Natural Language Processing: State of the Art, Current Trends and Challenges
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Abstraction and Generalisation in Semantic Role Labels: Propbank
Abstraction and Generalisation in Semantic Role Labels: PropBank, VerbNet or both? Paola Merlo Lonneke Van Der Plas Linguistics Department Linguistics Department University of Geneva University of Geneva 5 Rue de Candolle, 1204 Geneva 5 Rue de Candolle, 1204 Geneva Switzerland Switzerland [email protected] [email protected] Abstract The role of theories of semantic role lists is to obtain a set of semantic roles that can apply to Semantic role labels are the representa- any argument of any verb, to provide an unam- tion of the grammatically relevant aspects biguous identifier of the grammatical roles of the of a sentence meaning. Capturing the participants in the event described by the sentence nature and the number of semantic roles (Dowty, 1991). Starting from the first proposals in a sentence is therefore fundamental to (Gruber, 1965; Fillmore, 1968; Jackendoff, 1972), correctly describing the interface between several approaches have been put forth, ranging grammar and meaning. In this paper, we from a combination of very few roles to lists of compare two annotation schemes, Prop- very fine-grained specificity. (See Levin and Rap- Bank and VerbNet, in a task-independent, paport Hovav (2005) for an exhaustive review). general way, analysing how well they fare In NLP, several proposals have been put forth in in capturing the linguistic generalisations recent years and adopted in the annotation of large that are known to hold for semantic role samples of text (Baker et al., 1998; Palmer et al., labels, and consequently how well they 2005; Kipper, 2005; Loper et al., 2007). The an- grammaticalise aspects of meaning. -
A Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling
VerbAtlas: a Novel Large-Scale Verbal Semantic Resource and Its Application to Semantic Role Labeling Andrea Di Fabio}~, Simone Conia}, Roberto Navigli} }Department of Computer Science ~Department of Literature and Modern Cultures Sapienza University of Rome, Italy {difabio,conia,navigli}@di.uniroma1.it Abstract The automatic identification and labeling of ar- gument structures is a task pioneered by Gildea We present VerbAtlas, a new, hand-crafted and Jurafsky(2002) called Semantic Role Label- lexical-semantic resource whose goal is to ing (SRL). SRL has become very popular thanks bring together all verbal synsets from Word- to its integration into other related NLP tasks Net into semantically-coherent frames. The such as machine translation (Liu and Gildea, frames define a common, prototypical argu- ment structure while at the same time pro- 2010), visual semantic role labeling (Silberer and viding new concept-specific information. In Pinkal, 2018) and information extraction (Bas- contrast to PropBank, which defines enumer- tianelli et al., 2013). ative semantic roles, VerbAtlas comes with In order to be performed, SRL requires the fol- an explicit, cross-frame set of semantic roles lowing core elements: 1) a verb inventory, and 2) linked to selectional preferences expressed in terms of WordNet synsets, and is the first a semantic role inventory. However, the current resource enriched with semantic information verb inventories used for this task, such as Prop- about implicit, shadow, and default arguments. Bank (Palmer et al., 2005) and FrameNet (Baker We demonstrate the effectiveness of VerbAtlas et al., 1998), are language-specific and lack high- in the task of dependency-based Semantic quality interoperability with existing knowledge Role Labeling and show how its integration bases. -
Generating Lexical Representations of Frames Using Lexical Substitution
Generating Lexical Representations of Frames using Lexical Substitution Saba Anwar Artem Shelmanov Universitat¨ Hamburg Skolkovo Institute of Science and Technology Germany Russia [email protected] [email protected] Alexander Panchenko Chris Biemann Skolkovo Institute of Science and Technology Universitat¨ Hamburg Russia Germany [email protected] [email protected] Abstract Seed sentence: I hope PattiHelper can helpAssistance youBenefited party soonTime . Semantic frames are formal linguistic struc- Substitutes for Assistance: assist, aid tures describing situations/actions/events, e.g. Substitutes for Helper: she, I, he, you, we, someone, Commercial transfer of goods. Each frame they, it, lori, hannah, paul, sarah, melanie, pam, riley Substitutes for Benefited party: me, him, folk, her, provides a set of roles corresponding to the sit- everyone, people uation participants, e.g. Buyer and Goods, and Substitutes for