Picking the Right Risk-Adjusted Performance Metric
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Portfolio Optimization with Drawdown Constraints
Implemented in Portfolio Safeguard by AOrDa.com PORTFOLIO OPTIMIZATION WITH DRAWDOWN CONSTRAINTS Alexei Chekhlov1, Stanislav Uryasev2, Michael Zabarankin2 Risk Management and Financial Engineering Lab Center for Applied Optimization Department of Industrial and Systems Engineering University of Florida, Gainesville, FL 32611 Date: January 13, 2003 Correspondence should be addressed to: Stanislav Uryasev Abstract We propose a new one-parameter family of risk functions defined on portfolio return sample -paths, which is called conditional drawdown-at-risk (CDaR). These risk functions depend on the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter a , the CDaR is defined as the mean of the worst (1-a) *100% drawdowns. The CDaR risk function contains the maximal drawdown and average drawdown as its limiting cases. For a particular example, we find optimal portfolios with constraints on the maximal drawdown, average drawdown and several intermediate cases between these two. The CDaR family of risk functions originates from the conditional value-at-risk (CVaR) measure. Some recommendations on how to select the optimal risk measure for getting practically stable portfolios are provided. We solved a real life portfolio allocation problem using the proposed risk functions. 1. Introduction Optimal portfolio allocation is a longstanding issue in both practical portfolio management and academic research on portfolio theory. Various methods have been proposed and studied (for a review, see, for example, Grinold and Kahn, 1999). All of them, as a starting point, assume some measure of portfolio risk. From a standpoint of a fund manager, who trades clients' or bank’s proprietary capital, and for whom the clients' accounts are the only source of income coming in the form of management and incentive fees, losing these accounts is equivalent to the death of his business. -
Fact Sheet 2021
Q2 2021 GCI Select Equity TM Globescan Capital was Returns (Average Annual) Morningstar Rating (as of 3/31/21) © 2021 Morningstar founded on the principle Return Return that investing in GCI Select S&P +/- Percentile Quartile Overall Funds in high-quality companies at Equity 500TR Rank Rank Rating Category attractive prices is the best strategy to achieve long-run Year to Date 18.12 15.25 2.87 Q1 2021 Top 30% 2nd 582 risk-adjusted performance. 1-year 43.88 40.79 3.08 1 year Top 19% 1st 582 As such, our portfolio is 3-year 22.94 18.67 4.27 3 year Top 3% 1st 582 concentrated and focused solely on the long-term, Since Inception 20.94 17.82 3.12 moat-protected future free (01/01/17) cash flows of the companies we invest in. TOP 10 HOLDINGS PORTFOLIO CHARACTERISTICS Morningstar Performance MPT (6/30/2021) (6/30/2021) © 2021 Morningstar Core Principles Facebook Inc A 6.76% Number of Holdings 22 Return 3 yr 19.49 Microsoft Corp 6.10% Total Net Assets $44.22M Standard Deviation 3 yr 18.57 American Tower Corp 5.68% Total Firm Assets $119.32M Alpha 3 yr 3.63 EV/EBITDA (ex fincls/reits) 17.06x Upside Capture 3yr 105.46 Crown Castle International Corp 5.56% P/E FY1 (ex fincls/reits) 29.0x Downside Capture 3 yr 91.53 Charles Schwab Corp 5.53% Invest in businesses, EPS Growth (ex fincls/reits) 25.4% Sharpe Ratio 3 yr 1.04 don't trade stocks United Parcel Service Inc Class B 5.44% ROIC (ex fincls/reits) 14.1% Air Products & Chemicals Inc 5.34% Standard Deviation (3-year) 18.9% Booking Holding Inc 5.04% % of assets in top 5 holdings 29.6% Mastercard Inc A 4.74% % of assets in top 10 holdings 54.7% First American Financial Corp 4.50% Dividend Yield 0.70% Think long term, don't try to time markets Performance vs S&P 500 (Average Annual Returns) Be concentrated, 43.88 GCI Select Equity don't overdiversify 40.79 S&P 500 TR 22.94 20.94 18.12 18.67 17.82 15.25 Use the market, don't rely on it YTD 1 YR 3 YR Inception (01/01/2017) Disclosures Globescan Capital Inc., d/b/a GCI-Investors, is an investment advisor registered with the SEC. -
ESG Considerations for Securitized Fixed Income Notes
