Pharmacological Investigations on Muscarinic and P2 Receptor Subtypes

Total Page:16

File Type:pdf, Size:1020Kb

Pharmacological Investigations on Muscarinic and P2 Receptor Subtypes Pharmacological Investigations on Muscarinic and P2 Receptor Subtypes Pharmacological Characterisation of the Stereoisomers of Glycopyrronium Bromide and their Tertiary Analogues and Evaluation of the Isolated Guinea-pig and Rat Ileal Longitudinal Smooth Muscle as Novel P2 Receptor Subtype Models Dissertation for the Achievement of the Doctor’s Degree of Natural Sciences Submitted to the Faculty of Chemical and Pharmaceutical Sciences of the Johann Wolfgang Goethe-University Frankfurt am Main by SITTAH CZECHE from Gotha Frankfurt/Main 2001 (DF 1) This work has been carried out from December 1994 until April 1999 at the Department of Pharmacology (Faculty of Chemical and Pharmaceutical Sciences) of the Johann Wolfgang Goethe-University, Frankfurt am Main, Germany. Accepted as dissertation by the Faculty of Chemistry and Pharmaceutical Sciences of the Johann Wolfgang Goethe-University Frankfurt/Main Dean: Prof. Dr. W. Müller 1st Referee: Prof. Dr. G. Lambrecht 2nd Referee: Prof. Dr. H. Stark Date of disputation: 31.10.2001 Meiner Familie True science teaches above all to doubt and to be aware of one’s ignorance. Miguel de Unamuno Danksagung Herrn Prof. Dr. Günter Lambrecht, meinem Doktorvater, danke ich für die Überlassung des Themas und seine fortwährende wissenschaftliche Unterstützung sowie Diskussionsbereitschaft bei der Anfertigung dieser Arbeit. Ferner danke ich Herrn Prof. Dr. Dr. Ernst Mutschler Dank für die freundliche Integration in seinen Arbeitskreis, sein Interesse am Fortgang meiner Dissertation und die großzügige finanzielle Unterstützung. Mein besonderer Dank gilt Herrn Michael Elgert (!) aus dem Arbeitskreis von Prof. Dr. C. Noe, Institut für Pharmazeutische Chemie der Johann Wolfgang Goethe-Universität in Frankfurt am Main, für die Bereitstellung der Stereoisomere des Glycopyrroniumbromids. Herrn Dr. Ulrich Moser möchte Dank sagen für seine Hilfestellung bei wissenschaftlichen und organisatorischen Fragestellungen. Irene Bischoff und Ulrike Hermanni danke ich für die stete Hilfestellung und besonders für die vergnüglichen Aktivitäten außerhalb des Institutes. Caren Hildebrandt danke ich insbesondere für die Tipps im Umgang mit ‘Figure P’ und die Besorgung der Literatur aus den verschiedensten Bibliotheken. Nicht zuletzt danke ich Frau Beate Niebel für die erfolgreiche Zusammenarbeit bei der Charakterisierung der Rezeptoren im Meerschweinchenileum und die netten Einladungen. Bei Frau Elke Förster, Frau Daniela Konca-Mucha und Frau Karin Merbitz- Zahradnik bedanke ich mich für die freundliche Atmosphäre im Sekretariat, die immerwährende Hilfsbereitschaft bei organisatorischen Problemen und ihre persönliche Anteilnahme am Auf und Ab während der Dissertation. Besonders bedanken möchte ich mich auch bei Frau Irma Bozyk für ihren unermüdlichen Einsatz bei der Versorgung der Labortiere. Frau Dr. Magali Waelbroeck (Freie Universität Brüssel, Belgien) danke ich für die Bereitstellung der Bindungsdaten. Ganz herzlich danke ich Susanne Damer. Ich denke gern an unsere gemeinsame Doktorandenzeit zurück, in der wir gemeinsam etliche Höhen und Tiefen, neben den wissenschaftlichen auch die in der Schweiz und in Frankreich, zu bewältigen hatten. Mein besonderer Dank gilt weiterhin: aus der “Rezeptorgruppe” Kirsten Braun, Dr. Edwin Bungardt (für die Animation zum Tauchen), Matthias Ganso (für die Verstärkung der Ossiquote), Dr. Jan Gross (für die Einarbeitung ins Muskarinrezeptorgebiet und die ersten Skistunden), Dr. Christine Keim (für gemeinsame Labor-, Appartement- und Fitnessclubgemeinschaft), Kai Kreutzmann (u. a. für sein Interesse an Formeln und deren räumlicher Ausrichtung), Dr. Otmar Pfaff, Dr. Lisa Vockert (für die Überlassung der Wohnung), Dr. Jahn Wehrle (für seinen Zweckoptimismus), Dr. Martin