MYCO WELL D-ONE: Can a New Rapid Diagnostic Detect Ureaplasma Spp. and Mycoplasma Hominis in Genitourinary Medicine Samples?

Total Page:16

File Type:pdf, Size:1020Kb

MYCO WELL D-ONE: Can a New Rapid Diagnostic Detect Ureaplasma Spp. and Mycoplasma Hominis in Genitourinary Medicine Samples? MYCO WELL D-ONE: Can a new rapid diagnostic detect Ureaplasma spp. and Mycoplasma hominis in genitourinary medicine samples? A thesis submitted in candidature for the degree of Master of Philosophy (MPhil) 2019 Daniel John Morris School of Medicine Summary of Thesis The genital mycoplasmas – Mycoplasma hominis, Ureaplasma parvum and Ureaplasma urealyticum – are frequently associated with symptomatic genitourinary medicine patients. Currently there is no provision to test for these organisms within the National Health Service. Ureaplasma spp. are isolated from 11–26% of men with non-gonococcal urethritis. Bacterial vaginosis (BV) – present in 20–30% of females attending – has been repeatedly linked to M. hominis. The MYCO WELL D-ONE is a rapid culture-based assay that utilises specialist media to detect these organisms in samples collected as part of routine sexual health screenings. Alongside detection, the MYCO WELL D-ONE concurrently screens organisms for antibiotic resistance. IRAS ethics number 230693 was granted for this study. 983 Samples were collected from 857 patients attending sexual health clinics in Cwm Taf: 528 female patients (121 provided both urine and swabs) and 329 male patients. This is the first clinical validation of the MYCO WELL D-ONE to be carried out in the UK against the current ‘gold standard’ molecular detection methods. Isolates highlighted as resistant by MYCO WELL D-ONE were subjected to confirmatory antibiotic susceptibility testing (AST) in accordance with the current CLSI guidelines. Isolates confirmed as resistance underwent whole genome sequencing to determine the underlying genetic mechanism conferring their resistance. Ureaplasma spp. was isolated from 57.2% of female patients compared to 21.6% of males. For M. hominis, 16.3% of females and 4.3% of males were infected. The MYCO WELL D-ONE displayed sensitivity values of 91.8% and 78.2%, alongside specificity values of 96.49% and 98.84%, for the detection of Ureaplasma spp. and M. hominis, respectively. Antibiotic resistance rates in Ureplasma spp. were found to be 0.54% for tetracycline and levofloxacin, with a tetracycline resistance rate of 1% for M. hominis. The prevalence of genital mycoplasma in the South Wales Valleys convergence area is significantly higher in the female population, consistent with other studies at different geographic locations. The MYCO WELL D-ONE is a simple, sensitive and specific means of detecting these organisms. It offers clinicians a rapid, easy-to-use and inexpensive method of determining the presence of mycoplasma in symptomatic sexual health patients. ix Daniel John Morris Declaration This work has not been submitted in substance for any other degree or award at this or any other university or place of learning, nor is being submitted concurrently in candidature for any degree or other award. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 1 This thesis is being submitted in partial fulfillment of the requirements for the degree of ………………………… (insert MCh, MD, MPhil, PhD etc, as appropriate) Signed ………………………………………… (candidate) Date ………………………… STATEMENT 2 This thesis is the result of my own independent work/investigation, except where otherwise stated. Other sources are acknowledged by explicit references. The views expressed are my own. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 3 I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loan, and for the title and summary to be made available to outside organisations. Signed ………………………………………… (candidate) Date ………………………… STATEMENT 4: PREVIOUSLY APPROVED BAR ON ACCESS I hereby give consent for my thesis, if accepted, to be available for photocopying and for inter-library loans after expiry of a bar on access previously approved by the Academic Standards & Quality Committee. Signed ………………………………………… (candidate) Date ………………………… x Daniel John Morris Acknowledgements My deepest thanks to Dr Brad Spiller, to whom I am indebted a great a deal, for both the opportunity to carry out this study and for the knowledge and skills I gained under his supervision. A brilliant, charismatic and inspiring microbiologist whose enthusiasm for mycoplasma can only be described with one ironic adjective – infectious. I whole-heartedly appreciate the time and effort Dr Spiller invested in me and this project. His unique apprenticeship style of teaching and hands-on way of developing my research skills was hugely valued, providing both guidance and freedom in equal measure. I am also thankful for his unrivalled ability to dispel despair following unexpected experimental results with his trademark ‘Well, that’s interesting!’