ESG Considerations for Securitized Fixed Neil Hohmann, PhD Managing Director Income Notes Head of Structured Products BBH Investment Management [email protected] +1.212.493.8017 Executive Summary Securitized assets make up over a quarter of the U.S. corporations since 2010, we find median price declines fixed income markets,1 yet assessments of environmental, for equity of those companies of -16%, and -3% median social, and governance (ESG) risks related to this sizable declines for their corporate bonds.3 Yet, the median price segment of the bond market are notably lacking. decline for securitized notes during these periods is 0% – securitized notes are as likely to climb in price as they are The purpose of this study is to bring securitized notes to fall in price, through these incidents. This should not be squarely into the realm of responsible investing through the surprising – securitizations are designed to insulate inves- development of a specialized ESG evaluation framework tors from corporate distress. They have a senior security for securitizations. To date, securitization has been notably interest in collateral, ring-fenced legal structures and absent from responsible investing discussions, probably further structural protections – all of which limit their owing to the variety of securitization types, their structural linkage to the originating company. However, we find that complexities and limited knowledge of the sector. Manag- a few securitization asset types, including whole business ers seem to either exclude securitizations from ESG securitizations and RMBS, can still bear substantial ESG assessment or lump them into their corporate exposures. risk. A specialized framework for securitizations is needed. -
Portfolio Optimization with Drawdown Constraints
PORTFOLIO OPTIMIZATION WITH DRAWDOWN CONSTRAINTS Alexei Chekhlov1, Stanislav Uryasev2, Michael Zabarankin2 Risk Management and Financial Engineering Lab Center for Applied Optimization Department of Industrial and Systems Engineering University of Florida, Gainesville, FL 32611 Date: January 13, 2003 Correspondence should be addressed to: Stanislav Uryasev Abstract We propose a new one-parameter family of risk functions defined on portfolio return sample -paths, which is called conditional drawdown-at-risk (CDaR). These risk functions depend on the portfolio drawdown (underwater) curve considered in active portfolio management. For some value of the tolerance parameter a , the CDaR is defined as the mean of the worst (1-a) *100% drawdowns. The CDaR risk function contains the maximal drawdown and average drawdown as its limiting cases. For a particular example, we find optimal portfolios with constraints on the maximal drawdown, average drawdown and several intermediate cases between these two. The CDaR family of risk functions originates from the conditional value-at-risk (CVaR) measure. Some recommendations on how to select the optimal risk measure for getting practically stable portfolios are provided. We solved a real life portfolio allocation problem using the proposed risk functions. 1. Introduction Optimal portfolio allocation is a longstanding issue in both practical portfolio management and academic research on portfolio theory. Various methods have been proposed and studied (for a review, see, for example, Grinold and Kahn, 1999). All of them, as a starting point, assume some measure of portfolio risk. From a standpoint of a fund manager, who trades clients' or bank’s proprietary capital, and for whom the clients' accounts are the only source of income coming in the form of management and incentive fees, losing these accounts is equivalent to the death of his business. -
T013 Asset Allocation Minimizing Short-Term Drawdown Risk And
Asset Allocation: Minimizing Short-Term Drawdown Risk and Long-Term Shortfall Risk An institution’s policy asset allocation is designed to provide the optimal balance between minimizing the endowment portfolio’s short-term drawdown risk and minimizing its long-term shortfall risk. Asset Allocation: Minimizing Short-Term Drawdown Risk and Long-Term Shortfall Risk In this paper, we propose an asset allocation framework for long-term institutional investors, such as endowments, that are seeking to satisfy annual spending needs while also maintaining and growing intergenerational equity. Our analysis focuses on how asset allocation contributes to two key risks faced by endowments: short-term drawdown risk and long-term shortfall risk. Before approving a long-term asset allocation, it is important for an