Weiser und Dr. Ragip Ziyal; aus der “Kinetikgruppe” Dr. Monika Dahms, Dr. Bettina Fuchs (für die zahlreichen gemeinsamen Erlebnisse von A wie Aussuchen eines Fitnessclubs bis Z wie zusammen Liften), Dr. Andreas Hermening, Dr. Antje Howitz, Dr. Susan Kober (sowie S. D. und B. F. für anregende Ernährungstipps innerhalb der ‘Gourmet-’ bzw. ‘Diätgruppe’) und Dr. Andrea Soldner; aus dem ZL Dr. Eberhard Strack (für seinen kulturellen Enthusiasmus) und Dr. Alexander Staab; aus der “Schmalzing-Gruppe” Dr. Eberhard Biemer, Dr. Bernd Knau, Dr. Annette Nicke und Dr. Jürgen Rettinger; aus der “Müller-Gruppe” Andrea Kastl, Dr. Silke Leutner, und Steffen Leutz sowie Dr. Marlene Geider, Dr. Kerstin Gräfe und Barbara Siebert (für ihren unermüdlichen organisatorischen Einsatz in allen Lebenslagen). Ferner möchte ich mich bei allen Mitarbeitern des Pharmakologischen Institutes für die hilfsbereite und freundschaftliche Zusammenarbeit bedanken. Der Deutschen Forschungsgemeinschaft und der Hermann Willkomm-Stiftung danke ich für die finanzielle Unterstützung. TABLE OF CONTENTS TABLE OF CONTENTS Page 1. INTRODUCTION 1 1.1. Muscarinic receptors 1 1.1.1. Historical background 1 1.1.2. Subclassification and nomenclature 1 1.1.3. Cloning studies and structure 6 1.1.4. Signal transduction pathways 8 1.1.5. Localisation and biological function 9 1.1.6. Therapeutic potential of selective muscarinic agonists and antagonists 12 1.2. P2 receptors 17 1.2.1. Historical background 17 1.2.2. Subclassification and nomenclature 17 1.2.3. Cloning studies and structure 19 1.2.3.1. Structural features of P2X receptors 19 1.2.3.2. Cloned P2X receptors 21 1.2.3.3. Co-assembly of distinct P2X receptor subunits 24 1.2.3.4. Properties of P2Y receptors 25 1.2.3.5. Further P2Y receptors 28 1.2.4. Agonists 29 1.2.5. Antagonists 30 1.2.6. Agonist breakdown 35 1.2.7. Signal transduction mechanisms 38 1.2.8. Localisation and physiological roles 40 1.2.9. Therapeutic targets 42 2. AIM OF THE THESIS 45 2.1. Investigations of the isomers of glycopyrronium bromide and their tertiary analogues at muscarinic receptors 45 2.2. Evaluation of the guinea-pig ileal longitudinal smooth muscle with respect to the distribution of P2 receptors 48 2.3. Characterisation of functional P2 receptor subtypes mediating contraction in the rat ileal longitudinal smooth muscle 50 I TABLE OF CONTENTS 3. MATERIALS AND METHODS 51 3.1. Drugs 51 3.1.1. Commercially available drugs 51 3.1.2. Gifts 52 3.1.3. Syntheses 52 3.2. Preparation of buffer and stock solutions 52 3.3. Animals 53 3.4. Methods 54 3.4.1. Rabbit vas deferens (RVD) 54 3.4.2. Guinea-pig atria (GPA) 55 3.4.3. Guinea-pig ileum (GPI) 55 3.4.3.1. Preparation for experiments with exogenously applied muscarinic agonist 55 3.4.3.2. Preparation for experiments with endogenous acetylcholine as agonist 56 3.4.3.3. Preparation for experiments with exogenously applied P2 agonists 56 3.4.4. Rat ileum (RI) 57 3.5. Evaluation of data 57 3.6. Statistics 58 4. RESULTS 59 4.1. Functional in vitro experiments with the isomers of glycopyrronium bromide and its corresponding tertiary analogues at muscarinic receptors 59 4.1.1. General considerations 59 4.1.2. Affinity profile of the parent compound glycopyrronium bromide 59 4.1.3. Affinity profile of the quaternary stereoisomers of glycopyrronium bromide 62 4.1.4. Affinity profile of the tertiary stereoisomeric analogues of glycopyrronium bromide 68 4.2. P2 receptor heterogeneity in the guinea-pig ileal longitudinal smooth muscle preparation 71 II TABLE OF CONTENTS 4.2.1. Experiments at neuronal P2 receptors 71 4.2.1.1. Preliminary experiments with ,-meATP 71 4.2.1.2. Antagonism by suramin, PPADS and NF023 74 4.2.1.3. Antagonism by NF279 78 4.2.1.4. Investigations on the postjunctional muscarinic receptor subtype responsible for contraction of GPI 79 4.2.2. Experiments at postjunctionally localised P2 receptors 82 4.2.2.1. Potency profile of P2 agonists 