References 255
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Spatiotemporal Pattern of Phenology Across Geographic Gradients in Insects
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2017 Spatiotemporal pattern of phenology across geographic gradients in insects Khelifa, Rassim Abstract: Phenology – the timing of recurrent biological events – influences nearly all aspects of ecology and evolution. Phenological shifts have been recorded in a wide range of animals and plants worldwide during the past few decades. Although the phenological responses differ between taxa, they may also vary geographically, especially along gradients such as latitude or elevation. Since changes in phenology have been shown to affect ecology, evolution, human health and the economy, understanding pheno- logical shifts has become a priority. Although phenological shifts have been associated with changes in temperature, there is still little comprehension of the phenology-temperature relationship, particularly the mechanisms influencing its strength and the extent to which it varies geographically. Such ques- tions would ideally be addressed by combining controlled laboratory experiments on thermal response with long-term observational datasets and historical temperature records. Here, I used odonates (drag- onflies and damselflies) and Sepsid scavenger flies to unravel how temperature affects development and phenology at different latitudes and elevations. The main purpose of this thesis is to provide essential knowledge on the factors driving the spatiotemporal phenological dynamics by (1) investigating how phenology changed in time and space across latitude and elevation in northcentral Europe during the past three decades, (2) assessing potential temporal changes in thermal sensitivity of phenology and (3) describing the geographic pattern and usefulness of thermal performance curves in predicting natural responses. -
Sureshan Mantid Fauna of Orissa 1524
NEW RECORD ZOOS' PRINT JOURNAL 22(1): 2539-2543 Order: Mantodea Family: Amorphoscelidae MANTID (INSECTA: MANTODEA) FAUNA Subfamily: Amorphoselinae 1. Amorphoscelis annulicornis Stål * OF ORISSA WITH SOME NEW RECORDS 1871. Amorphoscelis annulicornis Stål , Ofvers. K. Vetensk Akad. FOR THE STATE Forh., 28: 401. 1915. Amorphoscelis indica Giglio-Tos. Bull. Soc. Entomol. Ital., 46: 33. P.M. Sureshan 1, T. Samanta 2 and C. Radhakrishnan 3 1956. Amorphoscelis keiseri Beier. Verh. Naturf. Ges. Basel. 67: 33. 1, 2 Estuarine Biological Station, Zoological Survey of India, Material examined: 1 male; 1 female, EBS Campus, ZSI, Gopalpur-on-Sea, Orissa 761002, India Gopalpur-on-Sea, Ganjam district, Orissa, India, 13.viii.2005, 3 Western Ghats Field Research Station, Zoological Survey of India, (Regn. No. 3937,M), 7.vii.2005 (Regn. No. 3911,F), coll. P.M. Kozhikode, Kerala 673002, India Sureshan (under light) Email: 1 [email protected] (corresponding author) Distribution: India: Assam, Bihar, Daman & Diu, Himachal Pradesh, Kerala, Meghalaya, Orissa, Tamil Nadu, West Mantids (Insecta: Mantodea) popularly called Praying Bengal; Sri Lanka. mantids are predatory insects, actively feeding on a variety Measurements: BL: M - 20, F - 20; FW: M - 13.5, F - 13.5; PN: of other insects, including other mantids. They play a valuable M - 2, F - 2. role in checking the numbers of some insect groups like Diagnostic characters: Body deep brownish, ventral side black. grasshoppers, moths, flies, aphids, etc., which form their major Frontal sclerite narrow, superior edge arched, sinuate on either groups of prey. Despite having rich fauna of mantids, our side. Head with large rounded tubercles. Two tubercles on knowledge on the diversity, variability and biological anterior and posterior border of pronotum, transverse and attributes of Indian mantids is far from satisfactory. -
Mantodea (Insecta), with a Review of Aspects of Functional Morphology and Biology