endowment’s board of trustees and/or investment committee to consider the institution’s ability and willingness to bear two risks: short-term drawdown risk and long-term shortfall risk. We consider various asset allocations along a spectrum from a bond-heavy portfolio (typically considered “conservative”) to an equity-heavy portfolio (typically considered “risky”) and conclude that a typical policy portfolio of 60% equities, 30% bonds, and 10% real assets represents a good balance between these short-term and long-term risks. We also evaluate the impact of alpha generation and the choice of spending policy on an endowment’s expected risk and return characteristics. We demonstrate that adding alpha through manager selection, tactical asset allocation, and the illiquidity premium significantly reduces long-term shortfall risk while keeping short-term drawdown risk at a desired level. We also show that even a small change in an endowment’s spending rate can significantly impact the risk profile of the portfolio. -
Performance Measurement in Finance : Firms, Funds and Managers
PERFORMANCE MEASUREMENT IN FINANCE Butterworth-Heinemann Finance aims and objectives • books based on the work of financial market practitioners and academics • presenting cutting edge research to the professional/practitioner market • combining intellectual rigour and practical application • covering the interaction between mathematical theory and financial practice • to improve portfolio performance, risk management and trading book performance • covering quantitative techniques market Brokers/Traders; Actuaries; Consultants; Asset Managers; Fund Managers; Regulators; Central Bankers; Treasury Officials; Technical Analysts; and Academics for Masters in Finance and MBA market. series titles Return Distributions in Finance Derivative Instruments: theory, valuation, analysis Managing Downside Risk in Financial Markets: theory, practice and implementation Economics for Financial Markets Global Tactical Asset Allocation: theory and practice Performance Measurement in Finance: firms, funds and managers Real R&D Options series editor Dr Stephen Satchell Dr Satchell is Reader in Financial Econometrics at Trinity College, Cambridge; Visiting Professor at Birkbeck College, City University Business School and University of Technology, Sydney. He also works in a consultative capacity to many firms, and edits the journal Derivatives: use, trading and regulations. PERFORMANCE MEASUREMENT IN FINANCE Firms, Funds and Managers Edited by John Knight Stephen Satchell OXFORD AMSTERDAM BOSTON LONDON NEW YORK PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO -
A Nonlinear Optimisation Model for Constructing Minimal Drawdown Portfolios
A nonlinear optimisation model for constructing minimal drawdown portfolios C.A. Valle1 and J.E. Beasley2 1Departamento de Ci^enciada Computa¸c~ao, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-010, Brazil [email protected] 2Mathematical Sciences, Brunel University, Uxbridge UB8 3PH, UK [email protected] August 2019 Abstract In this paper we consider the problem of minimising drawdown in a portfolio of financial assets. Here drawdown represents the relative opportunity cost of the single best missed trading opportunity over a specified time period. We formulate the problem (minimising average drawdown, maximum drawdown, or a weighted combination of the two) as a non- linear program and show how it can be partially linearised by replacing one of the nonlinear constraints by equivalent linear constraints. Computational results are presented (generated using the nonlinear solver SCIP) for three test instances drawn from the EURO STOXX 50, the FTSE 100 and the S&P 500 with daily price data over the period 2010-2016. We present results for long-only drawdown portfolios as well as results for portfolios with both long and short positions. These indicate that (on average) our minimal drawdown portfolios dominate the market indices in terms of return, Sharpe ratio, maximum drawdown and average drawdown over the (approximately 1800 trading day) out-of-sample period. Keywords: Index out-performance; Nonlinear optimisation; Portfolio construction; Portfo- lio drawdown; Portfolio optimisation 1 Introduction Given a portfolio of financial assets then, as time passes, the price of each asset changes and so by extension the value of the portfolio changes. -
