The Statistics of Sharpe Ratios Andrew W

Total Page:16

File Type:pdf, Size:1020Kb

The Statistics of Sharpe Ratios Andrew W The Statistics of Sharpe Ratios Andrew W. Lo The building blocks of the Sharpe ratio—expected returns and volatilities— are unknown quantities that must be estimated statistically and are, therefore, subject to estimation error. This raises the natural question: How accurately are Sharpe ratios measured? To address this question, I derive explicit expressions for the statistical distribution of the Sharpe ratio using standard asymptotic theory under several sets of assumptions for the return-generating process—independently and identically distributed returns, stationary returns, and with time aggregation. I show that monthly Sharpe ratios cannot be annualized by multiplying by 12 except under very special circumstances, and I derive the correct method of conversion in the general case of stationary returns. In an illustrative empirical example of mutual funds and hedge funds, I find that the annual Sharpe ratio for a hedge fund can be overstated by as much as 65 percent because of the presence of serial correlation in monthly returns, and once this serial correlation is properly taken into account, the rankings of hedge funds based on Sharpe ratios can change dramatically. ne of the most commonly cited statistics in show that confidence intervals, standard errors, financial analysis is the Sharpe ratio, the and hypothesis tests can be computed for the esti- ratio of the excess expected return of an mated Sharpe ratio in much the same way that they Oinvestment to its return volatility or standard devi- are computed for regression coefficients such as ation. Originally motivated by mean–variance portfolio alphas and betas. analysis and the Sharpe–Lintner Capital Asset Pric- The accuracy of Sharpe ratio estimators hinges ing Model, the Sharpe ratio is now used in many on the statistical properties of returns, and these different contexts, from performance attribution to properties can vary considerably among portfolios, tests of market efficiency to risk management.1 strategies, and over time. In other words, the Given the Sharpe ratio’s widespread use and the Sharpe ratio estimator’s statistical properties typi- myriad interpretations that it has acquired over the cally will depend on the investment style of the years, it is surprising that so little attention has been portfolio being evaluated. At a superficial level, the paid to its statistical properties. Because expected intuition for this claim is obvious: The performance returns and volatilities are quantities that are gen- of more volatile investment strategies is more dif- erally not observable, they must be estimated in ficult to gauge than that of less volatile strategies. some fashion. The inevitable estimation errors that Therefore, it should come as no surprise that the arise imply that the Sharpe ratio is also estimated results derived in this article imply that, for exam- with error, raising the natural question: How accu- ple, Sharpe ratios are likely to be more accurately rately are Sharpe ratios measured? estimated for mutual funds than for hedge funds. In this article, I provide an answer by deriving A less intuitive implication is that the time- the statistical distribution of the Sharpe ratio using series properties of investment strategies (e.g., standard econometric methods under several dif- mean reversion, momentum, and other forms of ferent sets of assumptions for the statistical behav- serial correlation) can have a nontrivial impact on ior of the return series on which the Sharpe ratio is the Sharpe ratio estimator itself, especially in com- based. Armed with this statistical distribution, I puting an annualized Sharpe ratio from monthly data. In particular, the results derived in this article show that the common practice of annualizing Andrew W. Lo is Harris & Harris Group Professor at Sharpe ratios by multiplying monthly estimates by the Sloan School of Management, Massachusetts Insti- 12 is correct only under very special circum- tute of Technology, Cambridge, and chief scientific officer stances and that the correct multiplier—which for AlphaSimplex Group, LLC, Cambridge. depends on the serial correlation of the portfolio’s 36 ©2002, AIMR® The Statistics of Sharpe Ratios returns—can yield Sharpe ratios that are consider- data, a more general distribution is derived in the ably smaller (in the case of positive serial correla- “Non-IID Returns” section, one that applies to tion) or larger (in the case of negative serial returns with serial correlation, time-varying condi- correlation). Therefore, Sharpe ratio estimators tional volatilities, and many other characteristics of must be computed and interpreted in the context of historical financial time series. In the “Time Aggre- the particular investment style with which a port- gation” section, I develop explicit expressions for folio’s returns have been generated. “time-aggregated’’ Sharpe ratio estimators (e.g., Let Rt denote the one-period simple