Mobile Barcode Scanning Applications for Consumers Application Development and the Quality of Product Master Data

Total Page:16

File Type:pdf, Size:1020Kb

Mobile Barcode Scanning Applications for Consumers Application Development and the Quality of Product Master Data Research Collection Doctoral Thesis Mobile barcode scanning applications for consumers Application development and the quality of product master data Author(s): Karpischek, Stephan Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-009774955 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Diss. ETH No. 20792 Mobile Barcode Scanning Applications for Consumers Application development and the quality of product master data A dissertation submitted to ETH Zürich for the degree of Doctor of Science Presented by Stephan Karpischek Dipl. Des., Universität der Künste Berlin born 6 January 1975 citizen of Austria accepted on the recommendation of Prof. Dr. Elgar Fleisch Prof. Sanjay Sarma, Ph. D. Dr. Florian Michahelles 2012 This dissertation is dedicated to the memory of my father Franz Karpischek (1929 - 1991) Information is not knowledge Knowledge is not wisdom Wisdom is not truth Truth is not beauty Beauty is not love Love is not music Music is the best. Frank Zappa. Packard Goose, 1978. Abstract Mobile barcode scanning applications can improve the daily buying decisions of millions of users. Application providers need access to high quality product master data for correct product descriptions. Data quality problems are emerging as product master data designated for industrial supply chains reach a wide audience of consumers in these applications. This thesis contributes to the research on mobile barcode scanning ap- plications and product master data quality. We describe the development of a mobile barcode scanning application that enables consumers to share comments and ratings on products. The app has been deployed to thousands of Android and iPhone smartphones and the software has been released under an open source license. Analysis of usage data shows that users are less likely to share comments and ratings when product descriptions are missing. We use aggregated prod- uct master data for more than 120,000 products to develop a method for identifying incorrect product names. We evaluate the performance and use- fulness for consumer packaged goods businesses and measure the correctness of product master data from publicly available sources. Our results show that approximately 2% of product names are incorrect. The method developed can be used to effectively monitor and control product master data quality in external sources. Implemented in master data manage- ment processes, it can help to improve the overall quality of product master data for mobile barcode scanning applications. v Zusammenfassung Mobile Software-Anwendungen, die Produkte anhand ihres Strichcodes identi- fizieren, ermöglichen jeden Tag bessere Kaufentscheidungen für Millionen von Konsumenten weltweit. Wesentliche Voraussetzung für diese Anwendungen sind qualitativ hochwertige Produktstammdaten, um eine korrekte Erkennung der Produkte zu gewährleisten. Allerdings werden durch die – ursprünglich nicht vorgesehene – Verwendung von Strichcodes durch Konsumenten auch zunehmend Qualitätsprobleme im Bereich der Produktstammdaten sichtbar. Diese Arbeit untersucht die Entwicklung von mobilen Anwendungen für Konsumenten und die Qualität von Produktstammdaten für die Produk- terkennung. Wir präsentieren ein Konzept für eine mobile Anwendung, mit der Konsumenten Kommentare und Meinungen zu Produkten abgeben kön- nen. Die Anwendung wird für die mobilen Plattformen Android und iPhone implementiert und aus unterschiedlichen Perspektiven evaluiert. Eine Analyse der Nutzungsdaten zeigt, dass Benutzer deutlich öfter ihre Meinung zu einem Produkt abgeben, wenn dieses korrekt erkannt wurde. Aufbauend auf einer Sammlung von Produktstammdaten für über 120.000 Produkte wird eine Methode entwickelt, mit deren Hilfe falsche Produkt- namen schnell und zuverlässig erkannt werden können. Wir demonstrieren die Leistungsfähigkeit dieser Methode und ihre praktische Anwendbarkeit für Unternehmen der Konsumgüterindustrie und zeigen, dass etwa 2% der Produktnamen in online verfügbaren Datenquellen falsch sind. Unternehmen können die entwickelte Methode nutzen, um Stammdaten für ihre Produkte in externen Quellen zu kontrollieren und so die Datenqualität und Wahrnehmung ihrer Produkte zu verbessern. vii Acknowledgments First, I want to thank Elgar, Sanjay, and Florian for supervising this thesis, for their patience, and for their great support at the Auto-ID Labs at ETH Zürich and MIT. I want to thank my dear colleagues at the Auto-ID Labs Irena, Erica, Andrea, Andreas, Felix, and Mikko for the good work and the time together; and Thorsten, Lukas, and Albrecht for