Lower and Middle Cambrian Stratigraphy in Northern Utah and Southeastern Idaho

Total Page:16

File Type:pdf, Size:1020Kb

Lower and Middle Cambrian Stratigraphy in Northern Utah and Southeastern Idaho BULLETIN OF THE GEOLOGICAL SOCIETY OF AMERICA VOL. 69. PP. 647-688. 3 FIGS. JUNE 1958 LOWER AND MIDDLE CAMBRIAN STRATIGRAPHY IN NORTHERN UTAH AND SOUTHEASTERN IDAHO BY GEORGE B. MAXEY ABSTRACT The stratigraphic succession of Lower and Middle Cambrian sediments in northern Utah and southeastern Idaho as determined from 13 measured sections includes the basal medium- to coarse-grained Prospect Mountain Quartzite overlain by interbedded fine- and coarse-grained clastic rocks (Pioche Formation) that in turn are overlain by several hundred to a few thousand feet of carbonate rocks with a few thinly interbedded layers of fine elastics. The carbonate sequence includes the Langston Formation, Ute Limestone, Blacksmith Dolomite, and Bloomington Formation. Known occurrences of fossils are listed for the formations. Seventeen faunal groups are identified, and a sequence of faunizones is proposed. Cambrian deposits may be separated into (1) orthoquartzite; (2) greenish-brown, micaceous and arenaceous shale; (3) brown-weathering, calcareous sandstone; (4) rusty- brown-weathering dolomite; (5) green and buff fissile shale; (6) calcareous black shale; (7) mottled, silty, aphanitic, thinly bedded limestone; (8) Girvanella limestone; (9) intra- formational conglomerate; (10) oolitic limestone; (11) "undifferentiated limestone"; and (12) "undifferentiated dolomite" facies. All these sediments probably were deposited in a shallow, chiefly transgressive, though oscillating, sea. This sea transgressed a low-lying but mature topography eastward to western Utah by earliest Cambrian (pre-Olenellus?) time and to eastern Utah by the end of Early Cambrian time. The area remained submerged during Medial Cambrian and much of Late Cambrian time. CONTENTS „ Langston Formation (Lower and Middle , . Fage Cambrian) ........................... 669 Introduction ............................. 648 Ute Formation ........................ 671 Location and general description of sections Blacksmith Dolomite .................... 672 studied .............................. 649 Bloomington Formation ................. 672 General statement ...................... 649 Early an(j Medial Cambrian faunules in Utah Portneuf and Bannock ranges, Idaho ...... 649 and southeastern Idaho .... ..673 Malad Range, Idaho .................... 649 ZonatiOn of the faunules ................... 676 Bear River Range, Utah and Idaho ....... 650 General statement ...................... 676 General description ................... 650 Olenellus zone .......................... 676 High Creek section ................... 651 Glossofleura-Zacanlhoid.es zone ............ 677 Section on the North Fork of Mill Creek Bathyuriscus-Elrathina zone .............. 678 and Spence Gulch section^ .......... 655 Thompsonaspis zone ..................... 678 Section in the Left Fork of Blacksmith Asaphiscus-Bolaspidella, zone ............. 678 Fork Canyon ....................... 656 Discussion ............................. 678 South Cottonwood Canyon section, Early and Medial Cambrian sedimentation Blacksmith Fork ................... 658 and paleogeograPhy ................... 679 Blacksmith Fork section ............... 658 Description of the lithofacies ............. 679 North part of the Wasatch Range, Utah. 659 Interpretation and paleogeography ........ 685 General statement .................... 659 Selected references ........................ 686 Calls Fort section ..................... 659 Willard Peak section .................. 662 Ogden Canyon section ................. 664 ILLUSTRATIONS Big Cottonwood Creek and Neffs Canyon sections ........................... 664 Fisure Pa«e Summary ............................ 666 1. Location of the stratigraphic sections Promontory Range, Utah ................ 666 studied and outcrops of Cambrian rocks Lower and Middle Cambrian formations in in the region ......................... 648 northeastern Utah and southeastern 2. Lithologic variations within some Lower Idaho and their regional relationships .... 667 and Middle Cambrian formations in Prospect Mountain Quartzite (Lower Cam- northern Utah and southeastern Idaho. 670 brian) ............................... 667 3. Regional correlation and Early and Me- Pioche Formation ....................... 668 dial Cambrian faunules and faunizones. 