return of expressions for converting monthly Sharpe ratio a portfolio or fund between dates t – 1 and t and estimates to annual estimates) and their distribu- denote by µ and σ2 its mean and variance: tions. To illustrate the practical relevance of these µ ≡ estimators, I apply them to a sample of monthly E(Rt), (1a) mutual fund and hedge fund returns and show that and serial correlation has dramatic effects on the annual σ2 ≡ Var (R ). (1b) Sharpe ratios of hedge funds, inflating Sharpe ratios t by more than 65 percent in some cases and deflating Recall that the Sharpe ratio (SR) is defined as the Sharpe ratios in other cases. ratio of the excess expected return to the standard deviation of return: IID Returns µ – Rf To derive a measure of the uncertainty surrounding SR ≡ -------------- , (2) σ the estimator SR, we need to specify the statistical where the excess expected return is usually com- properties of Rt because these properties determine puted relative to the risk-free rate, R Because µ and the uncertainty surrounding the component estima- f. 2 σ are the population moments of the distribution of tors µˆ and σˆ . Although this may seem like a theo- Rt, they are unobservable and must be estimated retical exercise best left for statisticians—not unlike using historical data. the specification of the assumptions needed to yield well-behaved estimates from a linear regression— Given a sample of historical returns (R1, R2, . ., there is often a direct connection between the invest- RT), the standard estimators for these moments are the sample mean and variance: ment management process of a portfolio and its statistical properties. For example, a change in the 1 T µˆ = --- R (3a) portfolio manager’s style from a small-cap value T ∑ t orientation to a large-cap growth orientation will t =1 typically have an impact on the portfolio’s volatility, and degree of mean reversion, and market beta. Even for T a fixed investment style, a portfolio’s characteristics 2 1 2 σˆ = --- ()R – µˆ ,(3b) T ∑ t can change over time because of fund inflows and t =1 outflows, capacity constraints (e.g., a microcap fund from which the estimator of the Sharpe ratio (SR) that is close to its market-capitalization limit), follows immediately: liquidity constraints (e.g., an emerging market or private equity fund), and changes in market condi- µˆ – R SR = --------------f .(4)tions (e.g., sudden increases or decreases in volatil- σˆ ity, shifts in central banking policy, and Using a set of techniques collectively known as extraordinary events, such as the default of Russian “large-sample’’ or “asymptotic’’ statistical theory government bonds in August 1998). Therefore, the in which the Central Limit Theorem is applied to investment style and market environment must be estimators such as µˆ and σˆ 2, the distribution of SR kept in mind when formulating the assumptions for and other nonlinear functions of µˆ and σˆ 2 can be the statistical properties of a portfolio’s returns. easily derived. Perhaps the simplest set of assumptions that we In the next section, I present the statistical dis- can specify for Rt is that they are independently and tribution of SR under the standard assumption that identically distributed. This means that the proba- returns are independently and identically distrib- bility distribution of Rt is identical to that of Rs for uted (IID). This distribution completely character- any two dates t and s and that Rt and Rs are statisti- izes the statistical behavior of SR in large samples cally independent for all t ≠ s. Although these con- and allows us to quantify the precision with which ditions are extreme and empirically implausible— SR estimates SR. But because the IID assumption is the probability distribution of the monthly return of extremely restrictive and often violated by financial the S&P 500 Index in October 1987 is likely to differ July/August 2002 37 Financial Analysts Journal from the probability distribution of the monthly is reminiscent of the expression for the variance of return of the S&P 500 in December 2000—they pro- the weighted sum of two random variables, except vide an excellent starting point for understanding that in Equation 7, there is no covariance term. This the statistical properties of Sharpe ratios. In the next is due to the fact that µˆ and σˆ 2 are asymptotically section, these assumptions will be replaced with a independent, thanks to our simplifying assump- more general set of conditions for returns. tion of IID returns. In the next sections, the IID Under the assumption that returns are IID and assumption will be replaced by a more general set have finite mean µ and variance σ2, it is well of conditions on returns, in which case, the covari- known that the estimators µˆ and σˆ 2 in Equation 3 ance between µˆ and σˆ 2 will no longer be zero and have the following normal distributions in large the corresponding expression for the asymptotic samples, or “asymptotically,” due to the Central variance of the Sharpe ratio estimator will be some- Limit Theorem:2 what more involved.
