Rabbit Anti-SNRP70/FITC Conjugated Antibody

Total Page:16

File Type:pdf, Size:1020Kb

Rabbit Anti-SNRP70/FITC Conjugated Antibody SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-SNRP70/FITC Conjugated antibody SL12658R-FITC Product Name: Anti-SNRP70/FITC Chinese Name: FITC标记的SNRP70蛋白抗体 RNPU1Z; Rnulp70; RPU1; Small nuclear ribonucleoprotein 70 (U1); Small nuclear ribonucleoprotein 70kD polypeptide (RNP antigen); Small nuclear ribonucleoprotein 70kDa (U1); Small nuclear ribonucleoprotein 70kDa polypeptide (RNP antigen); Alias: snRNP70; Snrp 70; SNRP70; U1 70K; U1 small nuclear ribonucleoprotein 70 kDa; U1 small nuclear ribonucleoprotein polypeptide A; U1 snRNP 70 kDa; U170K; U1AP; U1AP1; U1RNP. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Dog,Pig,Cow,Horse,Rabbit,Sheep, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 51kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLHwww.sunlongbiotech.com conjugated synthetic peptide derived from human SNRP70 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: SNRP70 is an RNA-binding protein that is a specific component of the U1 small Product Detail: nuclear ribonucleoprotein complex and constitutes the major anti-(U1) RNP autoimmune antigen. SNRP70 contains 1 RRM (RNA recognition motif) domain and mediates the splicing of pre-mRNA by binding to the loop I region of U1-snRNA. Function: Component of the spliceosomal U1 snRNP, which is essential for recognition of the pre- mRNA 5' splice-site and the subsequent assembly of the spliceosome. SNRNP70 binds to the loop I region of U1-snRNA. The truncated isoforms cannot bind U1-snRNA. Subunit: U1 snRNP is composed of the 7 core Sm proteins SNRPB, SNRPD1, SNRPD2, SNRPD3, SNRPE, SNRPF and SNRPG that assemble in an heptameric protein ring on the Sm site of the small nuclear RNA to form the core snRNP, and at least three U1 snRNP-specific proteins SNRNP70/U1-70K, SNRPA/U1-A and SNRPC/U1-C. Interacts with SCNM1. Found in a pre-mRNA splicing complex with SFRS4, SFRS5, SNRNP70, SNRPA1, SRRM1 and SRRM2. Found in a pre-mRNA exonic splicing enhancer (ESE) complex with SNRNP70, SNRPA1, SRRM1 and TRA2B/SFRS10. Interacts with dephosphorylated SFRS13A and SFPQ. Interacts with NUDT21/CPSF5, CPSF6, SCAF11, and ZRANB2. Subcellular Location: Nuclear. Post-translational modifications: The N-terminus is blocked. Extensively phosphorylated on serine residues in the C-terminal region. Similarity: Contains 1 RRM (RNA recognition motif) domain. Database links: Entrez Gene: 6625 Human Entrez Gene: 20637 Mouse Entrezwww.sunlongbiotech.com Gene: 361574 Rat Omim: 180740 Human SwissProt: P08621 Human SwissProt: Q62376 Mouse Unigene: 467097 Human Important Note: This product as supplied is intended for research use only, not for use in human, therapeutic or diagnostic applications. www.sunlongbiotech.com.
