa Moran6, Margarita Majem7, Enriqueta Felip8, Enric Carcereny6, Rosario Garcia-Campelo9, Santiago Viteri1, Miquel Taron1,6, Mayumi Ono10, Petros Giannikopoulos11, Trever Bivona11,12, Rafael Rosell6,11,13 1Pangaea Biotech, Barcelona, Spain; 2Pivotal, Madrid, Spain; 3Centre François Baclesse, Caen, France; 4Hospital General de Alicante, Alicante, Spain; 5Drum Tower Hospital, Nanjing, China; 6Catalan Institute of Oncology, Badalona, Spain; 7Hospital Sant Pau, Barcelona, Spain; 8Hospital Vall d’Hebron, Barcelona, Spain; 9Complejo Hospitalario Universitario, La Coruña, Spain; 10Kyushu University, Fukuoka, Japan; 11Cancer Therapeutics Innovation Group, New York, NY, USA; 12Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA; 13Molecular Oncology Research (MORe) Foundation, Barcelona, Spain Running title: BIM mRNA expression and survival in NSCLC Keywords: BIM mRNA expression, EGFR mutations, T790M, chemotherapy, erlotinib Financial support: Work in Dr Rafael Rosell’s laboratory is partially supported by a grant from La Caixa Foundation and by a grant from Red Tematica de Investigacion Cooperativa en Cancer (RTICC; grant RD12/0036/0072). Neither of these funding agencies was involved in the study design or conduct, data management or analysis, manuscript preparation or review, or the decision to submit for publication.
    [Show full text]
  • Resistance Mechanisms to Osimertinib in EGFR-Mutated Non-Small Cell Lung Cancer
    www.nature.com/bjc REVIEW ARTICLE Resistance mechanisms to osimertinib in EGFR-mutated non-small cell lung cancer Alessandro Leonetti1,2, Sugandhi Sharma2, Roberta Minari1, Paola Perego3, Elisa Giovannetti2,4 and Marcello Tiseo 1,5 Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR- independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS–mitogen-activated protein kinase (MAPK) or RAS–phosphatidylinositol
    [Show full text]
  • De Novo T790M Mutation in an L858R Epidermal Growth Factor Receptor Mutant-Associated Lung Adenocarcinoma
    cancers Article De Novo T790M Mutation in an L858R Epidermal Growth Factor Receptor Mutant-Associated Lung Adenocarcinoma 1, 1, 2, 2 Takumi Fujiwara y, Tetsu Kobayashi y, Taro Yasuma y, Corina N. D’Alessandro-Gabazza , Masaaki Toda 2, Hajime Fujimoto 1, Kentaro Fujiwara 3, Atsuro Takeshita 2, Kota Nishihama 4, Tomohito Okano 1, Valeria Fridman D’Alessandro 2, Yoshiyuki Takei 1, Osamu Hataji 3 and Esteban C Gabazza 2,* 1 Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University, Mie, Edobashi 2-174, Tsu, Mie 514-8507, Japan; [email protected] (T.F.); [email protected] (T.K.); [email protected] (H.F.); [email protected] (T.O.); [email protected] (Y.T.) 2 Department of Immunology, Faculty and Graduate School of Medicine, Mie University, Edobashi 2-174, Tsu, Mie 514-8507, Japan; [email protected] (T.Y.); [email protected] (C.N.D.-G.); [email protected] (M.T.); [email protected] (A.T.); [email protected] (V.F.D.) 3 Respiratory Center, Matsusaka Municipal Hospital, Tonomachi1550, Matsusaka, Mie 515–8544, Japan; [email protected] (K.F.); [email protected] (O.H.) 4 Department of Diabetes, Metabolism, and Endocrinology, Mie University Graduate School of Medicine, Edobashi 2–174, Tsu, Mie 514-8507, Japan; [email protected] * Correspondence: [email protected] These authors equally contributed to this work.