Maximum Drawdown Is Generally Greater Than in IID Normal Case
THE HIGH COST OF SIMPLIFIED MATH: Overcoming the “IID Normal” Assumption in Performance Evaluation Marcos López de Prado Hess Energy Trading Company Lawrence Berkeley National Laboratory Electronic copy available at: http://ssrn.com/abstract=2254668 Key Points • Investment management firms routinely hire and fire employees based on the performance of their portfolios. • Such performance is evaluated through popular metrics that assume IID Normal returns, like Sharpe ratio, Sortino ratio, Treynor ratio, Information ratio, etc. • Investment returns are far from IID Normal. • If we accept first-order serial correlation: – Maximum Drawdown is generally greater than in IID Normal case. – Time Under Water is generally longer than in IID Normal case. – However, Penance is typically shorter than 3x (IID Normal case). • Conclusion: Firms evaluating performance through Sharpe ratio are firing larger numbers of skillful managers than originally targeted, at a substantial cost to investors. 2 Electronic copy available at: http://ssrn.com/abstract=2254668 SECTION I The Need for Performance Evaluation Electronic copy available at: http://ssrn.com/abstract=2254668 Why Performance Evaluation? • Hedge funds operate as banks lending money to Portfolio Managers (PMs): – This “bank” charges ~80% − 90% on the PM’s return (not the capital allocated). – Thus, it requires each PM to outperform the risk free rate with a sufficient confidence level: Sharpe ratio. – This “bank” pulls out the line of credit to underperforming PMs. Allocation 1 … Investors’ funds Allocation N 4 How much is Performance Evaluation worth? • A successful hedge fund serves its investors by: – building and retaining a diversified portfolio of truly skillful PMs, taking co-dependencies into account, allocating capital efficiently. -
Lapis Global Top 50 Dividend Yield Index Ratios
Lapis Global Top 50 Dividend Yield Index Ratios MARKET RATIOS 2012 2013 2014 2015 2016 2017 2018 2019 2020 P/E Lapis Global Top 50 DY Index 14,45 16,07 16,71 17,83 21,06 22,51 14,81 16,96 19,08 MSCI ACWI Index (Benchmark) 15,42 16,78 17,22 19,45 20,91 20,48 14,98 19,75 31,97 P/E Estimated Lapis Global Top 50 DY Index 12,75 15,01 16,34 16,29 16,50 17,48 13,18 14,88 14,72 MSCI ACWI Index (Benchmark) 12,19 14,20 14,94 15,16 15,62 16,23 13,01 16,33 19,85 P/B Lapis Global Top 50 DY Index 2,52 2,85 2,76 2,52 2,59 2,92 2,28 2,74 2,43 MSCI ACWI Index (Benchmark) 1,74 2,02 2,08 2,05 2,06 2,35 2,02 2,43 2,80 P/S Lapis Global Top 50 DY Index 1,49 1,70 1,72 1,65 1,71 1,93 1,44 1,65 1,60 MSCI ACWI Index (Benchmark) 1,08 1,31 1,35 1,43 1,49 1,71 1,41 1,72 2,14 EV/EBITDA Lapis Global Top 50 DY Index 9,52 10,45 10,77 11,19 13,07 13,01 9,92 11,82 12,83 MSCI ACWI Index (Benchmark) 8,93 9,80 10,10 11,18 11,84 11,80 9,99 12,22 16,24 FINANCIAL RATIOS 2012 2013 2014 2015 2016 2017 2018 2019 2020 Debt/Equity Lapis Global Top 50 DY Index 89,71 93,46 91,08 95,51 96,68 100,66 97,56 112,24 127,34 MSCI ACWI Index (Benchmark) 155,55 137,23 133,62 131,08 134,68 130,33 125,65 129,79 140,13 PERFORMANCE MEASURES 2012 2013 2014 2015 2016 2017 2018 2019 2020 Sharpe Ratio Lapis Global Top 50 DY Index 1,48 2,26 1,05 -0,11 0,84 3,49 -1,19 2,35 -0,15 MSCI ACWI Index (Benchmark) 1,23 2,22 0,53 -0,15 0,62 3,78 -0,93 2,27 0,56 Jensen Alpha Lapis Global Top 50 DY Index 3,2 % 2,2 % 4,3 % 0,3 % 2,9 % 2,3 % -3,9 % 2,4 % -18,6 % Information Ratio Lapis Global Top 50 DY Index -0,24 -
Arbitrage Pricing Theory: Theory and Applications to Financial Data Analysis Basic Investment Equation
Risk and Portfolio Management Spring 2010 Arbitrage Pricing Theory: Theory and Applications To Financial Data Analysis Basic investment equation = Et equity in a trading account at time t (liquidation value) = + Δ Rit return on stock i from time t to time t t (includes dividend income) = Qit dollars invested in stock i at time t r = interest rate N N = + Δ + − ⎛ ⎞ Δ ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t before rebalancing, at time t t i=1 ⎝ i=1 ⎠ N N N = + Δ + − ⎛ ⎞ Δ + ε ()+ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t ∑| Qi(t+Δt) - Qit | after rebalancing, at time t t i=1 ⎝ i=1 ⎠ i=1 ε = transaction cost (as percentage of stock price) Leverage N N = + Δ + − ⎛ ⎞ Δ Et+Δt Et Et r t ∑Qit Rit ⎜∑Qit ⎟r t i=1 ⎝ i=1 ⎠ N ∑ Qit Ratio