82 4.2.2.2. Effects of atropine, TTX and CCPA 84 G 4.2.2.3. Effects of N -nitro-L-arginine and hexa- methonium on contractions elicited by ADPS 85 4.2.2.4. Antagonism by suramin, PPADS and NF023 85 4.2.2.5. Antagonism by NF279 88 4.2.2.6. Antagonism by A3P5P and MRS2179 89 4.3. Experiments with the longitudinal smooth muscle of the rat ileum 92 4.3.1. Experiments with P2 agonists 92 4.3.2. Effects of TTX and atropine on responses to ,-meATP 93 4.3.3. Effects of TTX and atropine on responses to ADPßS 94 4.3.4. Effects of NF023, suramin and PPADS on responses to ADPßS 94 4.3.5. Effects of NF279 and A3P5P on responses to ADPßS 96 5. DISCUSSION 98 5.1. Functional in vitro experiments with glycopyrronium bromide, its four stereoisomers and their corresponding tertiary analogues at muscarinic receptors 98 5.1.1. Affinity profile of glycopyrronium bromide 98 5.1.2. Affinity profile of the four stereoisomers of glycopyrronium bromide 99 5.1.3. Affinity profile of the tertiary stereoisomeric analogues of glycopyrronium bromide 101 5.2. Stereoselectivity and eudismic analysis of the isomers of glycopyrronium bromide 104 III TABLE OF CONTENTS 5.3. Therapeutical implications of the isomers of glycopyrronium bromide 110 5.4. P2 receptor heterogeneity in the guinea-pig ileal longitudinal smooth muscle preparation 112 5.4.1. Experiments at neuronal P2 receptors 112 . 5.4.1.1. Preliminary experiments with ,-meATP 112 5.4.1.2. Effects of TTX and atropine 113 5.4.1.3. Antagonism by P2 antagonists 114 5.4.1.4. Concluding remarks 120 5.4.1.5. Investigations on the muscarinic receptor subtype responsible for contraction of GPI 120 5.4.2. Experiments at postjunctionally localised P2 receptors 124 5.4.2.1. Potency profile of P2 agonists 124 5.4.2.2. Effects of atropine, TTX and CCPA 124 5.4.2.3. Antagonism by P2 antagonists 125 5.4.2.4. Antagonism by A3P5P and MRS2179 126 5.4.3. Conclusion 128 5.5. Experiments at the longitudinal smooth muscle of rat ileum 129 5.5.1. Experiments with P2 agonists 129 5.5.2. Effects of P2 antagonists on responses to ADPS 130 5.5.3. Conclusion 130 6. SUMMARY 131 7. ZUSAMMENFASSUNG 135 8. GLOSSARY OF ABBREVATIONS 140 9.
Recommended publications
  • Cell Line Descriptions Geneblazer® M1-NFAT
    Version No.: GeneBLAzer ® Validation Packet Page 1 of 5 01Sep08 Optimization of the GeneBLazer ® M1-NFAT-bla Jurkat Cell Line GeneBLAzer ® M1 NFAT-bla Jurkat Cells Catalog Numbers – K1710 Cell Line Descriptions GeneBLAzer ® M1-NFAT-bla Jurkat cells contain the human Acetylcholine (muscarinic) subtype 1 receptor (M1), (Accession # NM_000738 ) stably integrated into the CellSensor ® NFAT-bla Jurkat cell line. CellSensor ® NFAT-bla Jurkat cells (Cat. no. K1671) contain a beta-lactamase (bla ) reporter gene under control of the Nuclear Factor of Activated T-cells (NFAT) response element. M1-NFAT-bla Jurkat cells are functionally validated for Z’-factor and EC 50 concentrations of carbachol (Figure 1). In addition, GeneBLAzer ® M1-NFAT-bla CHO-K1 cells have been tested for assay performance under variable conditions. Target Description Muscarinic acetylcholine receptors are members of the G protein-coupled receptor (GPCR) superfamily. Muscarinic receptors are widely distributed and mediate the actions of acetylcholine in both the CNS and peripheral tissues. Five muscarinic receptor subtypes have been identified and are referred to as M 1-M5 (1-5). The five genes that encode the muscarinic receptors all belong to the rhodopsin-line family (Family A) and share strong sequence homology but have unique regions located at the amino terminus (extracellular) and in the third intracellular loop. The M 1, M3, and M 5 receptor subtypes couple through the G q/11 class of G-proteins and activate the phopholipase C pathway. Activation of this pathway in turn leads to increases in free intracellular calcium levels as inositol triphosphate mediates release of calcium from the endoplasmic reticulum.