. To Dr Lucy Jones, thank you! I could not have asked for a more personable, friendly and gifted clinician from which to learn the clinical side of research. Dr Jones possesses an immense ability to cultivate a unique culture in her clinics, one that facilitates top-class patient care running seamlessly and synergistically alongside research activities. Your words of encouragement as I trundled out of Keir Hardie late on Thursday evenings, laden like a packhorse with samples, pipettes, media etc. spurred me on no end. Also, a huge thank you to all the research nurses and clinical staff at Dewi Sant, YCC and Keir Hardie GUM clinics – there are too many to list individually – I’m forever grateful for the cuppas and lunchtime chats. But I am ever more appreciative of the way in which you supported the project, your willingness to engage and persistence in sample collection are the reason so many were collected. My thanks also to Edward Portal for his help in sequencing my isolates and being so generous with your time whenever I needed to find anything. Personally, I’d like to thank my Mother, Father, Sister, Nan and Bamps, for without such a loving family behind me, completing this project would not have been possible. They have always believed in me, encouraged me, supported me and showed an interest in everything I do. I would also like to thank Brad Evans, Neil Williams and Russ Evans – my MMA and Brazilian Jiu Jitsu coaches – as well as all my training partners at Combat Training Centre. Without these men xi Daniel John Morris introducing me to Martial Arts I absolutely would not have had the confidence or determination to complete this degree whilst working and training. My friends (The Boys) – who are too numerous to name, but who know who they are – also played a huge role in supporting me through this degree. Thank you for showing an interest in this project and sharing a pint and a laugh with me when it was needed. Thanks also to my funders KESS2 and Health First Consulting, also thanks to CPM SAS for kindly providing the MYCO WELL D-ONE assays. Finally, thanks to my beautiful girlfriend Beth, for putting up with never seeing me as I worked 7- days-a-week throughout this project, we can now spend some time together and go on holidays. Thank you for your never-ending support, patience and tea-making. xii Daniel John Morris Abbreviations ATP Adenosine triphosphate AST Antimicrobial sensitivity testing bp Base pairs BPD Bronchopulmonary dysplasia BV Bacterial vaginosis C. trachomatis Chlamydia trachomatis CCU Colour changing unit CD Circular dichroism CDC The Centers for Disease Control and Prevention CDS Coding sequence CFU Colony forming unit CLSI Clinical and Laboratory Standards Institute CR Complement receptor CSF Cerebrospinal fluid DNA Deoxyribonucleic acid E. coli Escherichia coli G + C Guanine and Cytosine G. vaginalis Gardnerella vaginalis GAG Glycosaminoglycan G-CSF Granulocyte-colony stimulating factor HIV Human Immunodeficiency Virus HPV Human papilloma virus HRT Hormone replacement therapy xiii Daniel John Morris Ig Immunoglobulin IL Interleukin IS Insertion sequence IVF in vitro fertilisation Kda Kilodaltons M. fermentans Mycoplasma fermentans M. genitalium Mycoplasma genitalium M. hominis Mycoplasma hominis M. penetrans Mycoplasma penetrans M. pneumoniae Mycoplasma pneumoniae MAbs Monoclonal antibodies MAPK Mitogen-activated protein kinase MBA Multiple banded antigen M-CSF Macrophage-colony stimulating factor MHSM M. hominis-specific media MLSK Macrolides-lincosamides-streptogramin group and ketolides MMP Matrix metalloproteinase mRNA Messenger ribonucleic acid MSM Men who have sex with men MSW Men who have sex with women N. gonorrhoeae Neisseria gonorrhoeae N. meningitidis Neisseria meningitidis NF-KB Nuclear factor kappa-light-chain-enhancer of activated B cells NGU Non-gonococcal urethritis xiv Daniel John Morris NO Nitric oxide NPV Negative predictive value NSC Non-specific cervicitis NSU Non-specific urethritis Opp Oligopeptide permease ORF Open reading frame PAI Pathogenicity islands sterile saline Phosphate-buffered saline PCR Polymerase chain reaction PG Prostaglandin Pgk Phosphoglycerate kinase PHE Public Health England PID Pelvic inflammatory disease PPROM Preterm prelabour rupture of the membranes PPV Positive predictive value PRR Pattern recognition receptors PTB Preterm birth qPCR Quantitative polymerase chain reaction QRDR Quinolone resistance-determining region RNA Ribonucleic acid rRNA Ribosomal ribonucleic acid SPTL Spontaneous preterm labour STD Sexually transmitted disease STI Sexually transmitted infection xv Daniel John Morris SV Serovar T. vaginalis Trichomonas vaginalis TK Thymidine kinase TLR Toll-like receptor TNF- α Tumour necrosis factor-α tRNA Transfer ribonucleic acid U. parvum Ureaplasma parvum U. urealyticum Ureaplasma urealyticum
Recommended publications
  • Investigating Prevalence and Geographical Distribution of Mycoplasma Sp. in the Gut of Atlantic Salmon (Salmo Salar L.)