aua o ew eaa Ramsay, G. W. 1990: Mantodea (Insecta), with a review of aspects of functional morphology and biology. Fauna of New Zealand 19, 96 pp. Editorial Advisory Group (aoimes mae o a oaioa asis MEMBERS AT DSIR PLANT PROTECTION Mou Ae eseac Cee iae ag Aucka ew eaa Ex officio ieco — M ogwo eae Sysemaics Gou — M S ugae Co-opted from within Systematics Group Dr B. A ooway Κ Cosy UIESIIES EESEAIE R. M. Emeso Eomoogy eame ico Uiesiy Caeuy ew eaa MUSEUMS EESEAIE M R. L. ama aua isoy Ui aioa Museum o iae ag Weigo ew eaa OESEAS REPRESENTATIVE J. F. awece CSIO iisio o Eomoogy GO o 1700, Caea Ciy AC 2601, Ausaia Series Editor M C ua Sysemaics Gou SI a oecio Mou Ae eseac Cee iae ag Aucka ew eaa aua o ew eaa Number 19 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy G W Ramsay SI a oecio M Ae eseac Cee iae ag Aucka ew eaa emoa us wig mooogy eosigma cooaio siuaio acousic sesiiiy eece eaiou egeeaio eaio aasiism aoogy a ie Caaoguig-i-uicaio ciaio AMSAY GW Maoea (Iseca – Weigo SI uisig 199 (aua o ew eaa ISS 111-533 ; o 19 IS -77-51-1 I ie II Seies UC 59575(931 Date of publication: see cover of subsequent numbers Suggese om o ciaio amsay GW 199 Maoea (Iseca wi a eiew o asecs o ucioa mooogy a ioogy Fauna of New Zealand [no.] 19. —— Fauna o New Zealand is eae o uicaio y e Seies Eio usig comue- ase e ocessig ayou a ase ie ecoogy e Eioia Aisoy Gou a e Seies Eio ackowege e oowig co-oeaio SI UISIG awco – sueisio o oucio a isiuio M C Maews – assisace wi oucio a makeig Ms A Wig – assisace wi uiciy a isiuio MOU AE ESEAC CEE SI Miss M oy -
31 First Record of Batocera Rufomaculata (De Geer, 1775) from Sunderban Biosphere Reserve, West Bengal
International Journal of Entomology Research ISSN: 2455-4758 www.entomologyjournals.com Volume 1; Issue 3; March 2016; Page No. 31-32 First record of Batocera rufomaculata (De Geer, 1775) from Sunderban biosphere reserve, West Bengal 1 Bulganin Mitra, 2 Udipta Chakraborti, 3 Olive Biswas, 4 Sankarsan Roy, 5 Kaushik Mallick, 6 Priyanka Das 1, 2, 3, 4, 6 Zoological Survey of India, Prani Vigyan Bhawan, M-Block, New Alipore, Kolkata. 5 Post Graduate Department of Zoology, Asutosh College, Kolkata Abstract Studies on Longhorn beetles (Coleoptera) in Sunderban region is very poor. Altogether, 8 species under 3 subfamilies are already reported from Sunderban Biosphere Reserve. Present communication reports Batocera rufomaculata (De Geer, 1775) for the first time from this Biosphere reserve. Keywords: Sunderban Biosphere Reserve, Cerambycidae, Lamiinae, Batocera Introduction Sunderban region in India is 9600 sq km (4200 sq km of Reserved Forest and 5400 sq km of non-forest, inhabited region) which constitutes the Sunderban Biosphere Reserve (SBR). Indian Sunderban is bound on the west by river Muriganga and on the east by rivers Harinbhahga and Raimangal. Administrative boundary of the Sunderban is spread over two districts i.e. North 24-Parganas (Hingalganj, Hasnabad, Haroa, Sandeskhali - I,II, and Minakhan blocks) and South 24-Parganas (Sagar, Namkhana, Kakdwip, Patharpratima, Kultali, Mathurapur-I,II, Jaynagar-I,II, Canning-I,II, Basanti and Gosaba blocks).The extent of mangrove Reserve Forests in Indian Sunderban is around 4260 sq km, out of which 55% is under land vegetation cover and balance 45% is under water body/ inter-tidal zone. Studies on beetles and weevils (Coleoptera) in Sunderban region is very poor. -
The Sphingidae (Lepidoptera) of the Philippines
©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nachr. entomol. Ver. Apollo, Suppl. 17: 17-132 (1998) 17 The Sphingidae (Lepidoptera) of the Philippines Willem H o g e n e s and Colin G. T r e a d a w a y Willem Hogenes, Zoologisch Museum Amsterdam, Afd. Entomologie, Plantage Middenlaan 64, NL-1018 DH Amsterdam, The Netherlands Colin G. T readaway, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany Abstract: This publication covers all Sphingidae known from the Philippines at this time in the form of an annotated checklist. (A concise checklist of the species can be found in Table 4, page 120.) Distribution maps are included as well as 18 colour plates covering all but one species. Where no specimens of a particular spe cies from the Philippines were available to us, illustrations are given of specimens from outside the Philippines. In total we have listed 117 species (with 5 additional subspecies where more than one subspecies of a species exists in the Philippines). Four tables are provided: 1) a breakdown of the number of species and endemic species/subspecies for each subfamily, tribe and genus of Philippine Sphingidae; 2) an evaluation of the number of species as well as endemic species/subspecies per island for the nine largest islands of the Philippines plus one small island group for comparison; 3) an evaluation of the Sphingidae endemicity for each of Vane-Wright’s (1990) faunal regions. From these tables it can be readily deduced that the highest species counts can be encountered on the islands of Palawan (73 species), Luzon (72), Mindanao, Leyte and Negros (62 each). -
