Histamine H3 Receptor Antagonists/Inverse Agonists

Total Page:16

File Type:pdf, Size:1020Kb

Histamine H3 Receptor Antagonists/Inverse Agonists Pharmacology & Therapeutics 200 (2019) 69–84 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Histamine H3 receptor antagonists/inverse agonists: Where do they go? Nakisa Ghamari a,b,OmidZareic,d, José-Antonio Arias-Montaño e, David Reiner f,SiavoushDastmalchia,b, Holger Stark f,⁎, Maryam Hamzeh-Mivehroud a,b,⁎⁎ a Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran b School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran c Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran d Neurosciences Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran e Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Av. Instituto Politécnico Nacional 2508, Zacatenco, 07360 Ciudad de México, México f Heinrich Heine University Düsseldorf, Institute of Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, Germany article info abstract Available online 24 April 2019 Since the discovery of the histamine H3 receptor in 1983, tremendous advances in the pharmacological aspects of H3 receptor antagonists/inverse agonists have been accomplished in preclinical studies. At present, there are sev- Keywords: eral drug candidates that reached clinical trial studies for various indications. However, entrance of these candi- Histamine H3 receptor dates to the pharmaceutical market is not free from challenges, and a variety of difficulties is engaged with their H3 antagonists developmental process. In this review, the potential role of H3 receptors in the pathophysiology of various central H inverse agonists 3 nervous system, metabolic and allergic diseases is discussed. Thereafter, the current status for H receptor antag- Neurological disorders 3 Clinical trials onists/inverse agonists in ongoing clinical trial studies is reviewed and obstacles in developing these agents are Pitolisant emphasized. © 2019 Elsevier Inc. All rights reserved. Contents 1. Introduction............................................... 69 2. H3Rsasatargetfortherapeuticdiscovery................................. 71 3. Clinical trials of current therapeutics targeting H3Rs............................. 73 4. Challenges in the development of H3Rantagonists/inverseagonists...................... 79 5. Conclusion............................................... 80 Conflictofinterest.............................................. 81 Acknowledgements.............................................. 81 References.................................................. 81 1. Introduction Abbreviations: ACh, Acetylcholine; AD, Alzheimer's disease; ADHD, Attention deficit hyperactivity disorder; CIAS, Cognitive impairment associated to schizophrenia; EDS, As an aminergic multifunctional neurotransmitter, histamine [2-(4- γ Excessive daytime sleepiness; GABA, -Aminobutyric acid; H3R, Histamine H3 receptor; 1H-imidazolyl)ethylamine] plays versatile roles in a wide variety of HBA, H-bond acceptor; HBD, H-bond donor; MAPK, Mitogen-activated protein kinase; physiological processes and is therefore also implicated in several path- MLogP, Moriguchi LogP; MS, Multiple sclerosis; MW, Molecular weight; PET, Positron emission tomography; PD, Parkinson's disease. ological conditions (Celanire, Wijtmans, Talaga, Leurs, & de Esch, 2005; ⁎ Corresponding author at: Heinrich Heine University Düsseldorf, Institute of Gemkow et al., 2009; Nikolic, Filipic, Agbaba, & Stark, 2014). Histamine Pharmaceutical and Medicinal Chemistry, Universitaetsstr. 1, 40225 Duesseldorf, is produced in a large number of tissues by cells such as mast cells, Germany. parietal cells of the gastric mucosa, and neurons of central/peripheral ⁎⁎ Corresponding author at: Biotechnology Research Center and School of Pharmacy, nervous system via decarboxylation of L-histidine by histidine decar- Tabriz University of Medical Sciences, Tabriz, Iran. E-mail addresses: [email protected] (H. Stark), [email protected] boxylase (HDC). Histamine inactivation occurs via two major metabolic (M. Hamzeh-Mivehroud). pathways, N-methylation and oxidation. In mammalian brain histamine https://doi.org/10.1016/j.pharmthera.2019.04.007 0163-7258/© 2019 Elsevier Inc. All rights reserved. 