673 647 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/69/6/647/3431780/i0016-7606-69-6-647.pdf by guest on 02 October 2021 648 G. B. MAXEY—LOWER AND MIDDLE CAMBRIAN STRATIGRAPHY FIGURE 1.—LOCATION OF THE STRATIGRAPHIC SECTIONS STUDIED AND OUTCROPS OF CAMBRIAN ROCKS IN THE REGION INTRODUCTION plex and partly in error on the basis of modern principles and concepts of regional stratig- As part of a regional investigation of the raphy. Many of the conclusions here presented Cambrian rocks of the Great Basin which has are tentative because the field and laboratory been conducted sporadically since 1939, the study is still in progress. Additional informa- writer studied several sections of Lower and tion and more dependable conclusions will be Middle Cambrian rocks in northeastern Utah made available as the study progresses. and southeastern Idaho (Fig. 1). New informa- The writer gratefully acknowledges the tion resulting from this study constitutes the advice and assistance of Dr. Charles Deiss main body of this paper. Suggestions are also and Dr. J. Stewart Williams, both of whom included for simplifying and correcting Cam- encouraged him to begin and continue these brian formational and biostratigraphic nomen- studies. Dr. B. F. Howell consistently and clature which seems to be unnecessarily com- patiently advised the writer throughout the Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/69/6/647/3431780/i0016-7606-69-6-647.pdf by guest on 02 October 2021 INTRODUCTION 649 study; assisted him with many problems, Porlneuf and Bannock Ranges, Idaho chief among these the identification of most of the fossils; and finally read the manuscript. Detailed descriptions of sections of Cambrian Without this advice and assistance the study rocks in the north part of the Bannock Range would probably have never been completed, have been published by Ludlum (1943, p. 973- and for this the writer is sincerely grateful. 986). In the vicinity of Pocatello and Inkom, Dr. Erling Dorf and Dr. Franklin Van Houten Idaho, he found that 3200 feet of Prospect also read the manuscript and offered helpful Mountain ("Brigham") Quartzite unconform- suggestions. Thanks are extended to Dr. ably overlies the Precambrian Blackrock Lime- Norman Denson, Mr. Donald Duncan, Dr. stone. This is one of the few localities in Idaho Franco Rasetti, the late Dr. Charles E. Resser, and northern Utah, outside the Wasatch Range, Dr. John F. Mason, and the late Mr. Frank where the base of the Prospect Mountain For- Beckwith, all of whom contributed much time mation is exposed. The formation is pink to and many ideas. red, thick-bedded, vitreous, medium-grained Funds to finance the field and laboratory quartzose sandstone interbedded with beds work were furnished in part by the Depart- of coarse sandstone and pebble conglomerate. ments of Geology of Princeton University and The upper 600 feet of the formation as de- Utah State Agricultural College. The Univer- scribed by Ludlum is thin-bedded and contains sity of Connecticut also contributed funds for much green or buff siltstone and shale. The laboratory equipment and freed the writer lower part of this shaly and silty sequence may from excessive academic tasks during 1949 and be the lithogenetic equivalent of the Pioche 1950. Field assistants included John W. Wetz- Shale, and the upper part the equivalent of the ler (Summer, 1939), Kent O. Bushnell, and Spence Shale Member of the Langston Forma- Arthur Reimer (Summer, 1950). To these tion. The quartzite is conformably overlain by organizations and individuals the writer is 4250 feet of sparsely fossiliferous limestones indebted and extends his warmest thanks. interbedded with a little shale and sandstone. All sections described for the first time by In the vicinity of Scout Mountain about 10 the writer were measured with a Brunton com- miles south of Pocatello, Idaho, the writer pass and steel tape; adjustments were made to identified lithologic equivalents of the Lang- obtain the correct thicknesses of stratigraphic ston, Ute, and Bloomington Formations which units where necessary. These adjustments were also crop out in adjacent areas of Idaho and usually made by reference to Mertie's chart northern Utah. Time did not allow detailed (1922, PL VI). Rock colors were determined in measurement of this section, but several litho- the field by use of a standard rock color chart logic units and formations were recognized, (Goldman and Merwin, 1928). The color names including the Spence Shale Member of the corresponding to the color chips on the chart Langston Formation and the Hodges and Calls are from Ridgway (1912, p. 1-53). Fort Shale Members of the Bloomington For- mation. An equivalent of the Blacksmith Dolo- LOCATION AND GENERAL DESCRIPTION OF mite probably is absent in this locality. SECTIONS STUDIED A section in the south part of the Bannock Range, about 3 miles north of Malad City, General Statement Idaho, was also examined. Lithologic equiva- lents of the above-mentioned formations, ex- Most of the outcrop areas (Fig. 1) in north- cept the Blacksmith Dolomite, were also rec- eastern Utah and southern Idaho were visited ognized in this area. by the writer during the period