    Master’s Thesis 2020 60 ECTS Faculty of Chemistry, Biotechnology and Food Science Investigating prevalence and geographical distribution of Mycoplasma sp. in the gut of Atlantic Salmon (Salmo salar L.) Mari Raudstein MSc Biotechnology ACKNOWLEDGEMENTS This master project was performed at the Faculty of Chemistry, Biotechnology and Food Science, at the Norwegian University of Life Sciences (NMBU), with Professor Knut Rudi as primary supervisor and associate professor Lars-Gustav Snipen as secondary supervisor. To begin with, I want to express my gratitude to my supervisor Knut Rudi for giving me the opportunity to include fish, one of my main interests, in my thesis. Professor Rudi has helped me execute this project to my best ability by giving me new ideas and solutions to problems that would occur, as well as answering any questions I would have. Further, my secondary supervisor associate professor Snipen has helped me in acquiring and interpreting shotgun data for this thesis. A big thank you to both of you. I would also like to thank laboratory engineer Inga Leena Angell for all the guidance in the laboratory, and for her patience when answering questions. Also, thank you to Ida Ormaasen, Morten Nilsen, and the rest of the Microbial Diversity group at NMBU for always being positive, friendly, and helpful – it has been a pleasure working at the MiDiv lab the past year! I am very grateful to the salmon farmers providing me with the material necessary to study salmon gut microbiota. Without the generosity of Lerøy Sjøtroll in Bømlo, Lerøy Aurora in Skjervøy and Mowi in Chile, I would not be able to do this work.
    [Show full text]
  • Infections of Cats with Blood Mycoplasmas in Various Contexts
    ACTA VET. BRNO 2021, 90: 211–219; https://doi.org/10.2754/avb202190020211 Infections of cats with blood mycoplasmas in various contexts Dana Lobová1, Jarmila Konvalinová2, Iveta Bedáňová2, Zita Filipejová3, Dobromila Molinková1 University of Veterinary Sciences Brno, 1Faculty of Veterinary Medicine, Department of Infectious Diseases and Microbiology, 2Faculty of Veterinary Hygiene and Ecology, Department of Animal Protection, Welfare and Ethology, 3Faculty of Veterinary Medicine, Small Animal Clinic, Brno, Czech Republic Received April 1, 2020 Accepted May 26, 2021 Abstract Haemotropic microorganisms are the most common bacteria that infect erythrocytes and are associated with anaemia of varying severity. The aim of this study was to focus on the occurrence of Mycoplasma haemofelis, Mycoplasma haemominutum, and Mycoplasma turicensis in cats. We followed infected individuals’ breeding conditions, age, sex, basic haematological indices, and co-infection with one of the feline retroviruses. A total of 73 cats were investigated. Haemoplasmas were detected by PCR and verified by sequencing. Haematology examination was performed focusing on the number of erythrocytes, haemoglobin concentrations and haematocrit. A subset of 40 cat blood samples was examined by a rapid immunochromatography test to detect retroviruses. The following was found in our study group: M. haemofelis in 12.3% of individuals, M. haemominutum in 35.6% of individuals and M. turicensis in 17.8% of individuals. A highly significant difference was found between positive evidence of blood mycoplasmas in cats living only at home (15%) and in cats with access to the outside (69.8%). There was also a highly significant difference in the incidence of mycoplasma in cats over 3 years of age compared to 1–3 years of age and up to 1 year of age.