of (gross) investments i=1 Leverage = to equity Et ≥ Qit 0 ``Long - only position'' N ≥ = = Qit 0, ∑Qit Et Leverage 1, long only position i=1 Reg - T : Leverage ≤ 2 ()margin accounts for retail investors Day traders : Leverage ≤ 4 Professionals & institutions : Risk - based leverage Portfolio Theory Introduce dimensionless quantities and view returns as random variables Q N θ = i Leverage = θ Dimensionless ``portfolio i ∑ i weights’’ Ei i=1 ΔΠ E − E − E rΔt ΔE = t+Δt t t = − rΔt Π Et E ~ All investments financed = − Δ Ri Ri r t (at known IR) ΔΠ N ~ = θ Ri Π ∑ i i=1 ΔΠ N ~ ΔΠ N ~ ~ N ⎛ ⎞ ⎛ ⎞ 2 ⎛ ⎞ ⎛ ⎞ E = θ E Ri ; σ = θ θ Cov Ri , R j = θ θ σ σ ρ ⎜ Π ⎟ ∑ i ⎜ ⎟ ⎜ Π ⎟ ∑ i j ⎜ ⎟ ∑ i j i j ij ⎝ ⎠ i=1 ⎝ ⎠ ⎝ ⎠ ij=1 ⎝ ⎠ ij=1 Sharpe Ratio ⎛ ΔΠ ⎞ N ⎛ ~ ⎞ E θ E R ⎜ Π ⎟ ∑ i ⎜ i ⎟ s = s()θ ,...,θ = ⎝ ⎠ = i=1 ⎝ ⎠ 1 N ⎛ ΔΠ ⎞ N σ ⎜ ⎟ θ θ σ σ ρ Π ∑ i j i j ij ⎝ ⎠ i=1 Sharpe ratio is homogeneous of degree zero in the portfolio weights. -
Sharpe Ratio
StatFACTS Sharpe Ratio StatMAP CAPITAL The most famous return-versus- voLATILITY BENCHMARK TAIL PRESERVATION risk measurement, the Sharpe ratio, RN TU E represents the added value over the R risk-free rate per unit of volatility risk. K S I R FF O - E SHARPE AD R RATIO T How Is it Useful? What Do the Graphs Show Me? The Sharpe ratio simplifies the options facing the The graphs below illustrate the two halves of the investor by separating investments into one of two Sharpe ratio. The upper graph shows the numerator, the choices, the risk-free rate or anything else. Thus, the excess return over the risk-free rate. The blue line is the Sharpe ratio allows investors to compare very different investment. The red line is the risk-free rate on a rolling, investments by the same criteria. Anything that isn’t three-year basis. More often than not, the investment’s the risk-free investment can be compared against any return exceeds that of the risk-free rate, leading to a other investment. The Sharpe ratio allows for apples-to- positive numerator. oranges comparisons. The lower graph shows the risk metric used in the denominator, standard deviation. Standard deviation What Is a Good Number? measures how volatile an investment’s returns have been. Sharpe ratios should be high, with the larger the number, the better. This would imply significant outperformance versus the risk-free rate and/or a low standard deviation. Rolling Three Year Return However, there is no set-in-stone breakpoint above, 40% 30% which is good, and below, which is bad. -
A Sharper Ratio: a General Measure for Correctly Ranking Non-Normal Investment Risks
A Sharper Ratio: A General Measure for Correctly Ranking Non-Normal Investment Risks † Kent Smetters ∗ Xingtan Zhang This Version: February 3, 2014 Abstract While the Sharpe ratio is still the dominant measure for ranking risky investments, much effort has been made over the past three decades to find more robust measures that accommodate non- Normal risks (e.g., “fat tails”). But these measures have failed to map to the actual investor problem except under strong restrictions; numerous ad-hoc measures have arisen to fill the void. We derive a generalized ranking measure that correctly ranks risks relative to the original investor problem for a broad utility-and-probability space. Like the Sharpe ratio, the generalized measure maintains wealth separation for the broad HARA utility class. The generalized measure can also correctly rank risks following different probability distributions, making it a foundation for multi-asset class optimization. This paper also explores the theoretical foundations of risk ranking, including proving a key impossibility theorem: any ranking measure that is valid for non-Normal distributions cannot generically be free from investor preferences. Finally, we show that approximation measures, which have sometimes been used in the past, fail to closely approximate the generalized ratio, even if those approximations are extended to an infinite number of higher moments. Keywords: Sharpe Ratio, portfolio ranking, infinitely divisible distributions, generalized rank- ing measure, Maclaurin expansions JEL Code: G11 ∗Kent Smetters: Professor, The Wharton School at The University of Pennsylvania, Faculty Research Associate at the NBER, and affiliated faculty member of the Penn Graduate Group in Applied Mathematics and Computational Science.