Recommended publications
  • Smithsonian Miscellaneous Collections Volume 148, Number 3
    —r SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 148, NUMBER 3 UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE (With 21 Plates) By FRANCO RASETTI The Johns Hopkins University Baltimore, Md. (Publication 4598) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION June 10, 1965 ,v, . SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 148, NUMBER 3 l^psfarrl| 3F«ttb UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE (With 21 Plates) By FRANCO RASETTI The Johns Hopkins University Baltimore, Md. (Publication 4598) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION June 10, 1965 <.%'^ Q^fii^ CONNECTICUT PRINTERS, INC. HARTFORD, CONN., U.S.A. CONTENTS Part I. Stratigraphy and Faunas Pj^ge Acknowledgments 3 Descriptions of Localities and Sections 3 General statement 3 Hawkins County 4 Hamblen County 10 Grainger County 12 Jefferson County I5 Union County 19 Claiborne County 21 Knox County 22 Monroe County 23 Purchase Ridge, Scott Coimty, Virginia 24 Index of Localities 25 Fauna of the Cedaria Zone 26 Fauna of the Crepicephalus Zone 28 Fauna of the Aphelaspis Zone 30 Part II. Systematic Paleontology General Statement 38 Descriptions of Trilobite Genera and Species Order AGNOSTIDA 38 Family AGNOSTIDAE 38 Order CORYNEXOCHIDA 39 Family DORYPYGIDAE 39 Order PTYCHOPARHDA 40 Family LONCHOCEPHALIDAE 40 Family CATILLICEPHALIDAE 44 Family CREPICEPHALIDAE 45 Family TRI CREPICEPHALIDAE 54 Family ASAPHISCIDAE 55 Family KINGSTONIIDAE 60 Family MENOMONIIDAE 61 Family NORWOODIIDAE 64 Family CEDARIIDAE 69 Family ELVINIIDAE 71 Family PTEROCEPHALIIDAE 72, PTYCHOPARHDA of uncertain affinities 102 Undetermined trilobites 112 References 115 Explanation of Plates 118 UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE By FRANCO RASETTI The Johns Hopkins University PART I. STRATIGRAPHY AND FAUNAS The purpose of this paper is both to describe the fossils and to present them in their proper stratigraphic setting.
    [Show full text]
  • Paleontological Contributions
    Paleontological Contributions Number 3 A new Cambrian arthropod, Emeraldella brutoni, from Utah Martin Stein, Stephen B. Church, and Richard A. Robison September 30, 2011 Lawrence, Kansas, USA ISSN 1946-0279 paleo.ku.edu/contributions http://hdl.handle.net/1808/8086 Paleontological Contributions September 30, 2011 Number 3 A NEW CAMBRIAN ARTHROPOD, EMERALDELLA BRUTONI, FROM UTAH Martin Stein,1* Stephen B. Church,2 and Richard A. Robison1 1University of Kansas, Department of Geology, Lawrence, Kansas 66045, USA, [email protected], [email protected]; 2Sinclair Oil & Gas Company, Salt Lake City, Utah 84130, USA, [email protected] ABSTRACT Emeraldella is a rare arthropod of relatively large body size that belongs with the trilobite-like arthropods, Artiopoda. E. brutoni n. sp. from the Wheeler Formation of west-central Utah is the second species described and marks the first confirmed occurrence of Emeraldella outside the Burgess Shale of British Columbia. An articulated, flagelliform telson, similar to that of the Burgess Shale taxon Molaria, is recognized in Emeraldella. Evidence for the presence of lamellae on the exopods of Molaria is presented, supporting affinity of that taxon with Artiopoda. A close relationship between Emeraldella and Molaria is tentatively suggested, based on the morphology of tergites and telson. Keywords: Wheeler Formation, Drum Mountains, exceptional preservation, Arthropoda INTRODUCTION others (2007), Elrick and Hinnov (2007), Brett and others (2009), Halgedahl and others (2009), and Howley and Jiang (2010), The Wheeler Formation of west-central Utah is well known have provided more detailed information about its stratigraphy for its diverse and exceptionally preserved biota, which was and depositional environments. One of us (S.B.C.) collected the reviewed by Robison (1991).