    [Show full text]
  • The Mysterious Orphans of Mycoplasmataceae
    The mysterious orphans of Mycoplasmataceae Tatiana V. Tatarinova1,2*, Inna Lysnyansky3, Yuri V. Nikolsky4,5,6, and Alexander Bolshoy7* 1 Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, 90027, California, USA 2 Spatial Science Institute, University of Southern California, Los Angeles, 90089, California, USA 3 Mycoplasma Unit, Division of Avian and Aquatic Diseases, Kimron Veterinary Institute, POB 12, Beit Dagan, 50250, Israel 4 School of Systems Biology, George Mason University, 10900 University Blvd, MSN 5B3, Manassas, VA 20110, USA 5 Biomedical Cluster, Skolkovo Foundation, 4 Lugovaya str., Skolkovo Innovation Centre, Mozhajskij region, Moscow, 143026, Russian Federation 6 Vavilov Institute of General Genetics, Moscow, Russian Federation 7 Department of Evolutionary and Environmental Biology and Institute of Evolution, University of Haifa, Israel 1,2 [email protected] 3 [email protected] 4-6 [email protected] 7 [email protected] 1 Abstract Background: The length of a protein sequence is largely determined by its function, i.e. each functional group is associated with an optimal size. However, comparative genomics revealed that proteins’ length may be affected by additional factors. In 2002 it was shown that in bacterium Escherichia coli and the archaeon Archaeoglobus fulgidus, protein sequences with no homologs are, on average, shorter than those with homologs [1]. Most experts now agree that the length distributions are distinctly different between protein sequences with and without homologs in bacterial and archaeal genomes. In this study, we examine this postulate by a comprehensive analysis of all annotated prokaryotic genomes and focusing on certain exceptions.
    [Show full text]
  • Role of Protein Phosphorylation in Mycoplasma Pneumoniae
    Pathogenicity of a minimal organism: Role of protein phosphorylation in Mycoplasma pneumoniae Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades „Doctor rerum naturalium“ der Georg-August-Universität Göttingen vorgelegt von Sebastian Schmidl aus Bad Hersfeld Göttingen 2010 Mitglieder des Betreuungsausschusses: Referent: Prof. Dr. Jörg Stülke Koreferent: PD Dr. Michael Hoppert Tag der mündlichen Prüfung: 02.11.2010 “Everything should be made as simple as possible, but not simpler.” (Albert Einstein) Danksagung Zunächst möchte ich mich bei Prof. Dr. Jörg Stülke für die Ermöglichung dieser Doktorarbeit bedanken. Nicht zuletzt durch seine freundliche und engagierte Betreuung hat mir die Zeit viel Freude bereitet. Des Weiteren hat er mir alle Freiheiten zur Verwirklichung meiner eigenen Ideen gelassen, was ich sehr zu schätzen weiß. Für die Übernahme des Korreferates danke ich PD Dr. Michael Hoppert sowie Prof. Dr. Heinz Neumann, PD Dr. Boris Görke, PD Dr. Rolf Daniel und Prof. Dr. Botho Bowien für das Mitwirken im Thesis-Komitee. Der Studienstiftung des deutschen Volkes gilt ein besonderer Dank für die finanzielle Unterstützung dieser Arbeit, durch die es mir unter anderem auch möglich war, an Tagungen in fernen Ländern teilzunehmen. Prof. Dr. Michael Hecker und der Gruppe von Dr. Dörte Becher (Universität Greifswald) danke ich für die freundliche Zusammenarbeit bei der Durchführung von zahlreichen Proteomics-Experimenten. Ein ganz besonderer Dank geht dabei an Katrin Gronau, die mich in die Feinheiten der 2D-Gelelektrophorese eingeführt hat. Außerdem möchte ich mich bei Andreas Otto für die zahlreichen Proteinidentifikationen in den letzten Monaten bedanken. Nicht zu vergessen ist auch meine zweite Außenstelle an der Universität in Barcelona. Dr. Maria Lluch-Senar und Dr.