Recommended publications
  • Unrip (STRAP) (NM 007178) Human Tagged ORF Clone Lentiviral Particle Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC209149L3V Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle Product data: Product Type: Lentiviral Particles Product Name: Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle Symbol: STRAP Synonyms: MAWD; PT-WD; UNRIP Vector: pLenti-C-Myc-DDK-P2A-Puro (PS100092) ACCN: NM_007178 ORF Size: 1050 bp ORF Nucleotide The ORF insert of this clone is exactly the same as(RC209149). Sequence: OTI Disclaimer: The molecular sequence of this clone aligns with the gene accession number as a point of reference only. However, individual transcript sequences of the same gene can differ through naturally occurring variations (e.g. polymorphisms), each with its own valid existence. This clone is substantially in agreement with the reference, but a complete review of all prevailing variants is recommended prior to use. More info OTI Annotation: This clone was engineered to express the complete ORF with an expression tag. Expression varies depending on the nature of the gene. RefSeq: NM_007178.2 RefSeq Size: 1924 bp RefSeq ORF: 1053 bp Locus ID: 11171 UniProt ID: Q9Y3F4 Domains: WD40 Protein Families: Druggable Genome MW: 38.4 kDa This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Unrip (STRAP) (NM_007178) Human Tagged ORF Clone Lentiviral Particle – RC209149L3V Gene Summary: The SMN complex plays a catalyst role in the assembly of small nuclear ribonucleoproteins (snRNPs), the building blocks of the spliceosome.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Proteomics Provides Insights Into the Inhibition of Chinese Hamster V79
    www.nature.com/scientificreports OPEN Proteomics provides insights into the inhibition of Chinese hamster V79 cell proliferation in the deep underground environment Jifeng Liu1,2, Tengfei Ma1,2, Mingzhong Gao3, Yilin Liu4, Jun Liu1, Shichao Wang2, Yike Xie2, Ling Wang2, Juan Cheng2, Shixi Liu1*, Jian Zou1,2*, Jiang Wu2, Weimin Li2 & Heping Xie2,3,5 As resources in the shallow depths of the earth exhausted, people will spend extended periods of time in the deep underground space. However, little is known about the deep underground environment afecting the health of organisms. Hence, we established both deep underground laboratory (DUGL) and above ground laboratory (AGL) to investigate the efect of environmental factors on organisms. Six environmental parameters were monitored in the DUGL and AGL. Growth curves were recorded and tandem mass tag (TMT) proteomics analysis were performed to explore the proliferative ability and diferentially abundant proteins (DAPs) in V79 cells (a cell line widely used in biological study in DUGLs) cultured in the DUGL and AGL. Parallel Reaction Monitoring was conducted to verify the TMT results. γ ray dose rate showed the most detectable diference between the two laboratories, whereby γ ray dose rate was signifcantly lower in the DUGL compared to the AGL. V79 cell proliferation was slower in the DUGL. Quantitative proteomics detected 980 DAPs (absolute fold change ≥ 1.2, p < 0.05) between V79 cells cultured in the DUGL and AGL. Of these, 576 proteins were up-regulated and 404 proteins were down-regulated in V79 cells cultured in the DUGL. KEGG pathway analysis revealed that seven pathways (e.g.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Immune Adaptation to Chronic Intense Exercise Training: New Microarray Evidence Dongmei Liu1†, Ru Wang1†, Ana R
    Liu et al. BMC Genomics (2017) 18:29 DOI 10.1186/s12864-016-3388-5 RESEARCHARTICLE Open Access Immune adaptation to chronic intense exercise training: new microarray evidence Dongmei Liu1†, Ru Wang1†, Ana R. Grant2, Jinming Zhang3, Paul M. Gordon4, Yuqin Wei1 and Peijie Chen1* Abstract Background: Endurance exercise training, especially the high-intensity training, exhibits a strong influence on the immune system. However, the mechanisms underpinning the immune-regulatory effect of exercise remain unclear. Consequently, we chose to investigate the alterations in the transcriptional profile of blood leukocytes in young endurance athletes as compared with healthy sedentary controls, using Affymetrix human gene 1.1 ST array. Results: Group differences in the transcriptome were analyzed using Intensity-based Hierarchical Bayes method followed by a Logistic Regression-based gene set enrichment method. We identified 72 significant transcripts differentially expressed in the leukocyte transcriptome of young endurance athletes as compared with non-athlete controls with a false discovery rate (FDR) < 0.05, comprising mainly the genes encoding ribosomal proteins and the genes involved in mitochondrial oxidative phosphorylation. Gene set enrichment analysis identified three major gene set clusters: two were up-regulated in athletes including gene translation and ribosomal protein production, and mitochondria oxidative phosphorylation and biogenesis; one gene set cluster identified as transcriptionally downregulated in athletes was related to inflammation and immune activity. Conclusion: Our data indicates that in young healthy individuals, intense endurance exercise training (exemplifed by athletic training) can chronically induce transcriptional changes in the peripheral blood leukocytes, upregulating genes related to protein production and mitochondrial energetics, and downregulating genes involved in inflammatory response.