    [Show full text]
  • Early and Middle Cambrian Trilobites from Antarctica
    Early and Middle Cambrian Trilobites From Antarctica GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Early and Middle Cambrian Trilobites From Antarctica By ALLISON R. PALMER and COLIN G. GATEHOUSE CONTRIBUTIONS TO THE GEOLOGY OF ANTARCTICA GEOLOGICAL SURVEY PROFESSIONAL PAPER 456-D Bio stratigraphy and regional significance of nine trilobite faunules from Antarctic outcrops and moraines; 28 species representing 21 genera are described UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1972 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-190734 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 70 cents (paper cover) Stock Number 2401-2071 CONTENTS Page Page Abstract_ _ ________________________ Dl Physical stratigraphy______________________________ D6 I&troduction. _______________________ 1 Regional correlation within Antarctica ________________ 7 Biostratigraphy _____________________ 3 Systematic paleontology._____-_______-____-_-_-----_ 9 Early Cambrian faunules.________ 4 Summary of classification of Antarctic Early and Australaspis magnus faunule_ 4 Chorbusulina wilkesi faunule _ _ 5 Middle Cambrian trilobites. ___________________ 9 Chorbusulina subdita faunule _ _ 5 Agnostida__ _ _________-____-_--____-----__---_ 9 Early Middle Cambrian f aunules __ 5 Redlichiida. __-_--------------------------_---- 12 Xystridura mutilinia faunule- _ 5 Corynexochida._________--________-_-_---_----_
    [Show full text]
  • An Appraisal of the Great Basin Middle Cambrian Trilobites Described Before 1900
    An Appraisal of the Great Basin Middle Cambrian Trilobites Described Before 1900 By ALLISON R. PALMER A SHORTER CONTRIBUTION TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 264-D Of the 2ty species described prior to I(?OO, 2/ are redescribed and 2C} refigured, and a new name is proposedfor I species UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1 (paper cover) CONTENTS Page Abstract..__________________________________ 55 Introduction ________________________________ 55 Original and present taxonomic names of species. 57 Stratigraphic distribution of species ____________ 57 Collection localities._________________________ 58 Systematic descriptions.______________________ 59 Literature cited____________________________ 82 Index __-_-__-__---_--______________________ 85 ILLUSTRATIONS [Plates 13-17 follow page 86] PLATE 13. Agnostidae and Dolichometopidae 14. Dorypygidae 15. Oryctocephalidae, Dorypygidae, Zacanthoididae, and Ptychoparioidea 16. Ptychoparioidea 17. Ptychoparioidea FIGUBE 3. Index map showing collecting localities____________________________ . Page 56 in A SHORTER CONTRIBUTION TO GENERAL GEOLOGY AN APPRAISAL OF THE GREAT BASIN MIDDLE CAMBRIAN TRILOBITES DESCRIBED BEFORE 1900 By ALLISON R. PALMER ABSTRACT the species and changes in their generic assignments All 29 species of Middle Cambrian trilobites
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]
  • An Inventory of Trilobites from National Park Service Areas
    Sullivan, R.M. and Lucas, S.G., eds., 2016, Fossil Record 5. New Mexico Museum of Natural History and Science Bulletin 74. 179 AN INVENTORY OF TRILOBITES FROM NATIONAL PARK SERVICE AREAS MEGAN R. NORR¹, VINCENT L. SANTUCCI1 and JUSTIN S. TWEET2 1National Park Service. 1201 Eye Street NW, Washington, D.C. 20005; -email: [email protected]; 2Tweet Paleo-Consulting. 9149 79th St. S. Cottage Grove. MN 55016; Abstract—Trilobites represent an extinct group of Paleozoic marine invertebrate fossils that have great scientific interest and public appeal. Trilobites exhibit wide taxonomic diversity and are contained within nine orders of the Class Trilobita. A wealth of scientific literature exists regarding trilobites, their morphology, biostratigraphy, indicators of paleoenvironments, behavior, and other research themes. An inventory of National Park Service areas reveals that fossilized remains of trilobites are documented from within at least 33 NPS units, including Death Valley National Park, Grand Canyon National Park, Yellowstone National Park, and Yukon-Charley Rivers National Preserve. More than 120 trilobite hototype specimens are known from National Park Service areas. INTRODUCTION Of the 262 National Park Service areas identified with paleontological resources, 33 of those units have documented trilobite fossils (Fig. 1). More than 120 holotype specimens of trilobites have been found within National Park Service (NPS) units. Once thriving during the Paleozoic Era (between ~520 and 250 million years ago) and becoming extinct at the end of the Permian Period, trilobites were prone to fossilization due to their hard exoskeletons and the sedimentary marine environments they inhabited. While parks such as Death Valley National Park and Yukon-Charley Rivers National Preserve have reported a great abundance of fossilized trilobites, many other national parks also contain a diverse trilobite fauna.