    [Show full text]
  • Autism Research Directory Evidence for Mycoplasma Ssp., Chlamydia Pneunomiae, and Human Herpes V
    Autism References: Autism Research Director y ! " Journal of Neuroscience Research 85:000 –000 (2007) Garth L. Nicolson,1* Robert Gan,1 Nancy L . Nicolson,1 and Joerg Haier1,2 1The Institute for Molecular Medicin e, Huntington Beach, California 2Department of Surgery, University Hospital, Muns ter, Germany We examined the blood of 48 patients from central and southern California diagnosed with autistic spectrum disorders (ASD) by using forensic polymerase chain reaction and found that a large subset (28/48 or 58.3%) of patients showed evidence o f Mycoplasma spp. Infections compared with two of 45 (4.7%) age -matched control subjects (odds ratio = 13.8, P < 0.001). Because ASD patients have a high prevalence of one or more Mycoplasma spp. and sometimes show evidence of infections with Chlamydia pne umoniae, we examined ASD patients for other infections. Also, the presence of one or more systemic infections may predispose ASD patients to other infections, so we examined the prevalence of C. pneumoniae (4/48 or 8.3% positive, odds ratio = 5.6, P < 0. 01) and human herpes virus -6 (HHV - 6, 14/48 or 29.2%, odds ratio = 4.5, P < 0.01) coinfections in ASD patients. We found that Mycoplasma -positive and -negative ASD patients had similar percentages of C. pneumoniae and HHV -6 infections, suggesting that su ch infections occur independently in ASD patients. Control subjects also had low rates of C. pneumoniae (1/48 or 2.1%) and HHV -6 (4/48 or 8.3%) infections, and there were no oinfections in control subjects. The results indicate that a large subset of ASD patients shows evidence of bacterial and/or viral infections (odds ratio ¼ 16.5, P < 0.001).
    [Show full text]
  • Genomic Islands in Mycoplasmas
    G C A T T A C G G C A T genes Review Genomic Islands in Mycoplasmas Christine Citti * , Eric Baranowski * , Emilie Dordet-Frisoni, Marion Faucher and Laurent-Xavier Nouvel Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; [email protected] (E.D.-F.); [email protected] (M.F.); [email protected] (L.-X.N.) * Correspondence: [email protected] (C.C.); [email protected] (E.B.) Received: 30 June 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Bacteria of the Mycoplasma genus are characterized by the lack of a cell-wall, the use of UGA as tryptophan codon instead of a universal stop, and their simplified metabolic pathways. Most of these features are due to the small-size and limited-content of their genomes (580–1840 Kbp; 482–2050 CDS). Yet, the Mycoplasma genus encompasses over 200 species living in close contact with a wide range of animal hosts and man. These include pathogens, pathobionts, or commensals that have retained the full capacity to synthesize DNA, RNA, and all proteins required to sustain a parasitic life-style, with most being able to grow under laboratory conditions without host cells. Over the last 10 years, comparative genome analyses of multiple species and strains unveiled some of the dynamics of mycoplasma genomes. This review summarizes our current knowledge of genomic islands (GIs) found in mycoplasmas, with a focus on pathogenicity islands, integrative and conjugative elements (ICEs), and prophages. Here, we discuss how GIs contribute to the dynamics of mycoplasma genomes and how they participate in the evolution of these minimal organisms.