their always helpful and friendly advice and support. I also want to thank my colleagues at the Chair of Information Management at ETH Zürich and at the Institute of Technology Management at the University of St. Gallen for an inspiring and motivating research environment, and especially Liz and Monica for their caring and friendly support. I also want to thank the team that worked with us on the my2cents project: Nadine, Tilmann, Yan, Steffan, Mike and Claudio, Anton, and all the others who helped with advice, resources, and encouragement, especially Roman Bleichenbacher and the codecheck team, Christian Flörkemeier and the Mirasense team, and Nicolas Florin and the team of GS1 Switzerland. Florian Resatsch, Gerald Madlmayer, Mark Butler, Steffan Hradetzky, and Dieter Würch have been great mentors and friends. I want to thank them and my parents Christa and Klaus for their support. Thank you! My deepest thanks go to Vivian Mary for her patience and the power which enabled me to work on this thesis, a great and loving family, Emma and Simon: Do what you love. No excuses. ix Contents 1 Introduction1 1.1 Motivation.............................1 1.2 Research questions........................9 1.3 Contributions........................... 12 1.4 Structure of thesis........................ 13 2 Related work 15 2.1 Research on mobile shopping assistants............. 15 2.1.1 Hardware devices..................... 16 2.1.2 Pocket computers..................... 17 2.1.3 Mobile phone applications................ 20 2.2 Mobile applications on the market................ 22 2.2.1 Price comparison..................... 23 2.2.2 Social applications.................... 24 2.2.3 Other barcode scanning applications.......... 25 2.3 Research on data quality..................... 26 2.3.1 Product master data................... 27 2.3.2 Data quality assessment................. 28 2.3.3 Data integration..................... 29 2.3.4 Name matching...................... 30 2.3.5 Machine learning..................... 31 2.4 Word of mouth and consumer power.............. 31 2.5 Summary............................. 33 xi 3 Application development 35 3.1 Concept.............................. 36 3.1.1 Our approach....................... 37 3.1.2 Features.......................... 38 3.1.3 Value network....................... 41 3.1.4 Benefits for brand owners................ 42 3.1.5 Business models...................... 43 3.2 Implementation.......................... 46 3.2.1 External elements..................... 47 3.2.2 Mobile clients....................... 50 3.2.3 Server back end...................... 53 3.2.4 Current status....................... 54 3.2.5 Credits........................... 55 3.3 Evaluation............................. 55 3.3.1 Application usage..................... 55 3.3.2 User feedback....................... 57 3.3.3 Usage scenarios...................... 58 3.3.4 Usability tests....................... 58 3.3.5 Feedback on the business concept............ 59 3.4 Effects of incomplete data.................... 60 3.4.1 Comments......................... 61 3.4.2 Ratings.......................... 63 3.5 Discussion............................. 65 3.5.1 Software implementation................. 66 3.5.2 Barcode scanning..................... 66 3.5.3 User base......................... 67 3.5.4 Commercialization.................... 68 3.5.5 Data for research..................... 69 3.5.6 Quality of product descriptions............. 69 4 Quality of product master data 71 4.1 Methodology........................... 73 4.1.1 Data collection...................... 73 4.1.2 Quality dimensions.................... 76 4.1.3 String similarity measures................ 77 4.1.4 Supervised learning.................... 78 4.1.5 Regularized logistic regression.............. 83 4.2 Results............................... 86 4.2.1 Collected data....................... 86 4.2.2 Classifier selection.................... 90 4.2.3 Classifier performance.................. 90 4.2.4 Identifying incorrect product names........... 94 4.3 Discussion............................. 95 4.3.1 Recognition rates..................... 97 4.3.2 Classification results................... 97 4.3.3 Reasons for incorrect product names.......... 99 4.3.4 Limitations........................ 101 5 Conclusions 103 5.1 Contributions........................... 103 5.2 Implications for research..................... 105 5.3 Implications for practice..................... 106 A Additional tables 113 B Source code 121 Bibliography 135 Referenced web resources 151 List of Figures 1.1 A 13-digit GTIN barcode.....................2 1.2 Consumer scanning a product barcode with a smartphone in a supermarket (picture copyright Florian Michahelles)......3 3.1 my2cents concept: Scan a product’s barcode, read what oth- ers have