    [Show full text]
  • NSCLC): Initial Findings from the SUMMIT Basket Trial
    Neratinib in pretreated EGFR exon 18-mutant non-small cell lung cancer (NSCLC): initial findings from the SUMMIT basket trial Valentina Boni,1 Christophe Dooms,2 Barbara Haley,3 Santiago Viteri,4 Amit Mahipal,5 J. Marie Suga,6 Lisa D. Eli,7 Alshad S. Lalani,7 Richard Bryce,7 Feng Xu,7 Naisargee Shah,7 Fairooz Kabbinavar,7 Jonathan W. Goldman8 1START Madrid-CIOCC, Hospital Universitario, Madrid Sanchinarro, Madrid, Spain; 2University Hospitals Leuven, Leuven, Belgium 3UT Southwestern Medical Center, Dallas, TX, USA; 4Instituto OncologicoDr Rosell. Hospital Universitario Dexeus. Grupo Quiron Salud, Barcelona, Spain; 5Mayo Clinic, Rochester, MN, USA; 6Kaiser Permanente Cancer Research Center, Vallejo, CA, USA 7Puma Biotechnology Inc., Los Angeles, CA, USA; 8UCLA, Los Angeles, CA, USA Conflict of interest disclosures: Valentina Boni Financial interests Employment: START Madrid-CIOCC, Hm Hospitales Sanchinarro Consulting or Advisory Role: Puma Biotechnology; Ideaya Biosciences; Loxo Therapeutics, CytomX Therapeutics; Guidepoint; Oncoart Institutional financial support for clinical trials from: Abbvie; ACEO; Adaptaimmune; Amcure; AMGEN; AstraZeneca; BMS Cytomx; GSK; Genentech/Roche; H3; Incyte; Janssen; Kura; Lilly; Loxo; Nektar; Macrogenics; Menarini; Merck; Merus; Nanobiotix; Novartis; Pfizer; PharmaMar; Principia; PUMA; Sanofi; Taiho; Tesaro; BeiGene; Transgene; Takeda; Incyte; Innovio; MSD; PsiOxus; Seattle Genetics; Mersana; GSK; Daiichi; Nektar; Astellas; ORCA; Boston Therapeutics; Dynavax; DebioPharm; Boehringer Ingelheim; Regeneron; Millennium; Synthon; Spectrum; Rigontec; Zenith Non-financial interests Memberships: SEOM; ESMO; ASCO; SOLTI (Scientific Committee Member) EGFR exon 18 mutations represent 5% of all EGFR mutations detected in lung cancer EGFR mutations associated with drug resistance EGFR mutations associated with drug sensitivity EGFR Exon EGFR exon 18 mutations Sharma SV, et al.
    [Show full text]
  • YH25448, an Irreversible EGFR-TKI with Potent Intracranial Activity in EGFR Mutant Non-Small- Cell Lung Cancer
    Author Manuscript Published OnlineFirst on January 22, 2019; DOI: 10.1158/1078-0432.CCR-18-2906 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. YH25448, an irreversible EGFR-TKI with Potent Intracranial Activity in EGFR mutant non-small- cell lung cancer Jiyeon Yun1*, Min Hee Hong1,2*, Seok-Young Kim1, Chae-Won Park1, Soyoung Kim1, Mi Ran Yun1,3, Han Na Kang1,3, Kyoung-Ho Pyo1, Sung Sook Lee4, Jong Sung Koh5, Ho-Juhn Song5, Dong Kyun Kim6, Young-Sung Lee6, Se-Woong Oh6, Soongyu Choi6, Hye Ryun Kim1,2#, and Byoung Chul Cho1,2,3# 1Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea. 2Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea. 3JE-UK Institute for Cancer Research, JEUK Co. Ltd., Gumi-City, Kyungbuk, Republic of Korea. 4Department of Hematology-Oncology Inje University Haeundae Paik Hospital, Busan, Korea, 5Genosco Inc., Cambridge, MA. 6Yuhan R&D Institute, Yuhan Corporation, Seoul, Korea * These authors contributed equally to this work and should be considered co-first authors # These authors contributed equally to this work and should be considered co-corresponding authors Corresponding Author: Byoung Chul Cho, Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea. Phone: 82-2-2228-8126; Fax: 82-2-393-3562; E-mail: [email protected]; Hye Ryun Kim, M.D., Ph.D. Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Korea.