    [Show full text]
  • Arthropod Pattern Theory and Cambrian Trilobites
    Bijdragen tot de Dierkunde, 64 (4) 193-213 (1995) SPB Academie Publishing bv, The Hague Arthropod pattern theory and Cambrian trilobites Frederick A. Sundberg Research Associate, Invertebrate Paleontology Section, Los Angeles County Museum of Natural History, 900 Exposition Boulevard, Los Angeles, California 90007, USA Keywords: Arthropod pattern theory, Cambrian, trilobites, segment distributions 4 Abstract ou 6). La limite thorax/pygidium se trouve généralementau niveau du node 2 (duplomères 11—13) et du node 3 (duplomères les les 18—20) pour Corynexochides et respectivement pour Pty- An analysis of duplomere (= segment) distribution within the chopariides.Cette limite se trouve dans le champ 4 (duplomères cephalon,thorax, and pygidium of Cambrian trilobites was un- 21—n) dans le cas des Olenellides et des Redlichiides. L’extrémité dertaken to determine if the Arthropod Pattern Theory (APT) du corps se trouve généralementau niveau du node 3 chez les proposed by Schram & Emerson (1991) applies to Cambrian Corynexochides, et au niveau du champ 4 chez les Olenellides, trilobites. The boundary of the cephalon/thorax occurs within les Redlichiides et les Ptychopariides. D’autre part, les épines 1 4 the predicted duplomerenode (duplomeres or 6). The bound- macropleurales, qui pourraient indiquer l’emplacement des ary between the thorax and pygidium generally occurs within gonopores ou de l’anus, sont généralementsituées au niveau des node 2 (duplomeres 11—13) and node 3 (duplomeres 18—20) for duplomères pronostiqués. La limite prothorax/opisthothorax corynexochids and ptychopariids, respectively. This boundary des Olenellides est située dans le node 3 ou près de celui-ci. Ces occurs within field 4 (duplomeres21—n) for olenellids and red- résultats indiquent que nombre et distribution des duplomères lichiids.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 5 Cfjarle* £. anb Jfflarp "^Xaux flKHalcott 3Resiearcf) Jf tmb MIDDLE CAMBRIAN STRATIGRAPHY AND FAUNAS OF THE CANADIAN ROCKY MOUNTAINS (With 34 Plates) BY FRANCO RASETTI The Johns Hopkins University Baltimore, Maryland SEP Iff 1951 (Publication 4046) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 18, 1951 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 5 Cfjarie* B. anb Jfflarp "^Taux OTalcott &egearcf) Jf unb MIDDLE CAMBRIAN STRATIGRAPHY AND FAUNAS OF THE CANADIAN ROCKY MOUNTAINS (With 34 Plates) BY FRANCO RASETTI The Johns Hopkins University Baltimore, Maryland (Publication 4046) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 18, 1951 BALTIMORE, MD., U. 8. A. CONTENTS PART I. STRATIGRAPHY Page Introduction i The problem I Acknowledgments 2 Summary of previous work 3 Method of work 7 Description of localities and sections 9 Terminology 9 Bow Lake 11 Hector Creek 13 Slate Mountains 14 Mount Niblock 15 Mount Whyte—Plain of Six Glaciers 17 Ross Lake 20 Mount Bosworth 21 Mount Victoria 22 Cathedral Mountain 23 Popes Peak 24 Eiffel Peak 25 Mount Temple 26 Pinnacle Mountain 28 Mount Schaffer 29 Mount Odaray 31 Park Mountain 33 Mount Field : Kicking Horse Aline 35 Mount Field : Burgess Quarry 37 Mount Stephen 39 General description 39 Monarch Creek IS Monarch Mine 46 North Gully and Fossil Gully 47 Cambrian formations : Lower Cambrian S3 St. Piran sandstone 53 Copper boundary of formation ?3 Peyto limestone member 55 Cambrian formations : Middle Cambrian 56 Mount Whyte formation 56 Type section 56 Lithology and thickness 5& Mount Whyte-Cathedral contact 62 Lake Agnes shale lentil 62 Yoho shale lentil "3 iii iv SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL.
