Generalized Extreme Value-Pareto Distribution Function and Its Applica
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Parameter Estimator for the Generalized Pareto Distribution Under the Peaks Over Threshold Framework
mathematics Article A New Parameter Estimator for the Generalized Pareto Distribution under the Peaks over Threshold Framework Xu Zhao 1,*, Zhongxian Zhang 1, Weihu Cheng 1 and Pengyue Zhang 2 1 College of Applied Sciences, Beijing University of Technology, Beijing 100124, China; [email protected] (Z.Z.); [email protected] (W.C.) 2 Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, USA; [email protected] * Correspondence: [email protected] Received: 1 April 2019; Accepted: 30 April 2019 ; Published: 7 May 2019 Abstract: Techniques used to analyze exceedances over a high threshold are in great demand for research in economics, environmental science, and other fields. The generalized Pareto distribution (GPD) has been widely used to fit observations exceeding the tail threshold in the peaks over threshold (POT) framework. Parameter estimation and threshold selection are two critical issues for threshold-based GPD inference. In this work, we propose a new GPD-based estimation approach by combining the method of moments and likelihood moment techniques based on the least squares concept, in which the shape and scale parameters of the GPD can be simultaneously estimated. To analyze extreme data, the proposed approach estimates the parameters by minimizing the sum of squared deviations between the theoretical GPD function and its expectation. Additionally, we introduce a recently developed stopping rule to choose the suitable threshold above which the GPD asymptotically fits the exceedances. Simulation studies show that the proposed approach performs better or similar to existing approaches, in terms of bias and the mean square error, in estimating the shape parameter. -
A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess
S S symmetry Article A Family of Skew-Normal Distributions for Modeling Proportions and Rates with Zeros/Ones Excess Guillermo Martínez-Flórez 1, Víctor Leiva 2,* , Emilio Gómez-Déniz 3 and Carolina Marchant 4 1 Departamento de Matemáticas y Estadística, Facultad de Ciencias Básicas, Universidad de Córdoba, Montería 14014, Colombia; [email protected] 2 Escuela de Ingeniería Industrial, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile 3 Facultad de Economía, Empresa y Turismo, Universidad de Las Palmas de Gran Canaria and TIDES Institute, 35001 Canarias, Spain; [email protected] 4 Facultad de Ciencias Básicas, Universidad Católica del Maule, 3466706 Talca, Chile; [email protected] * Correspondence: [email protected] or [email protected] Received: 30 June 2020; Accepted: 19 August 2020; Published: 1 September 2020 Abstract: In this paper, we consider skew-normal distributions for constructing new a distribution which allows us to model proportions and rates with zero/one inflation as an alternative to the inflated beta distributions. The new distribution is a mixture between a Bernoulli distribution for explaining the zero/one excess and a censored skew-normal distribution for the continuous variable. The maximum likelihood method is used for parameter estimation. Observed and expected Fisher information matrices are derived to conduct likelihood-based inference in this new type skew-normal distribution. Given the flexibility of the new distributions, we are able to show, in real data scenarios, the good performance of our proposal. Keywords: beta distribution; centered skew-normal distribution; maximum-likelihood methods; Monte Carlo simulations; proportions; R software; rates; zero/one inflated data 1. -
Extreme Value Theory and Backtest Overfitting in Finance