A New Species of Synchonnus (Coleoptera: Lycidae) from New Guinea, with an Identifi Cation Key to the Papuan Species
ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2017 Volume 57(1), pp. 153–160 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:C47634CE-13B8-4011-9CEB-A1F0A7E02CF9 doi: 10.1515/aemnp-2017-0064 A new species of Synchonnus (Coleoptera: Lycidae) from New Guinea, with an identifi cation key to the Papuan species Dominik KUSY Department of Zoology, Faculty of Science, Palacky University, 17. listopadu 50, CZ-771 46 Olomouc, Czech Republic; e-mail: [email protected] Abstract. The Papuan fauna of Synchonnus Waterhouse, 1879 contains only four species distributed in Mysool, Japen, and New Guinea and is less diversifi ed than those of the continental Australia where 16 species have been recorded. Synchon- nus occurs in lowlands and in lower mountain forests. A new species, Synchonnus etheringtoni sp. nov., is described from New Guinea, and S. testaceithorax Pic, 1923 is redescribed. All Papuan species are keyed. Key words. Coleoptera, Lycidae, Synchonnus, taxonomy, new species, morpho- logy, key, New Guinea Introduction Papuan net-winged beetles are represented mostly by the subtribe Metriorrhynchina (Ly- cidae: Metriorrhynchini), and only a few other net-winged beetle tribes and subfamilies have been recorded in New Guinea and the adjacent islands (BOCAK & BOCAKOVA 2008; SKLENAROVA et al. 2013). Although the fi rst Papuan species were described already at the beginning of the 19th century by GUÉRIN-MÉNEVILLE (1830–1838) and further about two hundred species before the second world war (KLEINE 1926), the diversity of the Papuan net-winged beetle fauna has not been systematically studied except for a few genus restricted reviews (e.g., BOCAKOVA 1992, BOCEK & BOCAK 2016). -
Notes on Hawk Moths ( Lepidoptera — Sphingidae )
Colemania, Number 33, pp. 1-16 1 Published : 30 January 2013 ISSN 0970-3292 © Kumar Ghorpadé Notes on Hawk Moths (Lepidoptera—Sphingidae) in the Karwar-Dharwar transect, peninsular India: a tribute to T.R.D. Bell (1863-1948)1 KUMAR GHORPADÉ Post-Graduate Teacher and Research Associate in Systematic Entomology, University of Agricultural Sciences, P.O. Box 221, K.C. Park P.O., Dharwar 580 008, India. E-mail: [email protected] R.R. PATIL Professor and Head, Department of Agricultural Entomology, University of Agricultural Sciences, Krishi Nagar, Dharwar 580 005, India. E-mail: [email protected] MALLAPPA K. CHANDARAGI Doctoral student, Department of Agricultural Entomology, University of Agricultural Sciences, Krishi Nagar, Dharwar 580 005, India. E-mail: [email protected] Abstract. This is an update of the Hawk-Moths flying in the transect between the cities of Karwar and Dharwar in northern Karnataka state, peninsular India, based on and following up on the previous fairly detailed study made by T.R.D. Bell around Karwar and summarized in the 1937 FAUNA OF BRITISH INDIA volume on Sphingidae. A total of 69 species of 27 genera are listed. The Western Ghats ‘Hot Spot’ separates these towns, one that lies on the coast of the Arabian Sea and the other further east, leeward of the ghats, on the Deccan Plateau. The intervening tract exhibits a wide range of habitats and altitudes, lying in the North Kanara and Dharwar districts of Karnataka. This paper is also an update and summary of Sphingidae flying in peninsular India. Limited field sampling was done; collections submitted by students of the Agricultural University at Dharwar were also examined and are cited here . -
Catalogue of Afghanistan Longhorn Beetles (Coleoptera, Cerambycidae) with Two Descriptions of New Phytoecia (Parobereina Danilevsky, 2018) from Central Asia