Time: tomorrow, now, shortly, sooner, lexical units (LUs) – words and phrases that tonight, today, later can evoke this particular frame in texts, e.g. Sell. The scarcity of annotated resources hin- Table 1: An example of the induced lexical represen- ders wider adoption of frame semantics across tation (roles and LUs) of the Assistance FrameNet languages and domains. We investigate a sim- frame using lexical substitutes from a single seed sen- ple yet effective method, lexical substitution tence. with word representation models, to automat- ically expand a small set of frame-annotated annotated resources. Some publicly available re- sentences with new words for their respective sources are FrameNet (Baker et al., 1998) and roles and LUs. We evaluate the expansion PropBank (Palmer et al., 2005), yet for many lan- quality using FrameNet. -
Distributional Semantics, Wordnet, Semantic Role
Semantics Kevin Duh Intro to NLP, Fall 2019 Outline • Challenges • Distributional Semantics • Word Sense • Semantic Role Labeling The Challenge of Designing Semantic Representations • Q: What is semantics? • A: The study of meaning • Q: What is meaning? • A: … We know it when we see it • These sentences/phrases all have the same meaning: • XYZ corporation bought the stock. • The stock was bought by XYZ corporation. • The purchase of the stock by XYZ corporation... • The stock purchase by XYZ corporation... But how to formally define it? Meaning Sentence Representation Example Representations Sentence: “I have a car” Logic Formula Graph Representation Key-Value Records Example Representations Sentence: “I have a car” As translation in “Ich habe ein Auto” another language There’s no single agreed-upon representation that works in all cases • Different emphases: • Words or Sentences • Syntax-Semantics interface, Logical Inference, etc. • Different aims: • “Deep (and narrow)” vs “Shallow (and broad)” • e.g. Show me all flights from BWI to NRT. • Do we link to actual flight records? • Or general concept of flying machines? Outline • Challenges • Distributional Semantics • Word Sense • Semantic Role Labeling Distributional Semantics 10 Learning Distributional Semantics from large text dataset • Your pet dog is so cute • Your pet cat is so cute • The dog ate my homework • The cat ate my homework neighbor(dog) overlaps-with neighbor(cats) so meaning(dog) is-similar-to meaning(cats) 11 Word2Vec implements Distribution Semantics Your pet dog is so cute 1. Your pet - is so | dog 2. dog | Your pet - is so From: Mikolov, Tomas; et al. (2013). "Efficient Estimation of Word 12 Representations in Vector Space” Latent Semantic Analysis (LSA) also implements Distributional Semantics Pet-peeve: fundamentally, neural approaches aren’t so different from classical LSA. -
Foundations of Natural Language Processing Lecture 16 Semantic
Language is Flexible Foundations of Natural Language Processing Often we want to know who did what to whom (when, where, how and why) • Lecture 16 But the same event and its participants can have different syntactic realizations. Semantic Role Labelling and Argument Structure • Sandy broke the glass. vs. The glass was broken by Sandy. Alex Lascarides She gave the boy a book. vs. She gave a book to the boy. (Slides based on those of Schneider, Koehn, Lascarides) Instead of focusing on syntax, consider the semantic roles (also called 13 March 2020 • thematic roles) defined by each event. Alex Lascarides FNLP Lecture 16 13 March 2020 Alex Lascarides FNLP Lecture 16 1 Argument Structure and Alternations Stanford Dependencies Mary opened the door • The door opened John slices bread with a knife • This bread slices easily The knife slices cleanly Mary loaded the truck with hay • Mary loaded hay onto the the truck The truck was loaded with hay (by Mary) The hay was loaded onto the truck (by Mary) John gave a present to Mary • John gave Mary a present cf Mary ate the sandwich with Kim! Alex Lascarides FNLP Lecture 16 2 Alex Lascarides FNLP Lecture 16 3 Syntax-Semantics Relationship Outline syntax = semantics • 6 The semantic roles played by different participants in the sentence are not • trivially inferable from syntactical relations . though there are patterns! • The idea of semantic roles can be combined with other aspects of meaning • (beyond this course). Alex Lascarides FNLP Lecture 16 4 Alex Lascarides FNLP Lecture 16 5 Commonly used thematic -
A Challenge Set for Advancing Language Modeling