70 N. Ghamari et al. / Pharmacology & Therapeutics 200 (2019) 69–84 N-methyltransferase (HNMT) catalyzes the methylation of histamine to (cAMP) with the subsequent reduction in downstream signaling path- τ the H3RinactiveN -methylhistamine, whereas monoamine oxidase and ways such as protein kinase A (PKA) activation and cAMP-responsive aldehyde oxidase are responsible for the formation of (Nτ-methyl)imid- element binding protein (CREB)-induced gene transcription. The Gβγ azole acetic acid by the metabolic oxidation of histamine and to some complexes of Gαi/o proteins inhibit the opening of voltage-activated cal- extent of Nτ-methylhistamine (Berlin, Boyce, & Ruiz Mde, 2011; cium channels, thereby reducing neurotransmitter release (Nieto- Lemke, Williams, & Foye, 2013). Alamilla, Marquez-Gomez, Garcia-Galvez, Morales-Figueroa, & Arias- Histamine exerts its actions through the activation of four distinct re- Montano, 2016). Like other histamine receptors, H3R forms receptor ceptor subtypes (H1 to H4), that belong to the class A family of G protein- heterodimers shown for dopamine D1 and D2 receptors so far (Ferrada coupled receptors (GPCRs) (Leurs, Bakker, Timmerman, & de Esch, 2005; et al., 2008; Vohora & Bhowmik, 2012). Thereby, decreased affinity of Nikolic et al., 2014). Among the histamine receptors, the H3 receptor D2 receptor ligands could be observed in presence of H3Ragonists (H3R) is a pre-synaptically located autoreceptor that inhibits the synthe- in vitro as well as potentiation of D1 and D2 receptor mediated locomo- sis and release of histamine. In addition, H3Rs function as pre-synaptic tor activity by application of the H3R inverse agonist/antagonist heteroreceptors with inhibitory activity on the release of several neuro- thioperamide (Ferrada et al., 2008). Other effector proteins activated transmitters, namely acetylcholine, γ-aminobutyric acid (GABA), dopa- by H3R stimulation include mitogen-activated protein kinases mine, serotonin, noradrenaline and glutamate (Esbenshade et al., 2008). (MAPKs), phosphatidylinositol 3-kinase (PI3K) and phospholipase A2 The H3R was discovered in 1983 by Arrang et al. by analyzing the inhibi- (PLA2) producing arachidonic acid. MAPK and PI3K signaling pathways tion of histamine release in depolarized slices of rat cerebral cortex are associated with the phosphorylation of extracellular signal- (Arrang, Garbarg, & Schwartz, 1983). In 1987, the presence of the recep- regulated kinases (ERKs) and protein kinase B (PKB), respectively, and tor was confirmed by the development of R-α-methylhistamine and the latter inhibits glycogen synthase kinase-3β (GSK-3β). H3R activa- + + thioperamide as selective H3 receptor agonist and antagonist, respec- tion also inhibits the activity of the Na /H exchanger (Bhowmik, tively (Arrang et al., 1987). Later, in 1999 Lovenberg and co-workers Khanam, & Vohora, 2012; Leurs et al., 2005). cloned the gene of the human H3R, which code for a 445 amino acid pro- Fig. 1 illustrates the different signaling pathways elicited or modu- tein (Lovenberg et al., 1999). The H3R is predominantly concentrated in lated by H3R activation. Collectively, the modulation of the release of the central nervous system (CNS); however, it is also expressed periph- histamine and other neurotransmitters through H3R activation could erally in the gastrointestinal tract, the airways, and the cardiovascular be linked to several neurological disorders such as sleep disorders like system (Celanire et al., 2005; Tiligada, Zampeli, Sander, & Stark, 2009). narcolepsy, Alzheimer's disease, attention deficit and hyperactivity dis- The H3R couples to Gαi/o proteins, and hence its stimulation leads to order (ADHD), Parkinson's disease, schizophrenia, multiple sclerosis, inhibition of adenyalate cyclases, diminishing the level of cyclic AMP Tourette's syndrome, pain, obesity etc (Bhowmik et al., 2012; Brioni, Fig. 1. Histamine H3 receptor activation and signaling pathways. Abbreviations: 5-HT: serotonin; AC: adenylyl cyclase; ACh: acetylcholine; Akt: protein kinase B; ALDH: aldehyde dehydrogenase; ATP: adenosine triphosphate; cAMP: adenosine 3′,5′-cyclic monophosphate; DA: dopamine; DAO: Diamine oxidase; GABA: γ-aminobutyric acid; GSK-3β:glycogen synthase kinase-3β;H1R: histamine H1 receptor; H2R: histamine H2 receptor; H3R: histamine H3 receptor; HDC: histidine decarboxylase; HNMT: histamine N-methyltransferase; MAOB: monoamine oxidase B; MAPK: mitogen-activated protein kinase, NA: noradrenaline; NT: neurotransmitter; PI3K: phosphatidylinositol 3-kinase; PKA: protein kinase A; PLA2: phospholipase A2. N. Ghamari et al. / Pharmacology & Therapeutics 200 (2019) 69–84 71 Esbenshade, Garrison, Bitner, & Cowart, 2011; Gemkow et al., 2009; Lin, Parkinson's disease is another neurodegenerative disorder affecting Sergeeva, & Haas, 2011; Passani et al., 2017; Passani & Blandina, 2011; H3Rs. The most common clinical symptoms of this disease are rigidity, Provensi, Blandina, & Passani, 2016; Shan, Bao, & Swaab, 2015). Fig. 2 bradykinesia, rest tremor, loss of postural reflexes, and gain impairment shows the clinical trials reported for H3R antagonists/inverse agonists
Recommended publications
  • Pharmacy Policy Statement
    PHARMACY POLICY STATEMENT Georgia Medicaid DRUG NAME Wakix (pitolisant) BILLING CODE Must use valid NDC BENEFIT TYPE Pharmacy SITE OF SERVICE ALLOWED Home COVERAGE REQUIREMENTS Prior Authorization Required (Non-Preferred Product) QUANTITY LIMIT— 60 tablets per 30 days LIST OF DIAGNOSES CONSIDERED NOT Click Here MEDICALLY NECESSARY Wakix (pitolisant) is a non-preferred product and will only be considered for coverage under the pharmacy benefit when the following criteria are met: Members must be clinically diagnosed with one of the following disease states and meet their individual criteria as stated. NARCOLEPSY WITH EXCESSIVE DAYTIME SLEEPINESS (EDS) For initial authorization: 1. Member is 18 years old or older; AND 2. Medication must be prescribed by or in consultation with a neurologist or sleep specialist; AND 3. Member has a diagnosis of narcolepsy confirmed by sleep studies: polysomnogram and MSLT (multiple sleep latency test); AND 4. Member has symptoms of excessive sleepiness not attributed to other factors such as insufficient sleep, irregular sleep schedule, co-existent sleep disorder, medications or other substances; AND 5. Member’s current score on the Epworth sleepiness scale (ESS) is documented in chart notes; AND 6. Member has tried and failed or did not tolerate the following, at max tolerated dose, for at least 30 days each: modafinil or armodafinil, AND Sunosi; AND 7. Member does not have ANY of the following: a) Severe hepatic impairment; b) End stage renal disease; c) QT interval prolongation or cardiac arrythmia. 8. Dosage allowed: Up to 2 tablets per day; max daily dose of 35.6mg (Two 17.8mg tablets once daily).
    [Show full text]
  • The Histamine H4 Receptor: a Novel Target for Safe Anti-Inflammatory
    GASTRO ISSN 2377-8369 Open Journal http://dx.doi.org/10.17140/GOJ-1-103 Review The Histamine H4 Receptor: A Novel Target *Corresponding author Maristella Adami, PhD for Safe Anti-inflammatory Drugs? Department of Neuroscience University of Parma Via Volturno 39 43125 Parma Italy * 1 Tel. +39 0521 903943 Maristella Adami and Gabriella Coruzzi Fax: +39 0521 903852 E-mail: [email protected] Department of Neuroscience, University of Parma, Via Volturno 39, 43125 Parma, Italy Volume 1 : Issue 1 1retired Article Ref. #: 1000GOJ1103 Article History Received: May 30th, 2014 ABSTRACT Accepted: June 12th, 2014 th Published: July 16 , 2014 The functional role of histamine H4 receptors (H4Rs) in the Gastrointestinal (GI) tract is reviewed, with particular reference to their involvement in the regulation of gastric mucosal defense and inflammation. 4H Rs have been detected in different cell types of the gut, including Citation immune cells, paracrine cells, endocrine cells and neurons, from different animal species and Adami M, Coruzzi G. The Histamine H4 Receptor: a novel target for safe anti- humans; moreover, H4R expression was reported to be altered in some pathological conditions, inflammatory drugs?. Gastro Open J. such as colitis and cancer. Functional studies have demonstrated protective effects of H4R an- 2014; 1(1): 7-12. doi: 10.17140/GOJ- tagonists in several experimental models of gastric mucosal damage and intestinal inflamma- 1-103 tion, suggesting a potential therapeutic role of drugs targeting this new receptor subtype in GI disorders, such as allergic enteropathy, Inflammatory Bowel Disease (IBD), Irritable Bowel Syndrome (IBS) and cancer. KEYWORDS: Histamine H4 receptor; Stomach; Intestine.