    [Show full text]
  • Genome Published Outside of SIGS, January – June 2011 Methylovorus Sp
    Standards in Genomic Sciences (2011) 4:402-417 DOI:10.4056/sigs.2044675 Genome sequences published outside of Standards in Genomic Sciences, January – June 2011 Oranmiyan W. Nelson1 and George M. Garrity1 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA The purpose of this table is to provide the community with a citable record of publications of on- going genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publica- tions added to this subsequent versions of this list are invited to provide the bibliometric data for such references to the SIGS editorial office. Phylum Crenarchaeota “Metallosphaera cuprina” Ar-4, sequence accession CP002656 [1] Thermoproteus uzoniensis 768-20, sequence accession CP002590 [2] “Vulcanisaeta moutnovskia” 768-28, sequence accession CP002529 [3] Phylum Euryarchaeota Methanosaeta concilii, sequence accession CP002565 (chromosome), CP002566 (plasmid) [4] Pyrococcus sp. NA2, sequence accession CP002670 [5] Thermococcus barophilus MP, sequence accession CP002372 (chromosome) and CP002373 plasmid) [6] Phylum Chloroflexi Oscillochloris trichoides DG-6, sequence accession ADVR00000000 [7] Phylum Proteobacteria Achromobacter xylosoxidans A8, sequence accession CP002287 (chromosome), CP002288 (plasmid pA81), and CP002289
    [Show full text]
  • Genomes Published Outside of SIGS, June
    Standards in Genomic Sciences (2011) 5:154-167 DOI:10.4056/sigs.2324675 Genome sequences of Bacteria and Archaea published outside of Standards in Genomic Sciences, June – September 2011 Oranmiyan W. Nelson1 and George M. Garrity1 1Editorial Office, Standards in Genomic Sciences and Department of Microbiology, Michigan State University, East Lansing, MI, USA The purpose of this table is to provide the community with a citable record of publications of ongoing genome sequencing projects that have led to a publication in the scientific literature. While our goal is to make the list complete, there is no guarantee that we may have omitted one or more publications appearing in this time frame. Readers and authors who wish to have publications added to this subsequent versions of this list are invited to provide the bib- liometric data for such references to the SIGS editorial office. Phylum Crenarchaeota Phylum Euryarchaeota Pyrococcus yayanosii CH1, sequence accession CP002779 [1] Methanocella paludicola, sequence accession AP011532 [2] Halorhabdus tiamatea, sequence accession AFNT00000000 [3] Thermococcus sp. Strain 4557, sequence accession CP002920 [4] Phylum Chloroflexi Phylum Proteobacteria Ralstonia solanacearum strain Po82, sequence accession CP002819 (chromosome) and CP002820 (megaplasmid) [5 Desulfovibrio alaskensis G20, sequence accession CP000112 [6] Methylophaga aminisulfidivorans MPT, sequence accession AFIG00000000 [7] Acinetobacter sp. P8-3-8, sequence accession AFIE00000000 [8] Sphingomonas strain KC8, sequence accession AFMP01000000
    [Show full text]
  • Pathogenic Mycoplasma Infections in Chronic Illnesses: General Considerations in Selecting Conventional and Integrative Treatments
    International Journal of Clinical Medicine, 2019, 10, 477-522 https://www.scirp.org/journal/ijcm ISSN Online: 2158-2882 ISSN Print: 2158-284X Pathogenic Mycoplasma Infections in Chronic Illnesses: General Considerations in Selecting Conventional and Integrative Treatments Garth L. Nicolson Department of Molecular Pathology, The Institute for Molecular Medicine, Huntington Beach, California, USA How to cite this paper: Nicolson, G.L. Abstract (2019) Pathogenic Mycoplasma Infections in Chronic Illnesses: General Considera- The presence of pathogenic mycoplasmas in various chronic illnesses and tions in Selecting Conventional and Inte- their successful suppression using conventional and integrative medicine ap- grative Treatments. International Journal of proaches are reviewed. Evidence gathered over the last three decades has Clinical Medicine, 10, 477-522. https://doi.org/10.4236/ijcm.2019.1010041 demonstrated the presence of pathogenic mycoplasma species in the blood, body fluids and tissues from patients with a variety of chronic clinical condi- Received: September 12, 2019 tions: atypical pneumonia, asthma and other respiratory conditions; oral cav- Accepted: October 12, 2019 ity infections; urogenital conditions; neurodegenerative and neurobehavioral Published: October 15, 2019 diseases; autoimmune diseases; immunosuppressive diseases; inflammatory Copyright © 2019 by author(s) and diseases; and illnesses and syndromes of unknown origin, such as fatiguing Scientific Research Publishing Inc. illnesses. Only recently have these small intracellular bacteria received atten- This work is licensed under the Creative tion as possible causative agents, cofactors or opportunistic infections or Commons Attribution International License (CC BY 4.0). co-infections in these and other conditions. Their clinical management is of- http://creativecommons.org/licenses/by/4.0/ ten inadequate, primarily because of missed diagnosis, under- and inadequate Open Access treatment and the presence of persister or dormant microorganisms due to biofilm, resistence and other mechanisms.