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Bowdoin College Bowdoin College Bowdoin Digital Commons Honors Projects Student Scholarship and Creative Work 2015 Extreme Value Theory and Backtest Overfitting in Finance Daniel C. Byrnes [email protected] Follow this and additional works at: https://digitalcommons.bowdoin.edu/honorsprojects Part of the Statistics and Probability Commons Recommended Citation Byrnes, Daniel C., "Extreme Value Theory and Backtest Overfitting in Finance" (2015). Honors Projects. 24. https://digitalcommons.bowdoin.edu/honorsprojects/24 This Open Access Thesis is brought to you for free and open access by the Student Scholarship and Creative Work at Bowdoin Digital Commons. It has been accepted for inclusion in Honors Projects by an authorized administrator of Bowdoin Digital Commons. For more information, please contact [email protected]. Extreme Value Theory and Backtest Overfitting in Finance An Honors Paper Presented for the Department of Mathematics By Daniel Byrnes Bowdoin College, 2015 ©2015 Daniel Byrnes Acknowledgements I would like to thank professor Thomas Pietraho for his help in the creation of this thesis. The revisions and suggestions made by several members of the math faculty were also greatly appreciated. I would also like to thank the entire department for their support throughout my time at Bowdoin. 1 Contents 1 Abstract 3 2 Introduction4 3 Background7 3.1 The Sharpe Ratio.................................7 3.2 Other Performance Measures.......................... 10 3.3 Example of an Overfit Strategy......................... 11 4 Modes of Convergence for Random Variables 13 4.1 Random Variables and Distributions...................... 13 4.2 Convergence in Distribution.......................... -
Procedures for Estimation of Weibull Parameters James W
United States Department of Agriculture Procedures for Estimation of Weibull Parameters James W. Evans David E. Kretschmann David W. Green Forest Forest Products General Technical Report February Service Laboratory FPL–GTR–264 2019 Abstract Contents The primary purpose of this publication is to provide an 1 Introduction .................................................................. 1 overview of the information in the statistical literature on 2 Background .................................................................. 1 the different methods developed for fitting a Weibull distribution to an uncensored set of data and on any 3 Estimation Procedures .................................................. 1 comparisons between methods that have been studied in the 4 Historical Comparisons of Individual statistics literature. This should help the person using a Estimator Types ........................................................ 8 Weibull distribution to represent a data set realize some advantages and disadvantages of some basic methods. It 5 Other Methods of Estimating Parameters of should also help both in evaluating other studies using the Weibull Distribution .......................................... 11 different methods of Weibull parameter estimation and in 6 Discussion .................................................................. 12 discussions on American Society for Testing and Materials Standard D5457, which appears to allow a choice for the 7 Conclusion ................................................................ -
A New Weibull-X Family of Distributions: Properties, Characterizations and Applications Zubair Ahmad1* , M
Ahmad et al. Journal of Statistical Distributions and Applications (2018) 5:5 https://doi.org/10.1186/s40488-018-0087-6 RESEARCH Open Access A new Weibull-X family of distributions: properties, characterizations and applications Zubair Ahmad1* , M. Elgarhy2 and G. G. Hamedani3 * Correspondence: [email protected] Abstract 1Department of Statistics, Quaid-i-Azam University 45320, We propose a new family of univariate distributions generated from the Weibull random Islamabad 44000, Pakistan variable, called a new Weibull-X family of distributions. Two special sub-models of the Full list of author information is proposed family are presented and the shapes of density and hazard functions are available at the end of the article investigated. General expressions for some statistical properties are discussed. For the new family, three useful characterizations based on truncated moments are presented. Three different methods to estimate the model parameters are discussed. Monti Carlo simulation study is conducted to evaluate the performances of these estimators. Finally, the importance of the new family is illustrated empirically via two real life applications. Keywords: Weibull distribution, T-X family, Moment, Characterizations, Order statistics, Estimation 1. Introduction In the field of reliability theory, modeling of lifetime data is very crucial. A number of statistical distributions such as Weibull, Pareto, Gompertz, linear failure rate, Rayleigh, Exonential etc., are available for modeling lifetime data. However, in many practical areas, these classical distributions do not provide adequate fit in modeling data, and there is a clear need for the extended version of these classical distributions. In this re- gard, serious attempts have been made to propose new families of continuous prob- ability distributions that extend the existing well-known distributions by adding additional parameter(s) to the model of the baseline random variable. -