    [Show full text]
  • Pitolisant (Wakix) Reference Number: CP.PMN.221 Effective Date: 03.01.20 Last Review Date: 02.21 Line of Business: Commercial, HIM, Medicaid Revision Log
    Clinical Policy: Pitolisant (Wakix) Reference Number: CP.PMN.221 Effective Date: 03.01.20 Last Review Date: 02.21 Line of Business: Commercial, HIM, Medicaid Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description ® Wakix (pitolisant) is a selective histamine 3 (H3) receptor antagonist/inverse agonist. FDA Approved Indication(s) Wakix is indicated for the treatment of excessive daytime sleepiness (EDS) or cataplexy in adult patients with narcolepsy. Policy/Criteria Provider must submit documentation (such as office chart notes, lab results or other clinical information) supporting that member has met all approval criteria. It is the policy of health plans affiliated with Centene Corporation® that Wakix is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Narcolepsy with Cataplexy (must meet all): 1. Diagnosis of narcolepsy with cataplexy; 2. Prescribed by or in consultation with a neurologist or sleep medicine specialist; 3. Age ≥ 18 years; 4. Failure of 2 of the following antidepressants, each used for ≥ 1 month, unless member’s age is ≥ 65, clinically significant adverse effects are experienced, or all are contraindicated: venlafaxine, fluoxetine, atomoxetine, clomipramine, protriptyline; 5. Dose does not exceed 35.6 mg (two 17.8 mg tablets) per day. Approval duration: Medicaid/HIM – 12 months Commercial – Length of Benefit B. Narcolepsy with Excessive Daytime Sleepiness (must meet all): 1. Diagnosis of narcolepsy with EDS; 2. Prescribed by or in consultation with a neurologist or sleep medicine specialist; 3. Age ≥ 18 years; 4. Failure of a 1-month trial of one of the following central nervous system (CNS) stimulants at up to maximally indicated doses, unless clinically significant adverse effects are experienced or all are contraindicated: amphetamine immediate-release (IR), amphetamine, dextroamphetamine IR, dextroamphetamine, methylphenidate IR; *Prior authorization may be required for CNS stimulants Page 1 of 6 CLINICAL POLICY Pitolisant 5.
    [Show full text]
  • Stress Impairs 5-HT2A Receptor-Mediated Serotonergic Facilitation of GABA Release in Juvenile Rat Basolateral Amygdala
    Neuropsychopharmacology (2009) 34, 410–423 & 2009 Nature Publishing Group All rights reserved 0893-133X/09 $32.00 www.neuropsychopharmacology.org Stress Impairs 5-HT2A Receptor-Mediated Serotonergic Facilitation of GABA Release in Juvenile Rat Basolateral Amygdala 1,2 1 3 4 1 ,1,2 Xiaolong Jiang , Guoqiang Xing , Chunhui Yang , Ajay Verma , Lei Zhang and He Li* 1 Department of Psychiatry, Center for the Study of Traumatic Stress, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; 2 3 Neuroscience Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Section on Neuropathology, Clinical Brain 4 Disorders Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA The occurrence of stress and anxiety disorders has been closely associated with alterations of the amygdala GABAergic system. In these disorders, dysregulation of the serotonergic system, a very important modulator of the amygdala GABAergic system, is also well recognized. The present study, utilizing a learned helplessness stress rat model, was designed to determine whether stress is capable of altering serotonergic modulation of the amygdala GABAergic system. In control rats, administration of 5-HT or a-methyl-5-HT, a 5-HT2 receptor agonist, to basolateral amygdala (BLA) slices dramatically enhanced frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs). This effect was blocked by selective 5-HT2A receptor antagonists while a selective 5-HT2B receptor agonist and a selective 5-HT2C receptor agonist were without effect on sIPSCs. Double immunofluorescence labeling demonstrated that the 5-HT2A receptor is primarily localized to parvalbumin-containing BLA interneurons.