    [Show full text]
  • A Cambrian Meraspid Cluster: Evidence of Trilobite Egg Deposition in a Nest Site
    PALAIOS, 2019, v. 34, 254–260 Research Article DOI: http://dx.doi.org/10.2110/palo.2018.102 A CAMBRIAN MERASPID CLUSTER: EVIDENCE OF TRILOBITE EGG DEPOSITION IN A NEST SITE 1 2 DAVID R. SCHWIMMER AND WILLIAM M. MONTANTE 1Department of Earth and Space Sciences, Columbus State University, Columbus, Georgia 31907-5645, USA 2Tellus Science Museum, 100 Tellus Drive, Cartersville, Georgia, 30120 USA email: [email protected] ABSTRACT: Recent evidence confirms that trilobites were oviparous; however, their subsequent embryonic development has not been determined. A ~ 6cm2 claystone specimen from the upper Cambrian (Paibian) Conasauga Formation in western Georgia contains a cluster of .100 meraspid trilobites, many complete with librigenae. The juvenile trilobites, identified as Aphelaspis sp., are mostly 1.5 to 2.0 mm total length and co-occur in multiple axial orientations on a single bedding plane. This observation, together with the attached free cheeks, indicates that the association is not a result of current sorting. The majority of juveniles with determinable thoracic segment counts are of meraspid degree 5, suggesting that they hatched penecontemporaneously following a single egg deposition event. Additionally, they are tightly assembled, with a few strays, suggesting that the larvae either remained on the egg deposition site or selectively reassembled as affiliative, feeding, or protective behavior. Gregarious behavior by trilobites (‘‘trilobite clusters’’) has been reported frequently, but previously encompassed only holaspid adults or mixed-age assemblages. This is the first report of juvenile trilobite clustering and one of the few reported clusters involving Cambrian trilobites. Numerous explanations for trilobite clustering behavior have been posited; here it is proposed that larval clustering follows egg deposition at a nest site, and that larval aggregation may be a homing response to their nest.
    [Show full text]
  • Upper Lower Cambrian (Provisional Cambrian Series 2) Trilobites from Northwestern Gansu Province, China
    Estonian Journal of Earth Sciences, 2014, 63, 3, 123–143 doi: 10.3176/earth.2014.12 Upper lower Cambrian (provisional Cambrian Series 2) trilobites from northwestern Gansu Province, China a b c c Jan Bergström , Zhou Zhiqiang , Per Ahlberg and Niklas Axheimer a Department of Palaeozoology, Swedish Museum of Natural History, P.O. Box 5007, SE-104 05 Stockholm, Sweden b Xi’an Institute of Geology and Mineral Resources, 438 East You Yi Road, Xi’an 710054, Peoples Republic of China; [email protected] c Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden; [email protected], [email protected] Received 7 March 2014, accepted 24 June 2014 Abstract. Upper lower Cambrian (provisional Cambrian Series 2) trilobites are described from three sections through the Shuangyingshan Formation in the Beishan area, northwestern Gansu Province, China. The trilobite fauna is dominated by eodiscoid and ‘corynexochid’ trilobites, together representing at least ten genera: Serrodiscus, Tannudiscus, Calodiscus, Pagetides, Kootenia, Edelsteinaspis, Ptarmiganoides?, Politinella, Dinesus and Subeia. Eleven species are described, of which seven are identified with previously described taxa and four described under open nomenclature. The composition of the fauna suggests biogeographic affinity with Siberian rather than Gondwanan trilobite faunas, and the Cambrian Series 2 faunas described herein and from elsewhere in northwestern China seem to be indicative of the marginal areas of the Siberian palaeocontinent. This suggests that the Middle Tianshan–Beishan Terrane may have been located fairly close to Siberia during middle–late Cambrian Epoch 2. Key words: Trilobita, taxonomy, palaeobiogeography, lower Cambrian, Cambrian Series 2, Beishan, Gansu Province, China.