    [Show full text]
  • Puma Biotechnology
    Puma Biotechnology 39th Annual J.P. Morgan Healthcare Conference January 2021 Forward-Looking Safe-Harbor Statement This presentation contains forward-looking statements, including statements regarding commercialization of NERLYNX® and the potential indications and development of our drug candidates. All forward-looking statements involve risks and uncertainties that could cause our actual results to differ materially from the anticipated results and expectations expressed in these forward-looking statements. These statements are based on our current expectations, forecasts and assumptions, and actual outcomes and results could differ materially from these statements due to a number of factors, which include, but are not limited to, any adverse impact on our business or the global economy and financial markets, generally, from the global COVID-19 pandemic, and the risk factors disclosed in our periodic and current reports filed with the Securities and Exchange Commission from time to time, including our Annual Report on Form 10-K for the year ended December 31, 2019, Quarterly Report on Form 10-Q for the quarter ended March 31, 2020, and subsequent reports. Readers are cautioned not to place undue reliance on these forward-looking statements, which speak only as of the date hereof. We assume no obligation to update these forward-looking statements except as required by law. Product Pipeline Neratinib across the breast cancer therapy spectrum Phase I Phase II Phase III Registration Approval HER2+ Breast Cancer Extended adjuvant CONTROL
    [Show full text]
  • Integrative Profiling of T790M Negative EGFR Mutated NSCLC Reveals Pervasive Lineage Transition and Therapeutic Opportunities
    Author Manuscript Published OnlineFirst on July 14, 2021; DOI: 10.1158/1078-0432.CCR-20-4607 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Article Type: Research Article Title: Integrative Profiling of T790M Negative EGFR Mutated NSCLC Reveals Pervasive Lineage Transition and Therapeutic Opportunities Running Title: Integrative Profiling of Resistance in EGFR Mutated NSCLC Authors: Khi Pin Chua1,16, Yvonne H.F. Teng2,8,16, Aaron C. Tan2,6,16, Angela Takano3, Jacob J.S. Alvarez1, Rahul Nahar1, Neha Rohatgi1, Gillianne G.Y. Lai2, Zaw Win Aung2, Joe P.S. Yeong3, Kiat Hon Lim3, Marjan Mojtabavi Naeini1, Irfahan Kassam1, Amit Jain2, Wan Ling Tan2, Apoorva Gogna4, Chow Wei Too4, Ravindran Kanesvaran2, Quan Sing Ng2, Mei Kim Ang2, Tanujaa Rajasekaran2, Devanand Anantham5, Ghee Chee Phua5, Bien Soo Tan4, Yin Yeng Lee1, Lanying Wang2, Audrey S.M. Teo1, Alexis Jiaying Khng1, Ming Jie Lim1, Lisda Suteja2, Chee Keong Toh2, Wan-Teck Lim2,6,7, N. Gopalakrishna Iyer6,8,9, Wai Leong Tam1,10,11,12, Eng-Huat Tan2, Weiwei Zhai1,13,14, Axel M. Hillmer1,15, Anders J. Skanderup1,17,*, Daniel S.W. Tan1,2,6,8,17,* Affiliations: 1Genome Institute of Singapore, Singapore; 2Division of Medical Oncology, National Cancer Centre Singapore, Singapore; 3Division of Pathology, Singapore General Hospital, Singapore; 4Department of Vascular and Interventional Radiology, Singapore General Hospital, Singapore; 5Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore; 6Duke-NUS Medical
    [Show full text]
  • EGFR Mutant-Specific Inhibitor, in T790M+ NSCLC: #378 Efficacy and Safety at the RP2D
    Olmutinib (BI 1482694; HM61713), an EGFR mutant-specific inhibitor, in T790M+ NSCLC: #378 efficacy and safety at the RP2D Keunchil Park,1* Jong-Seok Lee,2 Ki Hyeong Lee,3 Joo-Hang Kim,4 Byoung Chul Cho,5 Young Joo Min,6 Jae Yong Cho,7 Ji-Youn Han,8 Bong-Seog Kim,9 Jin-Soo Kim,10 Dae Ho Lee,11 Jin Hyoung Kang,12 Eun Kyung Cho,13 Hoon-Gu Kim,14 Kyung Hee Lee,15 Hoon Kyo Kim,16 In-Jin Jang,17 Hyo-Yeon Kim,18 Jeewoong Son,18 Dong-Wan Kim17 1Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; 2Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea; 3Chungbuk National University Hospital, Cheongju, North Chungcheong, South Korea; 4CHA Bundang Medical Center, CHA University, Gyeonggi-Do, South Korea; 5Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea; 6Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, South Korea; 7Gangnam Severance Hospital, Seoul, South Korea; 8Center for Lung Cancer, National Cancer Center, Goyang, South Korea; 9VHS Medical Center, Seoul, South Korea; 10Seoul National University, Boramae Medical Center, Seoul, South Korea; 11Asan Medical Center, Seoul, South Korea; 12Seoul St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, South Korea; 13Gachon University Gil Medical Center, Incheon, South Korea; 14Gyeongsang National University Hospital, Jinju, South Gyeongsang, South Korea; 15Yeungnam University Medical Center, Gyeonsan, North Gyeongsang, South Korea; 16St. Vincent's Hospital, Suwon, South Korea; 17Seoul National University Hospital, Seoul, South Korea; 18Hanmi Pharmaceutical Co., Ltd., Seoul, South Korea INTRODUCTION RESULTS Table 2.