Recommended publications
  • Fact Sheet 2021
    Q2 2021 GCI Select Equity TM Globescan Capital was Returns (Average Annual) Morningstar Rating (as of 3/31/21) © 2021 Morningstar founded on the principle Return Return that investing in GCI Select S&P +/- Percentile Quartile Overall Funds in high-quality companies at Equity 500TR Rank Rank Rating Category attractive prices is the best strategy to achieve long-run Year to Date 18.12 15.25 2.87 Q1 2021 Top 30% 2nd 582 risk-adjusted performance. 1-year 43.88 40.79 3.08 1 year Top 19% 1st 582 As such, our portfolio is 3-year 22.94 18.67 4.27 3 year Top 3% 1st 582 concentrated and focused solely on the long-term, Since Inception 20.94 17.82 3.12 moat-protected future free (01/01/17) cash flows of the companies we invest in. TOP 10 HOLDINGS PORTFOLIO CHARACTERISTICS Morningstar Performance MPT (6/30/2021) (6/30/2021) © 2021 Morningstar Core Principles Facebook Inc A 6.76% Number of Holdings 22 Return 3 yr 19.49 Microsoft Corp 6.10% Total Net Assets $44.22M Standard Deviation 3 yr 18.57 American Tower Corp 5.68% Total Firm Assets $119.32M Alpha 3 yr 3.63 EV/EBITDA (ex fincls/reits) 17.06x Upside Capture 3yr 105.46 Crown Castle International Corp 5.56% P/E FY1 (ex fincls/reits) 29.0x Downside Capture 3 yr 91.53 Charles Schwab Corp 5.53% Invest in businesses, EPS Growth (ex fincls/reits) 25.4% Sharpe Ratio 3 yr 1.04 don't trade stocks United Parcel Service Inc Class B 5.44% ROIC (ex fincls/reits) 14.1% Air Products & Chemicals Inc 5.34% Standard Deviation (3-year) 18.9% Booking Holding Inc 5.04% % of assets in top 5 holdings 29.6% Mastercard Inc A 4.74% % of assets in top 10 holdings 54.7% First American Financial Corp 4.50% Dividend Yield 0.70% Think long term, don't try to time markets Performance vs S&P 500 (Average Annual Returns) Be concentrated, 43.88 GCI Select Equity don't overdiversify 40.79 S&P 500 TR 22.94 20.94 18.12 18.67 17.82 15.25 Use the market, don't rely on it YTD 1 YR 3 YR Inception (01/01/2017) Disclosures Globescan Capital Inc., d/b/a GCI-Investors, is an investment advisor registered with the SEC.