    [Show full text]
  • (12) United States Patent (10) Patent N0.: US 8,343,962 B2 Kisak Et Al
    US008343962B2 (12) United States Patent (10) Patent N0.: US 8,343,962 B2 Kisak et al. (45) Date of Patent: *Jan. 1, 2013 (54) TOPICAL FORMULATION (58) Field of Classi?cation Search ............. .. 514/226.5, 514/334, 420, 557, 567 (75) Inventors: Edward T. Kisak, San Diego, CA (US); See application ?le fOr Complete Search history. John M. NeWsam, La Jolla, CA (US); _ Dominic King-Smith, San Diego, CA (56) References C‘ted (US); Pankaj Karande, Troy, NY (US); Samir Mitragotri, Goleta, CA (US) US' PATENT DOCUMENTS 5,602,183 A 2/1997 Martin et al. (73) Assignee: NuvoResearchOntano (CA) Inc., Mississagua, 6,328,979 2B1 12/2001 Yamashita et a1. 7,001,592 B1 2/2006 Traynor et a1. ( * ) Notice: Subject to any disclaimer, the term of this 7,795,309 B2 9/2010 Kisak eta1~ patent is extended or adjusted under 35 2002/0064524 A1 5/2002 Cevc U.S.C. 154(b) by 212 days. FOREIGN PATENT DOCUMENTS This patent is subject to a terminal dis- W0 WO 2005/009510 2/2005 claimer- OTHER PUBLICATIONS (21) APPI' NO‘, 12/848,792 International Search Report issued on Aug. 8, 2008 in application No. PCT/lB2007/0l983 (corresponding to US 7,795,309). _ Notice ofAlloWance issued on Apr. 29, 2010 by the Examiner in US. (22) Med Aug- 2’ 2010 Appl. No. 12/281,561 (US 7,795,309). _ _ _ Of?ce Action issued on Dec. 30, 2009 by the Examiner in US. Appl. (65) Prior Publication Data No, 12/281,561 (Us 7,795,309), Us 2011/0028460 A1 Feb‘ 3’ 2011 Primary Examiner * Raymond Henley, 111 Related U 5 Application Data (74) Attorney, Agent, or Firm * Foley & Lardner LLP (63) Continuation-in-part of application No.
    [Show full text]
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • Submaxillary Gland and the A2a- and A2b-Adrenoceptor Subtypes 1Anton D
    Br. J. Pharmacol. (1989), 98, 890-897 Differences between the cx2-adrenoceptor in rat submaxillary gland and the a2A- and a2B-adrenoceptor subtypes 1Anton D. Michel, Dana N. Lodry & Roger L. Whiting Institute of Pharmacology, Syntex Research, 3401 Hillview Avenue, Palo Alto, CA, 94303, U.S.A. 1 The a2-adrenoceptors of rat submaxillary gland, labelled with [3H]-rauwolscine, were character- ized by use of a range of subtype selective ligands and were compared to rabbit spleen a2A-adrenoceptors and rat kidney a2B-adrenoceptors. 2 In rat submaxillary gland, [3H]-rauwolscine labelled an apparently homogeneous population of binding sites with relatively low affinity (Kd= 11.65 nM) compared to the affinity in rat kidney (Kd = 2.18 nM) and rabbit spleen (Kd = 4.64 nM). 3 In competition studies using 16 ligands the a2-adrenoceptors in rat submaxillary gland appeared to differ from both the x2A-adrenoceptor of rabbit spleen (r = 0.62) and also the a2B-adrenoceptor of rat kidney (r = 0.28). 4 The affinity data obtained with benoxathian, imiloxan and WB 4101 indicated the presence of an a2B-adrenoceptor in rat submaxillary gland. However, data for chlorpromazine, oxymetazoline, spiroxatrine and xylometazoline indicated that submaxillary gland a2-adrenoceptors were of the a2A subtype. The affinity estimate for prazosin in rat submaxillary gland was intermediate between its affinity at the ae2A- and a2B-adrenoceptors while affinity estimates for idazoxan and phentolamine in rat submaxillary gland were greater than those obtained at either the c2A- or x2B-adrenoceptor. 5 These data indicate that rat submaxillary gland a2-adrenoceptors differ from the CX2A- and a2B-adrenoceptors found in rabbit spleen and rat kidney, respectively.