    [Show full text]
  • Bioinformatics-Based Screening of Key Genes for Transformation of Liver
    Jiang et al. J Transl Med (2020) 18:40 https://doi.org/10.1186/s12967-020-02229-8 Journal of Translational Medicine RESEARCH Open Access Bioinformatics-based screening of key genes for transformation of liver cirrhosis to hepatocellular carcinoma Chen Hao Jiang1,2, Xin Yuan1,2, Jiang Fen Li1,2, Yu Fang Xie1,2, An Zhi Zhang1,2, Xue Li Wang1,2, Lan Yang1,2, Chun Xia Liu1,2, Wei Hua Liang1,2, Li Juan Pang1,2, Hong Zou1,2, Xiao Bin Cui1,2, Xi Hua Shen1,2, Yan Qi1,2, Jin Fang Jiang1,2, Wen Yi Gu4, Feng Li1,2,3 and Jian Ming Hu1,2* Abstract Background: Hepatocellular carcinoma (HCC) is the most common type of liver tumour, and is closely related to liver cirrhosis. Previous studies have focussed on the pathogenesis of liver cirrhosis developing into HCC, but the molecular mechanism remains unclear. The aims of the present study were to identify key genes related to the transformation of cirrhosis into HCC, and explore the associated molecular mechanisms. Methods: GSE89377, GSE17548, GSE63898 and GSE54236 mRNA microarray datasets from Gene Expression Omni- bus (GEO) were analysed to obtain diferentially expressed genes (DEGs) between HCC and liver cirrhosis tissues, and network analysis of protein–protein interactions (PPIs) was carried out. String and Cytoscape were used to analyse modules and identify hub genes, Kaplan–Meier Plotter and Oncomine databases were used to explore relationships between hub genes and disease occurrence, development and prognosis of HCC, and the molecular mechanism of the main hub gene was probed using Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis.
    [Show full text]
  • RNA Dynamics in Alzheimer's Disease
    molecules Review RNA Dynamics in Alzheimer’s Disease Agnieszka Rybak-Wolf 1,* and Mireya Plass 2,3,4,* 1 Max Delbrück Center for Molecular Medicine (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany 2 Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L’Hospitalet del Llobregat, 08908 Barcelona, Spain 3 Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L’Hospitalet del Llobregat, 08908 Barcelona, Spain 4 Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain * Correspondence: [email protected] (A.R.-W.); [email protected] (M.P.) Abstract: Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder that heavily burdens healthcare systems worldwide. There is a significant requirement to understand the still unknown molecular mechanisms underlying AD. Current evidence shows that two of the major features of AD are transcriptome dysregulation and altered function of RNA binding proteins (RBPs), both of which lead to changes in the expression of different RNA species, including microRNAs (miRNAs), circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs). In this review, we will conduct a comprehensive overview of how RNA dynamics are altered in AD and how this leads to the differential expression of both short and long RNA species. We will describe how RBP expression and function are altered in AD and how this impacts the expression of different RNA species. Furthermore, we will also show how changes in the abundance Citation: Rybak-Wolf, A.; Plass, M.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • U1 Snrnp Regulates Chromatin Retention of Noncoding Rnas
    bioRxiv preprint doi: https://doi.org/10.1101/310433; this version posted April 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. U1 snRNP regulates chromatin retention of noncoding RNAs Yafei Yin,1,* J. Yuyang Lu,1 Xuechun Zhang,1 Wen Shao,1 Yanhui Xu,1 Pan Li,1,2 Yantao Hong,1 Qiangfeng Cliff Zhang,2 and Xiaohua Shen 1,3,* 1 Tsinghua-Peking Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing 100084, China 2 MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China 3 Lead Contact *Correspondence: [email protected] (Y.Y.), [email protected] (X.S.) Running title: U1 snRNP regulates ncRNA-chromatin retention Keywords: RNA-chromatin localization, U1 snRNA, lncRNA, PROMPTs and eRNA, splicing 1 bioRxiv preprint doi: https://doi.org/10.1101/310433; this version posted April 29, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Thousands of noncoding transcripts exist in mammalian genomes, and they preferentially localize to chromatin. Here, to identify cis-regulatory elements that control RNA-chromatin association, we developed a high-throughput method named RNA element for subcellular localization by sequencing (REL-seq). Coupling REL-seq with random mutagenesis (mutREL-seq), we discovered a key 7-nt U1 recognition motif in chromatin-enriched RNA elements.