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2013/0297464 A1 Jaquez Et Al
    US 2013 O297464A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0297464 A1 Jaquez et al. (43) Pub. Date: Nov. 7, 2013 (54) SYSTEM, METHOD, AND Publication Classification COMPUTER-READABLE STORAGE MEDIUM FOR DENTIFYING A PRODUCT (51) Int. Cl. G06Q 10/08 (2012.01) (71) Applicant: SHOPSAVVY INC., Dallas, TX (US) (52) U.S. Cl. USPC ............................................................ 705/28 (72) Inventors: Abiel Jaquez, Plano, TX (US); Rylan Barnes, Plano, TX (US); Jason Alexander, Rockwall, TX (US); Brian (57) ABSTRACT Griffey, Dallas, TX (US); David Mitchell, San Francisco, CA (US); A system, method, and computer-readable storage medium Kevin Clark, Denton, TX (US); for enabling the accurate identification of a product identified Alexander Muse, Dallas, TX (US); by a multiple product identifiers and offered by one or more John Boyd, Denton, TX (US) merchants by using a product-data-identification mechanism via a computing device. The mechanism may enable accurate (73) Assignee: SHOPSAVVY INC., Dallas, TX (US) product-data identification by receiving a product identifier from a computing device, using the received product identi (21) Appl. No.: 13/633,489 fier to obtain one or more forms of data associated with the product identifier from one or more data sources, thereby (22) Filed: Oct. 2, 2012 enabling the mechanism to evaluate data from multiple Sources to identify the most accurate product data associated Related U.S. Application Data with the product identifier. Data sources accessed by the (60) Provisional application No. 61/640,906, filed on May mechanism may be scored according to the accuracy of their 1, 2012, provisional application No.
    [Show full text]
  • Shopsavvy Android Download Shopsavvy for Android
    shopsavvy android download ShopSavvy for Android. Save time with this database of products and prices. With most major retailers on-board, finding the best price is easier than you think. Scan the product you want and let the program do the rest. Fast and easy to use. ShopSavvy has the potential to make long rides for great deals obsolete. You can compare pricing at any time across a range of products and stores. All it takes is a quick scan of the barcode on the product you’re interested in. The app will do the rest. With the vast majority of major retail stores on board, your screen is populated with every place with the same product and its respective price. The smart tool has a built-in QR code reader; all you have to do is allow the application to access your phone's camera. One of the features that need to be looked into on the platform is the ability to click through to a store’s online site. There are no links to the shop next to the product, making it difficult to make a quick purchase online if you so desire. The searches can take a long time to run. If you’re pressed for time, this can add some frustration to the process. A lack of updated prices is another setback. When it’s finally time to make a purchase, you’ll likely find out that an item is a few dollars more expensive than you’d thought. This makes it almost impossible to use this app on a budget.
    [Show full text]
  • Media Kit Introduction
    MEDIA KIT INTRODUCTION The StartupMuse was born in 2007 as a blog designed to provide actionable advice to startup entrepreneurs. In 2018 the blog became a book eventually reaching No. 1 on Amazon. In 2019 we've released the StartupMuse as a podcast hosted by serial entrepreneur Alexander Muse. This Media Kit provides an overview for the podcast. Each daily episode is a bite-sized bit of startup advice usually between five and six minutes. Eventually we plan to add a weekly longform episode between twenty and forty minutes. The StartupMuse Podcast is available on iTunes, Google Play, YouTube, Stitcher and Soundcloud. ABOUT ALEXANDER MUSE Alexander Muse is a serial entrepreneur, startup advisor, and author. Over the course of his career he has raised millions in venture capital, built, and sold several startups. Early in his career he raised millions from George Soros to build a multi-state data center business that was acquired by Equinix (NASDAQ: EQIX). Over the next decade be built and sold several other startups including a B2B cloud service provider called Architel (sold to Center Technologies), a B2C focused social video business called Fancast (sold to Comcast), and the first Android mobile app for Android called ShopSavvy (sold to Purch). OUR LISTENERS Since the launch of the podcast it has routinely charted in business between No. 90 and 110. Based on the current trend we expect to have more than 8,000 new listeners and 300 new subscribers each month. Our followers have household incomes over $100,000, are between 24 and 44, and are split 50/50 male and female.