    [Show full text]
  • Réglementation De La Pharmacie
    R E C U E I L D E T E X T E S S U R L A P H A R M A C I E Mis à jour le 13 février 2017 par l’Inspection de la pharmacie P R É A M B U L E La réglementation relative à la pharmacie en vigueur en Nouvelle-Calédonie résulte de la coexistence des dispositions adoptées par la Nouvelle-Calédonie au titre de ses compétences en matières d’hygiène publique, de santé et de professions de la pharmacie1, et de celles adoptées par l’Etat au titre de ses compétences en matières de garanties des libertés publiques, de droit civil et de droit commercial2. Sur le contenu du recueil En 1954, la Nouvelle-Calédonie s’est vue étendre les articles L. 511 à L. 520 et L. 549 à L. 665 de l’ancien Livre V relatif à la Pharmacie du code de la santé publique métropolitain par la loi n° 54-418 du 15 avril 1954 étendant aux territoires d'outre-mer, au Togo et au Cameroun certaines dispositions du Code de la santé publique relatives à l'exercice de la pharmacie3, dont les modalités d’application ont été fixées par le décret modifié n° 55-1122 du 16 août 1955 fixant les modalités d'application de la loi n° 54-418 du 15 avril 1954 étendant aux territoires d'outre-mer, au Togo et au Cameroun certaines dispositions du code de la santé publique relatives à l'exercice de la pharmacie4. Depuis sont intervenues la loi- cadre Defferre5, la loi référendaire de 19886 et la loi organique n° 99-209 du 19 mars 1999 dont les apports ont eu pour résultat le transfert de ces articles de la compétence de l’Etat à la compétence de la Nouvelle-Calédonie, permettant à celle-ci de s’en approprier et de les modifier à sa guise par des délibérations du congrès de la Nouvelle-Calédonie7.
    [Show full text]
  • Histamine Receptors
    Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity.
    [Show full text]
  • Profile of Pitolisant in the Management of Narcolepsy: Design, Development, and Place in Therapy
    Journal name: Drug Design, Development and Therapy Article Designation: Review Year: 2018 Volume: 12 Drug Design, Development and Therapy Dovepress Running head verso: Romigi et al Running head recto: Pitolisant and narcolepsy open access to scientific and medical research DOI: 101145 Open Access Full Text Article REVIEW Profile of pitolisant in the management of narcolepsy: design, development, and place in therapy Andrea Romigi1 Abstract: Narcolepsy is a rare sleep disorder characterized by excessive daytime sleepiness and Giuseppe Vitrani1 rapid eye movement sleep dysregulation, manifesting as cataplexy and sleep paralysis, as well Temistocle Lo Giudice1 as hypnagogic and hypnopompic hallucinations. Disease onset may occur at any age, although Diego Centonze1,2 adolescents and young adults are mainly affected. Currently, the diagnosis delay ranges from Valentina Franco3 8 to 10 years and drug therapy may only attenuate symptoms. Pitolisant is a first-in-class new drug currently authorized by the European Medicines Agency to treat narcolepsy with or without 1IRCCS Istituto Neurologico cataplexy in adults and with an expanded evaluation for the treatment of neurologic diseases such Mediterraneo Neuromed, Pozzilli (IS), Italy; 2Department of System as Parkinson’s disease and epilepsy. This article reviews the pharmacokinetic and pharmacody- Medicine, University of Rome Tor namic profile of pitolisant, highlighting its effectiveness and safety in patients with narcolepsy. Vergata Rome, Italy; 3IRCCS Mondino Foundation, Pavia, Italy We performed a systematic review of the literature using PubMed, Embase, and Google Scholar. We report on the efficacy and safety data of pitolisant in narcoleptic patients regarding cataplexy episodes and subjective and objective daytime sleepiness. The development program of pitolisant was characterized by eight Phase II/III studies.