    [Show full text]
  • A Parametric Bayesian Approach in Density Ratio Estimation
    Article A Parametric Bayesian Approach in Density Ratio Estimation Abdolnasser Sadeghkhani 1,* , Yingwei Peng 2 and Chunfang Devon Lin 3 1 Department of Mathematics & Statistics, Brock University, St. Catharines, ON L2S 3A1, Canada 2 Departments of Public Health Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; [email protected] 3 Department of Mathematics & Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada; [email protected] * Correspondence: [email protected] Received: 7 March 2019; Accepted: 26 March 2019; Published: 30 March 2019 Abstract: This paper is concerned with estimating the ratio of two distributions with different parameters and common supports. We consider a Bayesian approach based on the log–Huber loss function, which is resistant to outliers and useful for finding robust M-estimators. We propose two different types of Bayesian density ratio estimators and compare their performance in terms of frequentist risk function. Some applications, such as classification and divergence function estimation, are addressed. Keywords: Bayes estimator; Bregman divergence; density ratio; exponential family; log–Huber loss 1. Introduction The problem of estimating the ratio of two densities appears in many areas of statistical and computer science. Density ratio estimation (DRE) is widely considered to be the most important factor in machine learning and information theory (Sugiyama et al. [1], and Kanamori et al. [2]). In a series of papers, Sugiyama et al. [3,4] developed DRE in different statistical data analysis problems. Some useful applications of DRE are as follows: non-stationary adaptation (Sugiyama and Müller [5] and Quiñonero-Candela et al. [6]), variable selection (Suzuki et al.
    [Show full text]
  • Lapis Global Top 50 Dividend Yield Index Ratios
    Lapis Global Top 50 Dividend Yield Index Ratios MARKET RATIOS 2012 2013 2014 2015 2016 2017 2018 2019 2020 P/E Lapis Global Top 50 DY Index 14,45 16,07 16,71 17,83 21,06 22,51 14,81 16,96 19,08 MSCI ACWI Index (Benchmark) 15,42 16,78 17,22 19,45 20,91 20,48 14,98 19,75 31,97 P/E Estimated Lapis Global Top 50 DY Index 12,75 15,01 16,34 16,29 16,50 17,48 13,18 14,88 14,72 MSCI ACWI Index (Benchmark) 12,19 14,20 14,94 15,16 15,62 16,23 13,01 16,33 19,85 P/B Lapis Global Top 50 DY Index 2,52 2,85 2,76 2,52 2,59 2,92 2,28 2,74 2,43 MSCI ACWI Index (Benchmark) 1,74 2,02 2,08 2,05 2,06 2,35 2,02 2,43 2,80 P/S Lapis Global Top 50 DY Index 1,49 1,70 1,72 1,65 1,71 1,93 1,44 1,65 1,60 MSCI ACWI Index (Benchmark) 1,08 1,31 1,35 1,43 1,49 1,71 1,41 1,72 2,14 EV/EBITDA Lapis Global Top 50 DY Index 9,52 10,45 10,77 11,19 13,07 13,01 9,92 11,82 12,83 MSCI ACWI Index (Benchmark) 8,93 9,80 10,10 11,18 11,84 11,80 9,99 12,22 16,24 FINANCIAL RATIOS 2012 2013 2014 2015 2016 2017 2018 2019 2020 Debt/Equity Lapis Global Top 50 DY Index 89,71 93,46 91,08 95,51 96,68 100,66 97,56 112,24 127,34 MSCI ACWI Index (Benchmark) 155,55 137,23 133,62 131,08 134,68 130,33 125,65 129,79 140,13 PERFORMANCE MEASURES 2012 2013 2014 2015 2016 2017 2018 2019 2020 Sharpe Ratio Lapis Global Top 50 DY Index 1,48 2,26 1,05 -0,11 0,84 3,49 -1,19 2,35 -0,15 MSCI ACWI Index (Benchmark) 1,23 2,22 0,53 -0,15 0,62 3,78 -0,93 2,27 0,56 Jensen Alpha Lapis Global Top 50 DY Index 3,2 % 2,2 % 4,3 % 0,3 % 2,9 % 2,3 % -3,9 % 2,4 % -18,6 % Information Ratio Lapis Global Top 50 DY Index -0,24