Package 'Renext'
Package ‘Renext’ July 4, 2016 Type Package Title Renewal Method for Extreme Values Extrapolation Version 3.1-0 Date 2016-07-01 Author Yves Deville <[email protected]>, IRSN <[email protected]> Maintainer Lise Bardet <[email protected]> Depends R (>= 2.8.0), stats, graphics, evd Imports numDeriv, splines, methods Suggests MASS, ismev, XML Description Peaks Over Threshold (POT) or 'methode du renouvellement'. The distribution for the ex- ceedances can be chosen, and heterogeneous data (including histori- cal data or block data) can be used in a Maximum-Likelihood framework. License GPL (>= 2) LazyData yes NeedsCompilation no Repository CRAN Date/Publication 2016-07-04 20:29:04 R topics documented: Renext-package . .3 anova.Renouv . .5 barplotRenouv . .6 Brest . .8 Brest.years . 10 Brest.years.missing . 11 CV2............................................. 11 CV2.test . 12 Dunkerque . 13 EM.mixexp . 15 expplot . 16 1 2 R topics documented: fgamma . 17 fGEV.MAX . 19 fGPD ............................................ 22 flomax . 24 fmaxlo . 26 fweibull . 29 Garonne . 30 gev2Ren . 32 gof.date . 34 gofExp.test . 37 GPD............................................. 38 gumbel2Ren . 40 Hpoints . 41 ini.mixexp2 . 42 interevt . 43 Jackson . 45 Jackson.test . 46 logLik.Renouv . 47 Lomax . 48 LRExp . 50 LRExp.test . 51 LRGumbel . 53 LRGumbel.test . 54 Maxlo . 55 MixExp2 . 57 mom.mixexp2 . 58 mom2par . 60 NBlevy . 61 OT2MAX . 63 OTjitter . 66 parDeriv . 67 parIni.MAX . 70 pGreenwood1 . 72 plot.Rendata . 73 plot.Renouv . 74 PPplot . 78 predict.Renouv . 79 qStat . 80 readXML . 82 Ren2gev . 84 Ren2gumbel . 85 Renouv . 87 RenouvNoEst . 94 RLlegend . 96 RLpar . 98 RLplot . 99 roundPred . 101 rRendata . 102 Renext-package 3 SandT . 105 skip2noskip . -
Parametric (Theoretical) Probability Distributions. (Wilks, Ch. 4) Discrete
6 Parametric (theoretical) probability distributions. (Wilks, Ch. 4) Note: parametric: assume a theoretical distribution (e.g., Gauss) Non-parametric: no assumption made about the distribution Advantages of assuming a parametric probability distribution: Compaction: just a few parameters Smoothing, interpolation, extrapolation x x + s Parameter: e.g.: µ,σ population mean and standard deviation Statistic: estimation of parameter from sample: x,s sample mean and standard deviation Discrete distributions: (e.g., yes/no; above normal, normal, below normal) Binomial: E = 1(yes or success); E = 0 (no, fail). These are MECE. 1 2 P(E ) = p P(E ) = 1− p . Assume N independent trials. 1 2 How many “yes” we can obtain in N independent trials? x = (0,1,...N − 1, N ) , N+1 possibilities. Note that x is like a dummy variable. ⎛ N ⎞ x N − x ⎛ N ⎞ N ! P( X = x) = p 1− p , remember that = , 0!= 1 ⎜ x ⎟ ( ) ⎜ x ⎟ x!(N x)! ⎝ ⎠ ⎝ ⎠ − Bernouilli is the binomial distribution with a single trial, N=1: x = (0,1), P( X = 0) = 1− p, P( X = 1) = p Geometric: Number of trials until next success: i.e., x-1 fails followed by a success. x−1 P( X = x) = (1− p) p x = 1,2,... 7 Poisson: Approximation of binomial for small p and large N. Events occur randomly at a constant rate (per N trials) µ = Np . The rate per trial p is low so that events in the same period (N trials) are approximately independent. Example: assume the probability of a tornado in a certain county on a given day is p=1/100. -
Hand-Book on STATISTICAL DISTRIBUTIONS for Experimentalists