Humanity space International almanac VOL. 8, No 2, 2019: 104-140 http://zoobank.org/urn:lsid:zoobank.org:pub:30F6FA0A-2D7A-4ED2-9EAE-AB7707FFBE61 Catalogue of Afghanistan Longhorn beetles (Coleoptera, Cerambycidae) with two descriptions of new Phytoecia (Parobereina Danilevsky, 2018) from Central Asia M.A. Lazarev State Budget Professional Educational Institution of the Moscow Region “Chekhov technical college” Novaya str., 4, Novyi Byt village, Chekhov District, Moscow Region 142322 Russia e-mail: [email protected]; [email protected] Key words: Coleoptera, Cerambycidae, taxonomy, distribution, new species, Afghanistan, Pakistan. Abstract: The Catalogue includes all 78 Cerambycidae species of Afghanistan fauna known up to 2019 with the references to the original descriptions; 22 species were not mentioned for Afghanistan in Palaearctic Cerambycidae Catalogue by Löbl & Smetana (2010). Bibliography of each species usually includes the geographical information from corresponding publications. Many new taxonomy positions published after 2010 are used here without special remarks. Agapanthia (Epoptes) dahli ustinovi Danilevsky, 2013 stat. nov. is downgraded from the species level. Two species are described as new Phytoecia (Parobereina) pashtunica sp. n. from Afghanistan and Phytoecia (Parobereina) heinzi sp.n. from Pakistan. The present work is an attempt to summarize all data published up to now on Cerambycidae of Afghanistan fauna. Family CERAMBYCIDAE Latreille, 1802 subfamily Prioninae Latreille, 1802 tribe Macrotomini J. Thomson, 1861 genus Anomophysis Quentin & Villiers, 1981: 374 type species Prionus spinosus Fabricius, 1787 inscripta C.O. Waterhouse, 1884: 380 (Macrotoma) Heyrovský, 1936: 211 - Wama; Tippmann, 1958: 41 - Kabul, Ost- Afghanistan, 1740; Sarobi, am Kabulflus, 900 m; Mangul, Bashgultal, Nuristan, Ost-Afghanistan, 1250 m; Fuchs, 1961: 259 - Sarobi 1100 m, O.-Afghanistan; Fuchs, 1967: 432 - Afghanistan, 25 km N von Barikot, 1800 m, Nuristan; Nimla, 40 km SW von Dschelalabad; Heyrovský, 1967: 156 - Zentral-Afghanistan, Prov. -
1567-IJBCS-Article-Seino Okwanjoh
Available online at http://ajol.info/index.php/ijbcs Int. J. Biol. Chem. Sci. 6(4): 1624-1632, August 2012 ISSN 1991-8631 Original Paper http://indexmedicus.afro.who.int Cytogenetic characterization of Taphronota thaelephora Stal. 1873. (Orthoptera: Pyrgomorphidae) from Cameroon. II. Description of mitotic chromosomes Richard Akwanjoh SEINO 1*, Ingrid Dongmo TONLEU 1 and Yacouba MANJELI 2 1Department of Animal Biology, Faculty of Science, University of Dschang, Cameroon. 2Department of Animal Production, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, Cameroon. *Corresponding author, E-mail: [email protected]; Tel.: +237-77 31 14 34. ABSTRACT Taphronota thaelephora Stal. 1873 is generating a lot of interest for biological and cytogenetic studies because it has demonstrated the potential for a future veritable pest in Cameroon. The lack of previously established karyotype for the species has necessitated this study. Testes from five adult individuals collected from Balepa - Mbouda in the West Region of Cameroon and treated with 1% colchicine were analyzed using the Lactic-Propionic Orcein squash technique. Mitotic metaphase chromosomes were measured directly from the microscope and pictures taken with the help of the Lietz photomicroscope. Pictures were processed with the Microsoft Office Picture Manager. The species revealed the standard Pyrgomorphidae karyotype of 2n ♂= 19 acrocentric chromosomes. Mean length of the chromosomes ranged from 8.10±1.7 to 3.75±0.0 µm. Analysis of Relative Chromosome Lengths (RCL) revealed three distinct size groups of long, medium and short. The karyotype of T. thaelephora was made up of 2 pairs of long chromosomes (2LL) and the X-chromosome, 6 pairs of medium chromosomes (6MM) and 1 pair of short chromosomes (1SS). -
Conspicuousness, Phylogenetic Structure, and Origins of Müllerian
www.nature.com/scientificreports OPEN Conspicuousness, phylogenetic structure, and origins of Müllerian mimicry in 4000 lycid beetles from all zoogeographic regions Michal Motyka1, Dominik Kusy1, Michal Masek1, Matej Bocek1, Yun Li1, R. Bilkova1, Josef Kapitán2, Takashi Yagi3 & Ladislav Bocak1* Biologists have reported on the chemical defences and the phenetic similarity of net-winged beetles (Coleoptera: Lycidae) and their co-mimics. Nevertheless, our knowledge has remained fragmental, and the evolution of mimetic patterns has not been studied in the phylogenetic context. We illustrate the general appearance of ~ 600 lycid species and ~ 200 co-mimics and their distribution. Further, we assemble the phylogeny using the transcriptomic backbone and ~ 570 species. Using phylogenetic information, we closely scrutinise the relationships among aposematically coloured species, the worldwide diversity, and the distribution of aposematic patterns. The emitted visual signals difer in conspicuousness. The uniform coloured dorsum is ancestral and was followed by the evolution of bicoloured forms. The