    [Show full text]
  • Arbitrage Pricing Theory: Theory and Applications to Financial Data Analysis Basic Investment Equation
    Risk and Portfolio Management Spring 2010 Arbitrage Pricing Theory: Theory and Applications To Financial Data Analysis Basic investment equation = Et equity in a trading account at time t (liquidation value) = + Δ Rit return on stock i from time t to time t t (includes dividend income) = Qit dollars invested in stock i at time t r = interest rate N N = + Δ + − ⎛ ⎞ Δ ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t before rebalancing, at time t t i=1 ⎝ i=1 ⎠ N N N = + Δ + − ⎛ ⎞ Δ + ε ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t ∑| Qi(t+Δt) - Qit | after rebalancing, at time t t i=1 ⎝ i=1 ⎠ i=1 ε = transaction cost (as percentage of stock price) Leverage N N = + Δ + − ⎛ ⎞ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t i=1 ⎝ i=1 ⎠ N ∑ Qit Ratio of (gross) investments i=1 Leverage = to equity Et ≥ Qit 0 ``Long - only position'' N ≥ = = Qit 0, ∑Qit Et Leverage 1, long only position i=1 Reg - T : Leverage ≤ 2 ()margin accounts for retail investors Day traders : Leverage ≤ 4 Professionals & institutions : Risk - based leverage Portfolio Theory Introduce dimensionless quantities and view returns as random variables Q N θ = i Leverage = θ Dimensionless ``portfolio i ∑ i weights’’ Ei i=1 ΔΠ E − E − E rΔt ΔE = t+Δt t t = − rΔt Π Et E ~ All investments financed = − Δ Ri Ri r t (at known IR) ΔΠ N ~ = θ Ri Π ∑ i i=1 ΔΠ N ~ ΔΠ N ~ ~ N ⎛ ⎞ ⎛ ⎞ 2 ⎛ ⎞ ⎛ ⎞ E = θ E Ri ; σ = θ θ Cov Ri , R j = θ θ σ σ ρ ⎜ Π ⎟ ∑ i ⎜ ⎟ ⎜ Π ⎟ ∑ i j ⎜ ⎟ ∑ i j i j ij ⎝ ⎠ i=1 ⎝ ⎠ ⎝ ⎠ ij=1 ⎝ ⎠ ij=1 Sharpe Ratio ⎛ ΔΠ ⎞ N ⎛ ~ ⎞ E θ E R ⎜ Π ⎟ ∑ i ⎜ i ⎟ s = s()θ ,...,θ = ⎝ ⎠ = i=1 ⎝ ⎠ 1 N ⎛ ΔΠ ⎞ N σ ⎜ ⎟ θ θ σ σ ρ Π ∑ i j i j ij ⎝ ⎠ i=1 Sharpe ratio is homogeneous of degree zero in the portfolio weights.
    [Show full text]
  • Sharpe Ratio
    StatFACTS Sharpe Ratio StatMAP CAPITAL The most famous return-versus- voLATILITY BENCHMARK TAIL PRESERVATION risk measurement, the Sharpe ratio, RN TU E represents the added value over the R risk-free rate per unit of volatility risk. K S I R FF O - E SHARPE AD R RATIO T How Is it Useful? What Do the Graphs Show Me? The Sharpe ratio simplifies the options facing the The graphs below illustrate the two halves of the investor by separating investments into one of two Sharpe ratio. The upper graph shows the numerator, the choices, the risk-free rate or anything else. Thus, the excess return over the risk-free rate. The blue line is the Sharpe ratio allows investors to compare very different investment. The red line is the risk-free rate on a rolling, investments by the same criteria. Anything that isn’t three-year basis. More often than not, the investment’s the risk-free investment can be compared against any return exceeds that of the risk-free rate, leading to a other investment. The Sharpe ratio allows for apples-to- positive numerator. oranges comparisons. The lower graph shows the risk metric used in the denominator, standard deviation. Standard deviation What Is a Good Number? measures how volatile an investment’s returns have been. Sharpe ratios should be high, with the larger the number, the better. This would imply significant outperformance versus the risk-free rate and/or a low standard deviation. Rolling Three Year Return However, there is no set-in-stone breakpoint above, 40% 30% which is good, and below, which is bad.