Internal Report SUF–PFY/96–01 Stockholm, 11 December 1996 1st revision, 31 October 1998 last modification 10 September 2007 Hand-book on STATISTICAL DISTRIBUTIONS for experimentalists by Christian Walck Particle Physics Group Fysikum University of Stockholm (e-mail: [email protected]) Contents 1 Introduction 1 1.1 Random Number Generation .............................. 1 2 Probability Density Functions 3 2.1 Introduction ........................................ 3 2.2 Moments ......................................... 3 2.2.1 Errors of Moments ................................ 4 2.3 Characteristic Function ................................. 4 2.4 Probability Generating Function ............................ 5 2.5 Cumulants ......................................... 6 2.6 Random Number Generation .............................. 7 2.6.1 Cumulative Technique .............................. 7 2.6.2 Accept-Reject technique ............................. 7 2.6.3 Composition Techniques ............................. 8 2.7 Multivariate Distributions ................................ 9 2.7.1 Multivariate Moments .............................. 9 2.7.2 Errors of Bivariate Moments .......................... 9 2.7.3 Joint Characteristic Function .......................... 10 2.7.4 Random Number Generation .......................... 11 3 Bernoulli Distribution 12 3.1 Introduction ........................................ 12 3.2 Relation to Other Distributions ............................. 12 4 Beta distribution 13 4.1 Introduction ....................................... -
Handbook on Probability Distributions
R powered R-forge project Handbook on probability distributions R-forge distributions Core Team University Year 2009-2010 LATEXpowered Mac OS' TeXShop edited Contents Introduction 4 I Discrete distributions 6 1 Classic discrete distribution 7 2 Not so-common discrete distribution 27 II Continuous distributions 34 3 Finite support distribution 35 4 The Gaussian family 47 5 Exponential distribution and its extensions 56 6 Chi-squared's ditribution and related extensions 75 7 Student and related distributions 84 8 Pareto family 88 9 Logistic distribution and related extensions 108 10 Extrem Value Theory distributions 111 3 4 CONTENTS III Multivariate and generalized distributions 116 11 Generalization of common distributions 117 12 Multivariate distributions 133 13 Misc 135 Conclusion 137 Bibliography 137 A Mathematical tools 141 Introduction This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri- butions. It is constructed in chapters of distribution family with a section for each distribution. Each section focuses on the tryptic: definition - estimation - application. Ultimate bibles for probability distributions are Wimmer & Altmann (1999) which lists 750 univariate discrete distributions and Johnson et al. (1994) which details continuous distributions. In the appendix, we recall the basics of probability distributions as well as \common" mathe- matical functions, cf. section A.2. And for all distribution, we use the following notations • X a random variable following a given distribution, • x a realization of this random variable, • f the density function (if it exists), • F the (cumulative) distribution function, • P (X = k) the mass probability function in k, • M the moment generating function (if it exists), • G the probability generating function (if it exists), • φ the characteristic function (if it exists), Finally all graphics are done the open source statistical software R and its numerous packages available on the Comprehensive R Archive Network (CRAN∗). -
Probability Distributions Used in Reliability Engineering
Probability Distributions Used in Reliability Engineering Probability Distributions Used in Reliability Engineering Andrew N. O’Connor Mohammad Modarres Ali Mosleh Center for Risk and Reliability 0151 Glenn L Martin Hall University of Maryland College Park, Maryland Published by the Center for Risk and Reliability International Standard Book Number (ISBN): 978-0-9966468-1-9 Copyright © 2016 by the Center for Reliability Engineering University of Maryland, College Park, Maryland, USA All rights reserved. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from The Center for Reliability Engineering, Reliability Engineering Program. The Center for Risk and Reliability University of Maryland College Park, Maryland 20742-7531 In memory of Willie Mae Webb This book is dedicated to the memory of Miss Willie Webb who passed away on April 10 2007 while working at the Center for Risk and Reliability at the University of Maryland (UMD). She initiated the concept of this book, as an aid for students conducting studies in Reliability Engineering at the University of Maryland. Upon passing, Willie bequeathed her belongings to fund a scholarship providing financial support to Reliability Engineering students at UMD. Preface Reliability Engineers are required to combine a practical understanding of science and engineering with statistics. The reliability engineer’s understanding of statistics is focused on the practical application of a wide variety of accepted statistical methods. Most reliability texts provide only a basic introduction to probability distributions or only provide a detailed reference to few distributions. -
On Families of Generalized Pareto Distributions: Properties and Applications
Journal of Data Science 377-396 , DOI: 10.6339/JDS.201804_16(2).0008 On Families of Generalized Pareto Distributions: Properties and Applications D. Hamed1 and F. Famoye2 and C. Lee2 1 Department of Mathematics, Winthrop University, Rock Hill, SC, USA; 2Department of Mathematics, Central Michigan University, Mount Pleasant, Michigan, USA In this paper, we introduce some new families of generalized Pareto distributions using the T-R{Y} framework. These families of distributions are named T-Pareto{Y} families, and they arise from the quantile functions of exponential, log-logistic, logistic, extreme value, Cauchy and Weibull distributions. The shapes of these T-Pareto families can be unimodal or bimodal, skewed to the left or skewed to the right with heavy tail. Some general properties of the T-Pareto{Y} family are investigated and these include the moments, modes, mean deviations from the mean and from the median, and Shannon entropy. Several new generalized Pareto distributions are also discussed. Four real data sets from engineering, biomedical and social science are analyzed to demonstrate the flexibility and usefulness of the T-Pareto{Y} families of distributions. Key words: Shannon entropy; quantile function; moment; T-X family. 1. Introduction The Pareto distribution is named after the well-known Italian-born Swiss sociologist and economist Vilfredo Pareto (1848-1923). Pareto [1] defined Pareto’s Law, which can be stated as N Axa , where N represents the number of persons having income x in a population. Pareto distribution is commonly used in modelling heavy tailed distributions, including but not limited to income, insurance and city size populations. -
Discriminating Between the Weibull and Log-Normal Distributions
Discriminating Between The Weibull and Log-Normal Distributions Debasis Kundu1 Anubhav Manglick2 Abstract Log-Normal and Weibull distributions are the most popular distributions for modeling skewed data. In this paper, we consider the ratio of the maximized likelihood in choosing between the two distributions. The asymptotic distribution of the logarithm of the maximized likeli- hood ratio has been obtained. It is observed that the asymptotic distribution is independent of the unknown parameters. The asymptotic distribution has been used to determine the minimum sample size required to discriminate between two families of distributions for a user speci¯ed probability of correct selection. We perform some numerical experiments to observe how the asymptotic methods work for di®erent sample sizes. It is observed that the asymptotic results work quite well even for small samples also. Two real data sets have been analyzed. Key Words and Phrases Asymptotic distributions; Likelihood ratio tests; Probability of correct selection; Location Scale Family. Address of Correspondence: Professor Debasis Kundu, Department of Mathematics, Indian Institute of Technology Kanpur, Pin 208016, INDIA. e-mail: [email protected]. 1 Department of Mathematics, Indian Institute of Technology Kanpur, Pin 208016, INDIA. 2 Faculty of Mathematics and Informatics, University of Passau, GERMANY. 1 1 Introduction: We address the following problem in this paper. Suppose an experimenter has observed n data points, say x1; : : : ; xn and he wants to use either two-parameter log-normal model or two parameter Weibull model, which one is preferable? It is well known that both the log-normal and Weibull models can be used quite e®ectively to analyze skewed data set.