    [Show full text]
  • Animal Model of Mycoplasma Fermentans Respiratory Infection
    Yáñez et al. BMC Research Notes 2013, 6:9 http://www.biomedcentral.com/1756-0500/6/9 RESEARCH ARTICLE Open Access Animal model of Mycoplasma fermentans respiratory infection Antonio Yáñez1, Azucena Martínez-Ramos1, Teresa Calixto1, Francisco Javier González-Matus1, José Antonio Rivera-Tapia2, Silvia Giono3, Constantino Gil2 and Lilia Cedillo2,4* Abstract Background: Mycoplasma fermentans has been associated with respiratory, genitourinary tract infections and rheumatoid diseases but its role as pathogen is controversial. The purpose of this study was to probe that Mycoplasma fermentans is able to produce respiratory tract infection and migrate to several organs on an experimental infection model in hamsters. One hundred and twenty six hamsters were divided in six groups (A-F) of 21 hamsters each. Animals of groups A, B, C were intratracheally injected with one of the mycoplasma strains: Mycoplasma fermentans P 140 (wild strain), Mycoplasma fermentans PG 18 (type strain) or Mycoplasma pneumoniae Eaton strain. Groups D, E, F were the negative, media, and sham controls. Fragments of trachea, lungs, kidney, heart, brain and spleen were cultured and used for the histopathological study. U frequency test was used to compare recovery of mycoplasmas from organs. Results: Mycoplasmas were detected by culture and PCR. The three mycoplasma strains induced an interstitial pneumonia; they also migrated to several organs and persisted there for at least 50 days. Mycoplasma fermentans P 140 induced a more severe damage in lungs than Mycoplasma fermentans PG 18. Mycoplasma pneumoniae produced severe damage in lungs and renal damage. Conclusions: Mycoplasma fermentans induced a respiratory tract infection and persisted in different organs for several weeks in hamsters.
    [Show full text]
  • Lists of Names of Prokaryotic Candidatus Taxa
    NOTIFICATION LIST: CANDIDATUS LIST NO. 1 Oren et al., Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijsem.0.003789 Lists of names of prokaryotic Candidatus taxa Aharon Oren1,*, George M. Garrity2,3, Charles T. Parker3, Maria Chuvochina4 and Martha E. Trujillo5 Abstract We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, pro- posed between the mid- 1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evo- lutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current propos- als to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes. Introduction of the category called Candidatus was first pro- morphology, basis of assignment as Candidatus, habitat, posed by Murray and Schleifer in 1994 [1]. The provisional metabolism and more. However, no such lists have yet been status Candidatus was intended for putative taxa of any rank published in the journal. that could not be described in sufficient details to warrant Currently, the nomenclature of Candidatus taxa is not covered establishment of a novel taxon, usually because of the absence by the rules of the Prokaryotic Code.
    [Show full text]
  • Effectors of Mycoplasmal Virulence 1 2 Virulence Effectors of Pathogenic Mycoplasmas 3 4 Meghan A. May1 And
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 1 Running title: Effectors of mycoplasmal virulence 2 3 Virulence Effectors of Pathogenic Mycoplasmas 4 5 Meghan A. May1 and Daniel R. Brown2 6 7 1Department of Biomedical Sciences, College of Osteopathic Medicine, University of New 8 England, Biddeford ME, USA; 2Department of Infectious Diseases and Immunology, College 9 of Veterinary Medicine, University of Florida, Gainesville FL, USA 10 11 Corresponding author: 12 Daniel R. Brown 13 Department of Infectious Diseases and Immunology, College of Veterinary Medicine, 14 University of Florida, Gainesville FL, USA 15 Tel: +1 352 294 4004 16 Email: [email protected] 1 © 2018 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 September 2018 doi:10.20944/preprints201809.0533.v1 17 Abstract 18 Members of the genus Mycoplasma and related organisms impose a substantial burden of 19 infectious diseases on humans and animals, but the last comprehensive review of 20 mycoplasmal pathogenicity was published 20 years ago. Post-genomic analyses have now 21 begun to support the discovery and detailed molecular biological characterization of a 22 number of specific mycoplasmal virulence factors. This review covers three categories of 23 defined mycoplasmal virulence effectors: 1) specific macromolecules including the 24 superantigen MAM, the ADP-ribosylating CARDS toxin, sialidase, cytotoxic nucleases, cell- 25 activating diacylated lipopeptides, and phosphocholine-containing glycoglycerolipids; 2) 26 the small molecule effectors hydrogen peroxide, hydrogen sulfide, and ammonia; and 3) 27 several putative mycoplasmal orthologs of virulence effectors documented in other 28 bacteria.
    [Show full text]