    [Show full text]
  • A Sharper Ratio: a General Measure for Correctly Ranking Non-Normal Investment Risks
    A Sharper Ratio: A General Measure for Correctly Ranking Non-Normal Investment Risks † Kent Smetters ∗ Xingtan Zhang This Version: February 3, 2014 Abstract While the Sharpe ratio is still the dominant measure for ranking risky investments, much effort has been made over the past three decades to find more robust measures that accommodate non- Normal risks (e.g., “fat tails”). But these measures have failed to map to the actual investor problem except under strong restrictions; numerous ad-hoc measures have arisen to fill the void. We derive a generalized ranking measure that correctly ranks risks relative to the original investor problem for a broad utility-and-probability space. Like the Sharpe ratio, the generalized measure maintains wealth separation for the broad HARA utility class. The generalized measure can also correctly rank risks following different probability distributions, making it a foundation for multi-asset class optimization. This paper also explores the theoretical foundations of risk ranking, including proving a key impossibility theorem: any ranking measure that is valid for non-Normal distributions cannot generically be free from investor preferences. Finally, we show that approximation measures, which have sometimes been used in the past, fail to closely approximate the generalized ratio, even if those approximations are extended to an infinite number of higher moments. Keywords: Sharpe Ratio, portfolio ranking, infinitely divisible distributions, generalized rank- ing measure, Maclaurin expansions JEL Code: G11 ∗Kent Smetters: Professor, The Wharton School at The University of Pennsylvania, Faculty Research Associate at the NBER, and affiliated faculty member of the Penn Graduate Group in Applied Mathematics and Computational Science.
    [Show full text]
  • In-Sample and Out-Of-Sample Sharpe Ratios of Multi-Factor Asset Pricing Models
    In-sample and Out-of-sample Sharpe Ratios of Multi-factor Asset Pricing Models RAYMOND KAN, XIAOLU WANG, and XINGHUA ZHENG∗ This version: November 2020 ∗Kan is from the University of Toronto, Wang is from Iowa State University, and Zheng is from Hong Kong University of Science and Technology. We thank Svetlana Bryzgalova, Peter Christoffersen, Victor DeMiguel, Andrew Detzel, Junbo Wang, Guofu Zhou, seminar participants at Chinese University of Hong Kong, London Business School, Louisiana State University, Uni- versity of Toronto, and conference participants at 2019 CFIRM Conference for helpful comments. Corresponding author: Raymond Kan, Joseph L. Rotman School of Management, University of Toronto, 105 St. George Street, Toronto, Ontario, Canada M5S 3E6; Tel: (416) 978-4291; Fax: (416) 978-5433; Email: [email protected]. In-sample and Out-of-sample Sharpe Ratios of Multi-factor Asset Pricing Models Abstract For many multi-factor asset pricing models proposed in the recent literature, their implied tangency portfolios have substantially higher sample Sharpe ratios than that of the value- weighted market portfolio. In contrast, such high sample Sharpe ratio is rarely delivered by professional fund managers. This makes it difficult for us to justify using these asset pricing models for performance evaluation. In this paper, we explore if estimation risk can explain why the high sample Sharpe ratios of asset pricing models are difficult to realize in reality. In particular, we provide finite sample and asymptotic analyses of the joint distribution of in-sample and out-of-sample Sharpe ratios of a multi-factor asset pricing model. For an investor who does not know the mean and covariance matrix of the factors in a model, the out-of-sample Sharpe ratio of an asset pricing model is substantially worse than its in-sample Sharpe ratio.