mottled patterns, i.e. fasciate, striate, punctate, and reticulate, originated later in the course of evolution. The highest number of sympatrically occurring patterns was recovered in New Guinea and the Andean mountain ecosystems (the areas of the highest abundance), and in continental South East Asia (an area of moderate abundance but high in phylogenetic diversity). Consequently, a large number of co-existing aposematic patterns in a single region and/or locality is the rule, in contrast with the theoretical prediction, and predators do not face a simple model-like choice but cope with complex mimetic communities. Lycids display an ancestral aposematic signal even though they sympatrically occur with diferently coloured unproftable relatives. -
Amphiesmeno- Ptera: the Caddisflies and Lepidoptera
CY501-C13[548-606].qxd 2/16/05 12:17 AM Page 548 quark11 27B:CY501:Chapters:Chapter-13: 13Amphiesmeno-Amphiesmenoptera: The ptera:Caddisflies The and Lepidoptera With very few exceptions the life histories of the orders Tri- from Old English traveling cadice men, who pinned bits of choptera (caddisflies)Caddisflies and Lepidoptera (moths and butter- cloth to their and coats to advertise their fabrics. A few species flies) are extremely different; the former have aquatic larvae, actually have terrestrial larvae, but even these are relegated to and the latter nearly always have terrestrial, plant-feeding wet leaf litter, so many defining features of the order concern caterpillars. Nonetheless, the close relationship of these two larval adaptations for an almost wholly aquatic lifestyle (Wig- orders hasLepidoptera essentially never been disputed and is supported gins, 1977, 1996). For example, larvae are apneustic (without by strong morphological (Kristensen, 1975, 1991), molecular spiracles) and respire through a thin, permeable cuticle, (Wheeler et al., 2001; Whiting, 2002), and paleontological evi- some of which have filamentous abdominal gills that are sim- dence. Synapomorphies linking these two orders include het- ple or intricately branched (Figure 13.3). Antennae and the erogametic females; a pair of glands on sternite V (found in tentorium of larvae are reduced, though functional signifi- Trichoptera and in basal moths); dense, long setae on the cance of these features is unknown. Larvae do not have pro- wing membrane (which are modified into scales in Lepi- legs on most abdominal segments, save for a pair of anal pro- doptera); forewing with the anal veins looping up to form a legs that have sclerotized hooks for anchoring the larva in its double “Y” configuration; larva with a fused hypopharynx case. -
Etymology of the Dragonflies (Insecta: Odonata) Named by R.J. Tillyard, F.R.S
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Sydney: Sydney eScholarship Journals online Etymology of the Dragonfl ies (Insecta: Odonata) named by R.J. Tillyard, F.R.S. IAN D. ENDERSBY 56 Looker Road, Montmorency, Vic 3094 ([email protected]) Published on 23 April 2012 at http://escholarship.library.usyd.edu.au/journals/index.php/LIN Endersby, I.D. (2012). Etymology of the dragonfl ies (Insecta: Odonata) named by R.J. Tillyard, F.R.S. Proceedings of the Linnean Society of New South Wales 134, 1-16. R.J. Tillyard described 26 genera and 130 specifi c or subspecifi c taxa of dragonfl ies from the Australasian region. The etymology of the scientifi c name of each of these is given or deduced. Manuscript received 11 December 2011, accepted for publication 16 April 2012. KEYWORDS: Australasia, Dragonfl ies, Etymology, Odonata, Tillyard. INTRODUCTION moved to another genus while 16 (12%) have fallen into junior synonymy. Twelve (9%) of his subspecies Given a few taxonomic and distributional have been raised to full species status and two species uncertainties, the odonate fauna of Australia comprises have been relegated to subspecifi c status. Of the 325 species in 113 genera (Theischinger and Endersby eleven subspecies, or varieties or races as Tillyard 2009). The discovery and naming of these dragonfl ies sometimes called them, not accounted for above, fi ve falls roughly into three discrete time periods (Table 1). are still recognised, albeit four in different genera, During the fi rst of these, all Australian Odonata were two are no longer considered as distinct subspecies, referred to European experts, while the second era and four have disappeared from the modern literature.