    [Show full text]
  • CAS Number Index
    2334 CAS Number Index CAS # Page Name CAS # Page Name CAS # Page Name 50-00-0 905 Formaldehyde 56-81-5 967 Glycerol 61-90-5 1135 Leucine 50-02-2 596 Dexamethasone 56-85-9 963 Glutamine 62-44-2 1640 Phenacetin 50-06-6 1654 Phenobarbital 57-00-1 514 Creatine 62-46-4 1166 α-Lipoic acid 50-11-3 1288 Metharbital 57-22-7 2229 Vincristine 62-53-3 131 Aniline 50-12-4 1245 Mephenytoin 57-24-9 1950 Strychnine 62-73-7 626 Dichlorvos 50-23-7 1017 Hydrocortisone 57-27-2 1428 Morphine 63-05-8 127 Androstenedione 50-24-8 1739 Prednisolone 57-41-0 1672 Phenytoin 63-25-2 335 Carbaryl 50-29-3 569 DDT 57-42-1 1239 Meperidine 63-75-2 142 Arecoline 50-33-9 1666 Phenylbutazone 57-43-2 108 Amobarbital 64-04-0 1648 Phenethylamine 50-34-0 1770 Propantheline bromide 57-44-3 191 Barbital 64-13-1 1308 p-Methoxyamphetamine 50-35-1 2054 Thalidomide 57-47-6 1683 Physostigmine 64-17-5 784 Ethanol 50-36-2 497 Cocaine 57-53-4 1249 Meprobamate 64-18-6 909 Formic acid 50-37-3 1197 Lysergic acid diethylamide 57-55-6 1782 Propylene glycol 64-77-7 2104 Tolbutamide 50-44-2 1253 6-Mercaptopurine 57-66-9 1751 Probenecid 64-86-8 506 Colchicine 50-47-5 589 Desipramine 57-74-9 398 Chlordane 65-23-6 1802 Pyridoxine 50-48-6 103 Amitriptyline 57-92-1 1947 Streptomycin 65-29-2 931 Gallamine 50-49-7 1053 Imipramine 57-94-3 2179 Tubocurarine chloride 65-45-2 1888 Salicylamide 50-52-2 2071 Thioridazine 57-96-5 1966 Sulfinpyrazone 65-49-6 98 p-Aminosalicylic acid 50-53-3 426 Chlorpromazine 58-00-4 138 Apomorphine 66-76-2 632 Dicumarol 50-55-5 1841 Reserpine 58-05-9 1136 Leucovorin 66-79-5
    [Show full text]
  • Neuroenhancement in Healthy Adults, Part I: Pharmaceutical
    l Rese ca arc ni h li & C f B o i o l e Journal of a t h n Fond et al., J Clinic Res Bioeth 2015, 6:2 r i c u s o J DOI: 10.4172/2155-9627.1000213 ISSN: 2155-9627 Clinical Research & Bioethics Review Article Open Access Neuroenhancement in Healthy Adults, Part I: Pharmaceutical Cognitive Enhancement: A Systematic Review Fond G1,2*, Micoulaud-Franchi JA3, Macgregor A2, Richieri R3,4, Miot S5,6, Lopez R2, Abbar M7, Lancon C3 and Repantis D8 1Université Paris Est-Créteil, Psychiatry and Addiction Pole University Hospitals Henri Mondor, Inserm U955, Eq 15 Psychiatric Genetics, DHU Pe-psy, FondaMental Foundation, Scientific Cooperation Foundation Mental Health, National Network of Schizophrenia Expert Centers, F-94000, France 2Inserm 1061, University Psychiatry Service, University of Montpellier 1, CHU Montpellier F-34000, France 3POLE Academic Psychiatry, CHU Sainte-Marguerite, F-13274 Marseille, Cedex 09, France 4 Public Health Laboratory, Faculty of Medicine, EA 3279, F-13385 Marseille, Cedex 05, France 5Inserm U1061, Idiopathic Hypersomnia Narcolepsy National Reference Centre, Unit of sleep disorders, University of Montpellier 1, CHU Montpellier F-34000, Paris, France 6Inserm U952, CNRS UMR 7224, Pierre and Marie Curie University, F-75000, Paris, France 7CHU Carémeau, University of Nîmes, Nîmes, F-31000, France 8Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Eschenallee 3, 14050 Berlin, Germany *Corresponding author: Dr. Guillaume Fond, Pole de Psychiatrie, Hôpital A. Chenevier, 40 rue de Mesly, Créteil F-94010, France, Tel: (33)178682372; Fax: (33)178682381; E-mail: [email protected] Received date: January 06, 2015, Accepted date: February 23, 2015, Published date: February 28, 2015 Copyright: © 2015 Fond G, et al.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Ehealth DSI [Ehdsi V2.2.2-OR] Ehealth DSI – Master Value Set