A Challenge Set for Advancing Language Modeling Geoffrey Zweig and Chris J.C. Burges Microsoft Research Redmond, WA 98052 Abstract counts (Kneser and Ney, 1995; Chen and Good- man, 1999), multi-layer perceptrons (Schwenk and In this paper, we describe a new, publicly Gauvain, 2002; Schwenk, 2007) and maximum- available corpus intended to stimulate re- entropy models (Rosenfeld, 1997; Chen, 2009a; search into language modeling techniques Chen, 2009b). Trained on large amounts of data, which are sensitive to overall sentence coher- these methods have proven very effective in both ence. The task uses the Scholastic Aptitude Test’s sentence completion format. The test speech recognition and machine translation applica- set consists of 1040 sentences, each of which tions. is missing a content word. The goal is to select Concurrent with the refinement of N-gram model- the correct replacement from amongst five al- ing techniques, there has been an important stream ternates. In general, all of the options are syn- of research focused on the incorporation of syntac- tactically valid, and reasonable with respect to tic and semantic information (Chelba and Jelinek, local N-gram statistics. The set was gener- ated by using an N-gram language model to 1998; Chelba and Jelinek, 2000; Rosenfeld et al., generate a long list of likely words, given the 2001; Yamada and Knight, 2001; Khudanpur and immediate context. These options were then Wu, 2000; Wu and Khudanpur, 1999). Since in- hand-groomed, to identify four decoys which tuitively, language is about expressing meaning in are globally incoherent, yet syntactically cor- a highly structured syntactic form, it has come as rect. -
ACL Lifetime Achievement Award
ACL Lifetime Achievement Award The Dawn of Statistical ASR and MT Frederick Jelinek∗ Johns Hopkins University I am very grateful for the award you have bestowed on me. To understand your generosity I have to assume that you are honoring the leadership of three innovative groups that I headed in the last 47 years: at Cornell, IBM, and now at Johns Hopkins. You know my co-workers in the last two teams. The Cornell group was in Information Theory and included Toby Berger, Terrence Fine, and Neil J. A. Sloane (earlier my Ph.D. student), all of whom earned their own laurels. I was told that I should give an acceptance speech and was furnished with example texts by previous recipients. They wrote about the development and impact of their ideas. So I will tell you about my beginnings and motivations and then focus on the contributions of my IBM team. In this way the text will have some historical value and may clear up certain widely held misconceptions. 1. Beginnings Information Theory seemed to be one of the most prestigious disciplines during my years as a student at MIT (1954–1962). The faculty included the founders of the field— Shannon, Fano, Elias, and others. Some of my contemporaries were Viterbi, Jacobs, Kleinrock (founders of Qualcom), Gallagher, Kailath, and Massey. Not daring to ap- proach Shannon himself, I asked Professor Fano to be my thesis adviser. I was making slow progress when in 1961, after three years of trying, I succeeded in extricating my future wife Milena from communist Czechoslovakia (how this was accomplished is another story) and married her. -
LIMIT-BERT : Linguistics Informed Multi-Task BERT
LIMIT-BERT : Linguistics Informed Multi-Task BERT Junru Zhou1;2;3 , Zhuosheng Zhang 1;2;3, Hai Zhao1;2;3∗, Shuailiang Zhang 1;2;3 1Department of Computer Science and Engineering, Shanghai Jiao Tong University 2Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai Jiao Tong University, Shanghai, China 3MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University fzhoujunru,[email protected], [email protected] Abstract so on (Zhou and Zhao, 2019; Zhou et al., 2020; Ouchi et al., 2018; He et al., 2018b; Li et al., 2019), In this paper, we present Linguistics Informed when taking the latter as downstream tasks for Multi-Task BERT (LIMIT-BERT) for learning the former. In the meantime, introducing linguis- language representations across multiple lin- tic clues such as syntax and semantics into the guistics tasks by Multi-Task Learning. LIMIT- BERT includes five key linguistics tasks: Part- pre-trained language models may furthermore en- Of-Speech (POS) tags, constituent and de- hance other downstream tasks such as various Nat- pendency syntactic parsing, span and depen- ural Language Understanding (NLU) tasks (Zhang dency semantic role labeling (SRL). Differ- et al., 2020a,b). However, nearly all existing lan- ent from recent Multi-Task Deep Neural Net- guage models are usually trained on large amounts works (MT-DNN), our LIMIT-BERT is fully of unlabeled text data (Peters et al., 2018; Devlin linguistics motivated and thus is capable of et al., 2019), without explicitly exploiting linguis- adopting an improved masked training objec- tive according to syntactic and semantic con- tic knowledge. -