    [Show full text]
  • Wo 2007/128674 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 15 November 2007 (15.11.2007) PCT WO 2007/128674 A2 (51) International Patent Classification: Houtenlaan 36, NL-1381 CP Weesp (NL). KRUSE, Cor- A61K 31/00 (2006.01) A61K 31/551 (2006.01) nelis G. [NL/NL]; c/o SOLVAY PHARMACEUTICALS A61K 31/439 (2006.01) A61P 25/18 (2006.01) B.V., IPSI Department, CJ. Van Houtenlaan 36, NL-1381 A61K 31/4439 (2006.01) CP Weesp (NL). (21) International Application Number: (74) Agent: VERHAGE, Marinus; Octrooibureau Zoan B.V., PCT/EP2007/053934 NL-1380 AC Weesp (NL). (22) International Filing Date: 23 April 2007 (23.04.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (25) Filing Language: English CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, (26) Publication Language: English IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, (30) Priority Data: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, 061 13476.3 4 May 2006 (04.05.2006) EP RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, 60/797,355 4 May 2006 (04.05.2006) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): SOLVAY (84) Designated States (unless otherwise indicated, for every PHARMACEUTICALS B.V.
    [Show full text]
  • The Role of Acetylcholine in Cocaine Addiction
    Neuropsychopharmacology (2008) 33, 1779–1797 & 2008 Nature Publishing Group All rights reserved 0893-133X/08 $30.00 www.neuropsychopharmacology.org Perspective The Role of Acetylcholine in Cocaine Addiction ,1 1,2 Mark J Williams* and Bryon Adinoff 1Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA; 2Mental Health Service, VA North Texas Health Care System, Dallas, TX, USA Central nervous system cholinergic neurons arise from several discrete sources, project to multiple brain regions, and exert specific effects on reward, learning, and memory. These processes are critical for the development and persistence of addictive disorders. Although other neurotransmitters, including dopamine, glutamate, and serotonin, have been the primary focus of drug research to date, a growing preclinical literature reveals a critical role of acetylcholine (ACh) in the experience and progression of drug use. This review will present and integrate the findings regarding the role of ACh in drug dependence, with a primary focus on cocaine and the muscarinic ACh system. Mesostriatal ACh appears to mediate reinforcement through its effect on reward, satiation, and aversion, and chronic cocaine administration produces neuroadaptive changes in the striatum. ACh is further involved in the acquisition of conditional associations that underlie cocaine self-administration and context-dependent sensitization, the acquisition of associations in conditioned learning, and drug procurement through its effects on arousal and attention. Long-term cocaine use may induce neuronal alterations in the brain that affect the ACh system and impair executive function, possibly contributing to the disruptions in decision making that characterize this population. These primarily preclinical studies suggest that ACh exerts a myriad of effects on the addictive process and that persistent changes to the ACh system following chronic drug use may exacerbate the risk of relapse during recovery.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110449 A1 Lorber Et Al
    US 200601 10449A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110449 A1 LOrber et al. (43) Pub. Date: May 25, 2006 (54) PHARMACEUTICAL COMPOSITION Publication Classification (76) Inventors: Richard R. Lorber, Scotch Plains, NJ (US); Heribert W. Staudinger, Union, (51) Int. Cl. NJ (US); Robert E. Ward, Summit, NJ A6II 3/473 (2006.01) (US) A6II 3L/24 (2006.01) Correspondence Address: A6IR 9/20 (2006.01) SCHERING-PLOUGH CORPORATION (52) U.S. Cl. ........................... 424/464; 514/290: 514/540 PATENT DEPARTMENT (K-6-1, 1990) 2000 GALLOPNG HILL ROAD KENILWORTH, NJ 07033-0530 (US) (57) ABSTRACT (21) Appl. No.: 11/257,348 (22) Filed: Oct. 24, 2005 The present invention relates to formulations useful for Related U.S. Application Data treating respiratory disorders associated with the production of mucus glycoprotein, skin disorders, and allergic conjunc (60) Provisional application No. 60/622,507, filed on Oct. tivitis while substantially reducing adverse effects associ 27, 2004. Provisional application No. 60/621,783, ated with the administration of non-selective anti-cholin filed on Oct. 25, 2004. ergic agents and methods of use thereof. US 2006/01 10449 A1 May 25, 2006 PHARMACEUTICAL COMPOSITION example, Weinstein and Weinstein (U.S. Pat. No. 6,086,914) describe methods of treating allergic rhinitis using an anti CROSS REFERENCE TO RELATED cholinergic agent with a limited capacity to pass across lipid APPLICATION membranes, such as the blood-brain barrier, in combination with an antihistamine that is limited in both sedating and 0001. This application claims benefit of priority to U.S.