    [Show full text]
  • La Révolution Mobile, Vers Le Shopping 3.0 ?
    Thèse professionnelle MBA Marketing et Commerce sur Internet 2010 - 2011 La révolution mobile, vers le shopping 3.0 ? Scannez ce code 2D avec votre mobile pour avoir accès à du contenu complémentaire Vincent Tessier Sous la direction de Vincent Montet Avril 2012 Remerciements Je tiens à remercier les personnes suivantes pour leur inspiration, leur soutien et leur confiance dans la réalisation de cette thèse et durant mon parcours au sein du MBA Marketing et Commerce sur Internet : Un grand merci à Vincent Montet pour sa pédagogie, sa bienveillance et son exigence. Merci à Alexandre Stopnicki pour son enthousiasme, son amour du digital communicatif et ses nombreuses incitations au blogging. Merci au corps professoral exceptionnel du MBA MCI1 et plus particulièrement à Yann Le Mort, Jonathan Vidor, Jean-Michel Billaut et Eric Briones. Merci à l’ensemble de mes camarades de la promotion part-time 2010/2011 ainsi qu’à ceux de la promotion full-time, les apéros de fin de séminaire doivent se poursuivre ! Merci à tout le réseau d’anciens MCI qui constitue désormais un formidable tissu de relations potentielles et d’entraide. Un merci tout particulier à Thierry Pires avec qui les échanges tout au long de l’année ont été un plaisir et une source de motivation continue. J’espère que la Word Press Academy aura une suite ! Un merci tout particulier à ma femme, Tatiana, qui m’a soutenu dans cet exercice d’écriture difficile. Enfin, merci aux professionnels qui ont pris le temps d’échanger lors d’interviews passionnants, notamment Bertrand Jonquois qui lançait au même moment son agence spécialisée sur le drive to shop : GOSHOP ! La liste de ces interviews se trouve en Annexe de ce document et leur retranscription complète sur le site : http//:vincenttessier.fr.
    [Show full text]
  • Mobile Commerce Guide
    Mobile Commerce Guide Engage Customers and Build Loyalty in Developed and Emerging Markets Mobile Commerce Guide Engage Customers and Build Loyalty in Developed and Emerging Markets 1 TABLe Of COnTents Mobile Commerce Guide Engage Customers And Build Loyalty in Developed and Emerging Markets 11 FOREWORD Published by: SAP AG By Sanjay Poonen, President, Corporate Officer, Technology Solutions Dietmar-Hopp-Allee 16 69190 Walldorf and Head of Mobile Division, SAP Germany Copyright © 2013 SAP AG or an SAP affiliate company. All rights reserved Library of Congress Cataloging-in-Publication Data 14 PART 1: MOBILE COMMERCE: MAPPING THE COMPETITIVE LANDSCAPE SAP Mobile Commerce Guide Engage Customers & Build Loyalty in Developed and Emerging Markets Edited by Peggy Anne Salz 16 Mobile: A License To Thrill p. cm. A look at how mobile is impacting business, people and society at every level, ISBN Number: ISBN 9780988588677 1.Mobile technology. 2. Mobile commerce everywhere on the planet. Library of Congress Control Number: 2013906059 By Tomi T. Ahonen, best-selling mobile author Printed in the United States of America Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed 22 Who Will Lead The Mobile Commerce Charge? in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. The advance of mobile and the breakneck pace of technology innovation are coming together to provide amazing opportunities for banks to extend financial services to new and existing customers - but banks aren't the only ones taking action.
    [Show full text]