    [Show full text]
  • Smithsonian Miscellaneous Collections
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 64, NUMBER 5 CAMBRIAN GEOLOGY AND PALEONTOLOGY III No. 5. CAMBRIAN TRILOBITES . (With Plates 45 to 67) BY CHARLES D. WALGOTT (Publication 2420) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION SEPTEMBER 29, 1916 C^e JSorb (^adimote (preee BALTIMORE, MD., U. S. A. CAMBRIAN GEOLOGY AND PALEONTOLOGY III No. 5.—CAMBRIAN TRILOBITES By CHARLES D. WALCOTT (With Plates 45 to 67) CONTENTS PAGE Introduction 307 Descriptions of genera and species 308 Family Corynexochidae Angelin 308 Corynexochus Angelin 309 Coryncxochus bornholmicnsis Gronwall (pi. 55, figs. 2, 2a-b) 313 Corynexochus brennus, new species (pi. 57, figs. 3, 30-6) 314 Corynexochus bubaris, new species (pi. 56, figs. 2, 2a-b, 3, 3a-f) 314 Corynexochus capito, new species (pi. 57, figs. 2, 2a-e) 315 Corynexochus clavatus (Walcott) (pi. 55, figs. 4, j,a-b) 316 Corynexochus dclagei Miquel (pi. 55, figs. 2, ^a) 317 Corynexochus minor (Walcott) (pi. 55, figs. 6, 6a-d) . 319 Corynexochus senectus (Billings) (pi. 55, figs. 7, 7a-c; pi. 56, figs. I, la-g) 319 Corynexochus spinulosus Angelin (pi. 55, figs, i, la-b) 323 Corynexochus stephenensis (Walcott) (pi. 55, figs. 5, Sa-c) 324 Bonnia, new subgenus 325 Corynexochus {Bonnia) busa, new species (pi. 57, fig. la; pi. 60, figs. 3, 2,a-c) 326 Corynexochus {Bonnia) fieldensis (Walcott) (pi. 57, figs. 4, 4a-b) 327 Corynexochus {Bonnia) parvulus (Billings) (pi. 57, figs. I, ib-c; pi. 64, fig. 6) 328 Family Dolichometopinse 330 Bathyuriscus Meek 330 Comparison of Bathyuriscus with other genera 2:^2 Bathyuriscus adaus, new species (pi.
    [Show full text]
  • Synoptic Taxonomy of Major Fossil Groups
    APPENDIX Synoptic Taxonomy of Major Fossil Groups Important fossil taxa are listed down to the lowest practical taxonomic level; in most cases, this will be the ordinal or subordinallevel. Abbreviated stratigraphic units in parentheses (e.g., UCamb-Ree) indicate maximum range known for the group; units followed by question marks are isolated occurrences followed generally by an interval with no known representatives. Taxa with ranges to "Ree" are extant. Data are extracted principally from Harland et al. (1967), Moore et al. (1956 et seq.), Sepkoski (1982), Romer (1966), Colbert (1980), Moy-Thomas and Miles (1971), Taylor (1981), and Brasier (1980). KINGDOM MONERA Class Ciliata (cont.) Order Spirotrichia (Tintinnida) (UOrd-Rec) DIVISION CYANOPHYTA ?Class [mertae sedis Order Chitinozoa (Proterozoic?, LOrd-UDev) Class Cyanophyceae Class Actinopoda Order Chroococcales (Archean-Rec) Subclass Radiolaria Order Nostocales (Archean-Ree) Order Polycystina Order Spongiostromales (Archean-Ree) Suborder Spumellaria (MCamb-Rec) Order Stigonematales (LDev-Rec) Suborder Nasselaria (Dev-Ree) Three minor orders KINGDOM ANIMALIA KINGDOM PROTISTA PHYLUM PORIFERA PHYLUM PROTOZOA Class Hexactinellida Order Amphidiscophora (Miss-Ree) Class Rhizopodea Order Hexactinosida (MTrias-Rec) Order Foraminiferida* Order Lyssacinosida (LCamb-Rec) Suborder Allogromiina (UCamb-Ree) Order Lychniscosida (UTrias-Rec) Suborder Textulariina (LCamb-Ree) Class Demospongia Suborder Fusulinina (Ord-Perm) Order Monaxonida (MCamb-Ree) Suborder Miliolina (Sil-Ree) Order Lithistida
    [Show full text]