    [Show full text]
  • U1 Snrnp Regulates Chromatin Retention of Noncoding Rnas
    Article U1 snRNP regulates chromatin retention of noncoding RNAs https://doi.org/10.1038/s41586-020-2105-3 Yafei Yin1 ✉, J. Yuyang Lu1, Xuechun Zhang1, Wen Shao1, Yanhui Xu1, Pan Li1,2, Yantao Hong1, Li Cui1, Ge Shan3, Bin Tian4, Qiangfeng Cliff Zhang1,2 & Xiaohua Shen1 ✉ Received: 26 November 2018 Accepted: 9 January 2020 Long noncoding RNAs (lncRNAs) and promoter- or enhancer-associated unstable Published online: xx xx xxxx transcripts locate preferentially to chromatin, where some regulate chromatin structure, Check for updates transcription and RNA processing1–13. Although several RNA sequences responsible for nuclear localization have been identifed—such as repeats in the lncRNA Xist and Alu-like elements in long RNAs14–16—how lncRNAs as a class are enriched at chromatin remains unknown. Here we describe a random, mutagenesis-coupled, high-throughput method that we name ‘RNA elements for subcellular localization by sequencing’ (mutREL-seq). Using this method, we discovered an RNA motif that recognizes the U1 small nuclear ribonucleoprotein (snRNP) and is essential for the localization of reporter RNAs to chromatin. Across the genome, chromatin-bound lncRNAs are enriched with 5′ splice sites and depleted of 3′ splice sites, and exhibit high levels of U1 snRNA binding compared with cytoplasm-localized messenger RNAs. Acute depletion of U1 snRNA or of the U1 snRNP protein component SNRNP70 markedly reduces the chromatin association of hundreds of lncRNAs and unstable transcripts, without altering the overall transcription rate in cells. In addition, rapid degradation of SNRNP70 reduces the localization of both nascent and polyadenylated lncRNA transcripts to chromatin, and disrupts the nuclear and genome-wide localization of the lncRNA Malat1.
    [Show full text]
  • Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders
    177 Arch Neuropsychitry 2020;57:177−191 RESEARCH ARTICLE https://doi.org/10.29399/npa.24890 Chromosomal Microarray Analysis in Turkish Patients with Unexplained Developmental Delay and Intellectual Developmental Disorders Hakan GÜRKAN1 , Emine İkbal ATLI1 , Engin ATLI1 , Leyla BOZATLI2 , Mengühan ARAZ ALTAY2 , Sinem YALÇINTEPE1 , Yasemin ÖZEN1 , Damla EKER1 , Çisem AKURUT1 , Selma DEMİR1 , Işık GÖRKER2 1Faculty of Medicine, Department of Medical Genetics, Edirne, Trakya University, Edirne, Turkey 2Faculty of Medicine, Department of Child and Adolescent Psychiatry, Trakya University, Edirne, Turkey ABSTRACT Introduction: Aneuploids, copy number variations (CNVs), and single in 39 (39/123=31.7%) patients. Twelve CNV variant of unknown nucleotide variants in specific genes are the main genetic causes of significance (VUS) (9.75%) patients and 7 CNV benign (5.69%) patients developmental delay (DD) and intellectual disability disorder (IDD). were reported. In 6 patients, one or more pathogenic CNVs were These genetic changes can be detected using chromosome analysis, determined. Therefore, the diagnostic efficiency of CMA was found to chromosomal microarray (CMA), and next-generation DNA sequencing be 31.7% (39/123). techniques. Therefore; In this study, we aimed to investigate the Conclusion: Today, genetic analysis is still not part of the routine in the importance of CMA in determining the genomic etiology of unexplained evaluation of IDD patients who present to psychiatry clinics. A genetic DD and IDD in 123 patients. diagnosis from CMA can eliminate genetic question marks and thus Method: For 123 patients, chromosome analysis, DNA fragment analysis alter the clinical management of patients. Approximately one-third and microarray were performed. Conventional G-band karyotype of the positive CMA findings are clinically intervenable.
    [Show full text]