    [Show full text]
  • Epidermal Growth Factor Receptor T790M Mutation As a Prognostic
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 59), pp: 99429-99437 Research Paper Epidermal growth factor receptor T790M mutation as a prognostic factor in EGFR-mutant non-small cell lung cancer patients that acquired resistance to EGFR tyrosine kinase inhibitors Guangzhi Ma1,2,*, Jing Zhang3,*, Hai Jiang4,*, Nannan Zhang3, Liyuan Yin1, Wen Li1 and Qinghua Zhou1 1Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P. R. China 2Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China 3Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China 4Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu 610041, P. R. China *These authors contributed equally to this work Correspondence to: Qinghua Zhou, email: [email protected] Keywords: NSCLC, T790M, EGFR-TKIs, prognosis, meta-analysis Received: March 13, 2017 Accepted: July 12, 2017 Published: July 29, 2017 Copyright: Ma et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT Epidermal growth factor receptor (EGFR) T790M mutation accounted for over half of drug resistance cases in EGFR-mutant non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs) and led to different outcomes. This study aimed to assess the prognostic role of T790M in NSCLC patients treated with EGFR-TKIs that developed drug resistance. Eligible literatures were reviewed from various databases and a meta-analysis was performed to evaluate the prognostic role of T790M mutation in EGFR-TKIs treated patients that went progression.
    [Show full text]
  • Irreversible Inhibitors of the EGF Receptor May Circumvent Acquired Resistance to Gefitinib
    Irreversible inhibitors of the EGF receptor may circumvent acquired resistance to gefitinib Eunice L. Kwak*†‡§, Raffaella Sordella*‡§, Daphne W. Bell‡§, Nadia Godin-Heymann‡§, Ross A. Okimoto‡, Brian W. Brannigan‡, Patricia L. Harris‡, David R. Driscoll‡, Panos Fidias†‡, Thomas J. Lynch†‡, Sridhar K. Rabindran¶, John P. McGinnisʈ, Allan Wissnerʈ, Sreenath V. Sharma*‡, Kurt J. Isselbacher‡, Jeffrey Settleman*‡**††, and Daniel A. Haber†‡**†† *Center for Molecular Therapeutics and †Medical Oncology Unit, ‡Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129; and Departments of ¶Oncology Research and ʈChemical and Screening Sciences, Wyeth Research, Pearl River, NY 10965 Contributed by Kurt J. Isselbacher, April 6, 2005 Non-small cell lung cancers (NSCLCs) with activating mutations in Codon 315 of BCR-ABL, which is analogous to EGFR codon 790, the kinase domain of the epidermal growth factor receptor (EGFR) is frequently mutated in imatinib-resistant CML (11, 12), and demonstrate dramatic, but transient, responses to the reversible mutation of the corresponding residue in C-KIT (codon 670) and tyrosine kinase inhibitors gefitinib (Iressa) and erlotinib (Tarceva). FIP1L1-PDGFR-␣ (codon 674) is associated with imatinib-resistant Some recurrent tumors have a common secondary mutation in the GIST and HES, respectively (15, 16). Early in vitro modeling of EGFR kinase domain, T790M, conferring drug resistance, but in resistance to EGFR inhibitors indicated that mutation of codon 790 other cases the mechanism underlying acquired resistance is un- within the wild-type receptor would similarly suppress inhibition by known. In studying multiple sites of recurrent NSCLCs, we detected an EGFR tyrosine kinase inhibitor (19). Recently, transfected T790M in only a small percentage of tumor cells.
    [Show full text]
  • Structural Insights Into Characterizing Binding Sites in EGFR Kinase Mutants
    Structural insights into characterizing binding sites in EGFR kinase mutants Zheng Zhao1, Lei Xie2,3 and Philip E. Bourne*,1,4 1. Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22904, United States of America 2. Department of Computer Science, Hunter College, The City University of New York, New York, New York 10065, United States of America 3.The Graduate Center, The City University of New York, New York, New York 10016, United States of America 4. Data Science Institute, University of Virginia, Charlottesville, Virginia 22904, United States of America *Corresponding author Philip E. Bourne: phone, (434) 924-6867; e-mail, [email protected] 1 Abstract Over the last two decades epidermal growth factor receptor (EGFR) kinase has become an important target to treat non-small cell lung cancer (NSCLC). Currently, three generations of EGFR kinase-targeted small molecule drugs have been FDA approved. They nominally produce a response at the start of treatment and lead to a substantial survival benefit for patients. However, long-term treatment results in acquired drug resistance and further vulnerability to NSCLC. Therefore, novel EGFR kinase inhibitors that specially overcome acquired mutations are urgently needed. To this end, we carried out a comprehensive study of different EGFR kinase mutants using a structural systems pharmacology strategy. Our analysis shows that both wild-type and mutated structures exhibit multiple conformational states that have not been observed in solved crystal structures. We show that this conformational flexibility accommodates diverse types of ligands with multiple types of binding modes. These results provide insights for designing a new- generation of EGFR kinase inhibitor that combats acquired drug-resistant mutations through a multi-conformation-based drug design strategy.
    [Show full text]