    [Show full text]
  • ESTIMATING POPULATION MEAN USING KNOWN MEDIAN of the STUDY VARIABLE Dharmendra Kumar Yadav 1, Ravendra Kumar *2, Prof Sheela Misra3 & S.K
    ISSN: 2277-9655 [Kumar* et al., 6(7): July, 2017] Impact Factor: 4.116 IC™ Value: 3.00 CODEN: IJESS7 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY ESTIMATING POPULATION MEAN USING KNOWN MEDIAN OF THE STUDY VARIABLE Dharmendra Kumar Yadav 1, Ravendra Kumar *2, Prof Sheela Misra3 & S.K. Yadav4 *1Department of Mathematics, Dr Ram Manohar Lohiya Government Degree College, Aonla, Bareilly, U.P., India 2&3Department of Statistics, University of Lucknow, Lucknow-226007, U.P., INDIA 4Department of Mathematics and Statistics (A Centre of Excellence), Dr RML Avadh University, Faizabad-224001, U.P., INDIA DOI: 10.5281/zenodo.822944 ABSTRACT This present paper concerns with the estimation of population mean of the study variable by utilizing the known median of the study variable. A generalized ratio type estimator has been proposed for this purpose. The expressions for the bias and mean squared error of the proposed estimator have been derived up to the first order of approximation. The optimum value of the characterizing scalar has also been obtained. The minimum value of the proposed estimator for this optimum value of the characterizing scalar is obtained. A theoretical efficiency comparison of the proposed estimator has been madewith the mean per unit estimator, usual ratio estimator of Cochran (1940), usual regression estimator of Watson (1937),Bahl and Tuteja (1991), Kadilar (2016) and Subramani (2016) estimators. Through the numerical study, the theoretical findings are validated and it has been found that proposed estimate or performs better than the existing estimators. KEYWORDS: Study variable,Bias, Ratio estimator, Mean squared error, Simple random sampling, Efficiency.
    [Show full text]
  • Ratio Estimators in Simple Random Sampling Using Information on Auxiliary Attribute
    Ratio Estimators in Simple Random Sampling Using Information on Auxiliary Attribute Rajesh Singh Department of Statistics, Banaras Hindu University Varanasi (U.P.), India Email: [email protected] Pankaj Chauhan School of Statistics, DAVV, Indore (M.P.), India Nirmala Sawan School of Statistics, DAVV, Indore (M.P.), India Florentin Smarandache Department of Mathematics, University of New Mexico, Gallup, USA Email: [email protected] Abstract Some ratio estimators for estimating the population mean of the variable under study, which make use of information regarding the population proportion possessing certain attribute, are proposed. Under simple random sampling without replacement (SRSWOR) scheme, the expressions of bias and mean-squared error (MSE) up to the first order of approximation are derived. The results obtained have been illustrated numerically by taking some empirical population considered in the literature. Key words: Proportion, bias, MSE, ratio estimator. 1. Introduction The use of auxiliary information can increase the precision of an estimator when study variable y is highly correlated with auxiliary variable x. There exist situations when information is available in the form of attribute φ , which is highly correlated with y. For example a) Sex and height of the persons, b) Amount of milk produced and a particular breed of the cow, c) Amount of yield of wheat crop and a particular variety of wheat etc. (see Jhajj et. al. [1]). Consider a sample of size n drawn by SRSWOR from a population of size N. Let th yi and φi denote the observations on variable y and φ respectively for i unit (i =1,2,....N) .
    [Show full text]
  • Picking the Right Risk-Adjusted Performance Metric
    WORKING PAPER: Picking the Right Risk-Adjusted Performance Metric HIGH LEVEL ANALYSIS QUANTIK.org Investors often rely on Risk-adjusted performance measures such as the Sharpe ratio to choose appropriate investments and understand past performances. The purpose of this paper is getting through a selection of indicators (i.e. Calmar ratio, Sortino ratio, Omega ratio, etc.) while stressing out the main weaknesses and strengths of those measures. 1. Introduction ............................................................................................................................................. 1 2. The Volatility-Based Metrics ..................................................................................................................... 2 2.1. Absolute-Risk Adjusted Metrics .................................................................................................................. 2 2.1.1. The Sharpe Ratio ............................................................................................................................................................. 2 2.1. Relative-Risk Adjusted Metrics ................................................................................................................... 2 2.1.1. The Modigliani-Modigliani Measure (“M2”) ........................................................................................................ 2 2.1.2. The Treynor Ratio .........................................................................................................................................................