    [Show full text]
  • Journal of Pharmacy and Pharmacology 1969 Volume.21 No.8
    The Pharmaceutical Society of Great Britain P a l m e r lop nome for physiology and pharmacology apparatus Known and used in physiology and pharmacology laboratories all over the world, C. F. Palmer equipment has a long-standing reputation for quality, reliability and precision. New products are continually under development, and as a member of the Baird &Tatlock Group, C. F. Palmer have extensive research and development facilities at their disposal. Palmer equipment is now available on improved deliveries. For a revised delivery schedule, or to order your new catalogue, write to the address below. Palmer kymographs such as this are in service in labora- Continuous injector. This unit, which can be used with all sizes of record-type tories all over the world, providing smoked paper records syringes, automatically controls injection rates. A range of motor speeds is of muscle and tissue movement, or through a manometer, available giving emptying rates of 10 mins, to 480 rrins. per inch, of blood pressure. A 6-gear motor gives paper speeds from Square-Wave Stim ulator. Pro vines a square-wave output of independently •1mm to 10mm per second. A.C. time-clock and s gnal variable pulse r?te (1/20-100 p.p.s.), ou1*«. width (10 microsec. to 103 millisec.) markers, and the Starling ventilation pump are fitted. end :nt«nsKy. Fuise rate is controKaM* ether in steps or continuously. C. F. Palmer (London) Lt«5. <2/1$ C-neKsie Hu., Tne Hyde, Colindale, London, IM.W.9 Telephone: 01 -205 5432 Member cf '.he Baird & Tatlock Division of Tarmac Derby Limited C P .1 /C Journal of Pharmacy and Pharmacology Published by T h e P harmaceutical S o c ie t y o f G r e a t B r i t a i n 17 Bloomsbury Square, London, W.C.l.
    [Show full text]
  • Viewed the Existence of Multiple Muscarinic CNS Penetration May Occur When the Blood-Brain Barrier Receptors in the Mammalian Myocardium and Have Is Compromised
    BMC Pharmacology BioMed Central Research article Open Access In vivo antimuscarinic actions of the third generation antihistaminergic agent, desloratadine G Howell III†1, L West†1, C Jenkins2, B Lineberry1, D Yokum1 and R Rockhold*1 Address: 1Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA and 2Tougaloo College, Tougaloo, MS, USA Email: G Howell - [email protected]; L West - [email protected]; C Jenkins - [email protected]; B Lineberry - [email protected]; D Yokum - [email protected]; R Rockhold* - [email protected] * Corresponding author †Equal contributors Published: 18 August 2005 Received: 06 October 2004 Accepted: 18 August 2005 BMC Pharmacology 2005, 5:13 doi:10.1186/1471-2210-5-13 This article is available from: http://www.biomedcentral.com/1471-2210/5/13 © 2005 Howell et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Muscarinic receptor mediated adverse effects, such as sedation and xerostomia, significantly hinder the therapeutic usefulness of first generation antihistamines. Therefore, second and third generation antihistamines which effectively antagonize the H1 receptor without significant affinity for muscarinic receptors have been developed. However, both in vitro and in vivo experimentation indicates that the third generation antihistamine, desloratadine, antagonizes muscarinic receptors. To fully examine the in vivo antimuscarinic efficacy of desloratadine, two murine and two rat models were utilized. The murine models sought to determine the efficacy of desloratadine to antagonize muscarinic agonist induced salivation, lacrimation, and tremor.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]