    MTC eHealth DSI [eHDSI v2.2.2-OR] eHealth DSI – Master Value Set Catalogue Responsible : eHDSI Solution Provider PublishDate : Wed Nov 08 16:16:10 CET 2017 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 1 of 490 MTC Table of Contents epSOSActiveIngredient 4 epSOSAdministrativeGender 148 epSOSAdverseEventType 149 epSOSAllergenNoDrugs 150 epSOSBloodGroup 155 epSOSBloodPressure 156 epSOSCodeNoMedication 157 epSOSCodeProb 158 epSOSConfidentiality 159 epSOSCountry 160 epSOSDisplayLabel 167 epSOSDocumentCode 170 epSOSDoseForm 171 epSOSHealthcareProfessionalRoles 184 epSOSIllnessesandDisorders 186 epSOSLanguage 448 epSOSMedicalDevices 458 epSOSNullFavor 461 epSOSPackage 462 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 2 of 490 MTC epSOSPersonalRelationship 464 epSOSPregnancyInformation 466 epSOSProcedures 467 epSOSReactionAllergy 470 epSOSResolutionOutcome 472 epSOSRoleClass 473 epSOSRouteofAdministration 474 epSOSSections 477 epSOSSeverity 478 epSOSSocialHistory 479 epSOSStatusCode 480 epSOSSubstitutionCode 481 epSOSTelecomAddress 482 epSOSTimingEvent 483 epSOSUnits 484 epSOSUnknownInformation 487 epSOSVaccine 488 © eHealth DSI eHDSI Solution Provider v2.2.2-OR Wed Nov 08 16:16:10 CET 2017 Page 3 of 490 MTC epSOSActiveIngredient epSOSActiveIngredient Value Set ID 1.3.6.1.4.1.12559.11.10.1.3.1.42.24 TRANSLATIONS Code System ID Code System Version Concept Code Description (FSN) 2.16.840.1.113883.6.73 2017-01 A ALIMENTARY TRACT AND METABOLISM 2.16.840.1.113883.6.73 2017-01
    [Show full text]
  • (Gpcrs)-Mediated Calcium Signaling in Ovarian Cancer: Focus on Gpcrs Activated by Neurotransmitters and Inflammation-Associated Molecules
    International Journal of Molecular Sciences Review G Protein-Coupled Receptors (GPCRs)-Mediated Calcium Signaling in Ovarian Cancer: Focus on GPCRs activated by Neurotransmitters and Inflammation-Associated Molecules 1, 2, 2,3 Dragos, -Valentin Predescu y, Sanda Maria Cret, oiu y, Dragos, Cret, oiu , Luciana Alexandra Pavelescu 2, Nicolae Suciu 3,4,5, Beatrice Mihaela Radu 6,7,* and Silviu-Cristian Voinea 8 1 Department of General Surgery, Sf. Maria Clinical Hospital, Carol Davila University of Medicine and Pharmacy, 37-39 Ion Mihalache Blvd., 011172 Bucharest, Romania; [email protected] 2 Department of Cell and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd., 050474 Bucharest, Romania; [email protected] (S.M.C.); [email protected] (D.C.); [email protected] (L.A.P.) 3 Fetal Medicine Excellence Research Center, Alessandrescu-Rusescu National Institute of Mother and Child Health, Polizu Clinical Hospital, 38-52 Gh. Polizu Street, 020395 Bucharest, Romania; [email protected] 4 Department of Obstetrics and Gynecology, Alessandrescu-Rusescu National Institute of Mother and Child Health, Polizu Clinical Hospital, 38-52 Gh. Polizu Street, 020395 Bucharest, Romania 5 Division of Obstetrics and Gynecology and Neonatology, Carol Davila University of Medicine and Pharmacy, Polizu Clinical Hospital, 38-52 Gh. Polizu Street, 020395 Bucharest, Romania 6 Department of Anatomy, Animal Physiology and Biophysics, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independen¸tei,050095 Bucharest, Romania 7 Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Splaiul Independen¸tei,050095 Bucharest, Romania 8 Department of Surgical Oncology, Prof.
    [Show full text]