    [Show full text]
  • Random Denominators and the Analysis of Ratio Data
    Environmental and Ecological Statistics 11, 55-71, 2004 Corrected version of manuscript, prepared by the authors. Random denominators and the analysis of ratio data MARTIN LIERMANN,1* ASHLEY STEEL, 1 MICHAEL ROSING2 and PETER GUTTORP3 1Watershed Program, NW Fisheries Science Center, 2725 Montlake Blvd. East, Seattle, WA 98112 E-mail: [email protected] 2Greenland Institute of Natural Resources 3National Research Center for Statistics and the Environment, Box 354323, University of Washington, Seattle, WA 98195 Ratio data, observations in which one random value is divided by another random value, present unique analytical challenges. The best statistical technique varies depending on the unit on which the inference is based. We present three environmental case studies where ratios are used to compare two groups, and we provide three parametric models from which to simulate ratio data. The models describe situations in which (1) the numerator variance and mean are proportional to the denominator, (2) the numerator mean is proportional to the denominator but its variance is proportional to a quadratic function of the denominator and (3) the numerator and denominator are independent. We compared standard approaches for drawing inference about differences between two distributions of ratios: t-tests, t-tests with transformations, permutation tests, the Wilcoxon rank test, and ANCOVA-based tests. Comparisons between tests were based both on achieving the specified alpha-level and on statistical power. The tests performed comparably with a few notable exceptions. We developed simple guidelines for choosing a test based on the unit of inference and relationship between the numerator and denominator. Keywords: ANCOVA, catch per-unit effort, fish density, indices, per-capita, per-unit, randomization tests, t-tests, waste composition 1352-8505 © 2004 Kluwer Academic Publishers 1.
    [Show full text]
  • Investment Performance Performance Versus Benchmark: Return and Sharpe Ratio
    Release date 07-31-2018 Page 1 of 20 Investment Performance Performance versus Benchmark: Return and Sharpe Ratio 5-Yr Summary Statistics as of 07-31-2018 Name Total Rtn Sharpe Ratio TearLab Corp(TEAR) -75.30 -2.80 AmerisourceBergen Corp(ABC) 8.62 -2.80 S&P 500 TR USD 13.12 1.27 Definitions Return Sharpe Ratio The gain or loss of a security in a particular period. The return consists of the The Sharpe Ratio is calculated using standard deviation and excess return to income and the capital gains relative to an investment. It is usually quoted as a determine reward per unit of risk. The higher the SharpeRatio, the better the percentage. portfolio’s historical risk-adjusted performance. Performance Disclosure The performance data quoted represents past performances and does not guarantee future results. The investment return and principal value of an investment will fluctuate; thus an investor's shares, when sold or redeemed, may be worth more or less than their original cost. Current performance may be lower or higher than return data quoted herein. Please see the Disclosure Statements for Standardized Performance. ©2018 Morningstar. All Rights Reserved. Unless otherwise provided in a separate agreement, you may use this report only in the country in which its original distributor is based. The information, data, analyses and ® opinions contained herein (1) include the confidential and proprietary information of Morningstar, (2) may include, or be derived from, account information provided by your financial advisor which cannot be verified by Morningstar, (3) may not be copied or redistributed, (4) do not constitute investment advice offered by Morningstar, (5) are provided solely for informational purposes and therefore are not an offer to buy or sell a security, ß and (6) are not warranted to be correct, complete or accurate.
    [Show full text]