Merging Propbank, Nombank, Timebank, Penn Discourse Treebank and Coreference James Pustejovsky, Adam Meyers, Martha Palmer, Massimo Poesio
Merging PropBank, NomBank, TimeBank, Penn Discourse Treebank and Coreference James Pustejovsky, Adam Meyers, Martha Palmer, Massimo Poesio Abstract annotates the temporal features of propositions Many recent annotation efforts for English and the temporal relations between propositions. have focused on pieces of the larger problem The Penn Discourse Treebank (Miltsakaki et al of semantic annotation, rather than initially 2004a/b) treats discourse connectives as producing a single unified representation. predicates and the sentences being joined as This paper discusses the issues involved in arguments. Researchers at Essex were merging four of these efforts into a unified responsible for the coreference markup scheme linguistic structure: PropBank, NomBank, the developed in MATE (Poesio et al, 1999; Poesio, Discourse Treebank and Coreference 2004a) and have annotated corpora using this Annotation undertaken at the University of scheme including a subset of the Penn Treebank Essex. We discuss resolving overlapping and (Poesio and Vieira, 1998), and the GNOME conflicting annotation as well as how the corpus (Poesio, 2004a). This paper discusses the various annotation schemes can reinforce issues involved in creating a Unified Linguistic each other to produce a representation that is Annotation (ULA) by merging annotation of greater than the sum of its parts. examples using the schemata from these efforts. Crucially, all individual annotations can be kept 1. Introduction separate in order to make it easy to produce alternative annotations of a specific type of The creation of the Penn Treebank (Marcus et al, semantic information without need to modify the 1993) and the word sense-annotated SEMCOR annotation at the other levels. Embarking on (Fellbaum, 1997) have shown how even limited separate annotation efforts has the advantage of amounts of annotated data can result in major allowing researchers to focus on the difficult improvements in complex natural language issues in each area of semantic annotation and understanding systems. -
Improving Statistical Language Model Performance with Automatically Generated Word Hierarchies
Improving Statistical Language Model Performance with Automatically Generated Word Hierarchies John G. McMahon* Francis J. Smith The Queen's University of Belfast An automatic word-classification system has been designed that uses word unigram and bigram frequency statistics to implement a binary top-down form of word clustering and employs an average class mutual information metric. Words are represented as structural tags--n-bit num- bers the most significant bit-patterns of which incorporate class information. The classification system has revealed some of the lexical structure of English, as well as some phonemic and se- mantic structure. The system has been compared---directly and indirectly--with other recent word-classification systems. We see our classification as a means towards the end of construct- ing multilevel class-based interpolated language models. We have built some of these models and carried out experiments that show a 7% drop in test set perplexity compared to a standard interpolated trigram language model. 1. Introduction Many applications that process natural language can be enhanced by incorporating information about the probabilities of word strings; that is, by using statistical language model information (Church et al. 1991; Church and Mercer 1993; Gale, Church, and Yarowsky 1992; Liddy and Paik 1992). For example, speech recognition systems often require some model of the prior likelihood of a given utterance (Jelinek 1976). For convenience, the quality of these components can be measured by test set perplexity, PP (Bahl, Jelinek, and Mercer 1983; Bahl et al. 1989; Jelinek, Mercer, and Roukos 1990), in spite of some limitations (Ueberla 1994): PP = P(wlN)- ~, where there are N words in the word stream (w~/and ib is some estimate of the probability of that word stream. -
Radio Frequency Identification Based Smart
ISSN (Online) 2394-6849 International Journal of Engineering Research in Electronics and Communication Engineering (IJERECE) Vol 4, Issue 11, November 2017 Unstructured Text to DBPEDIA RDF Triples – Entity Extraction [1] Monika S G, [2] Chiranjeevi S, [3] Harshitha A, [4] Harshitha M, [5] V K Tivari, [6] Raghevendra Rao [1 – 5] Department of Electronics and Communication Engineering, Sri Sairam College of Engineering, Anekal, Bengaluru. [5] Assistant Professor, Department of Electronic and Communication Engineering, Sri Sairam College of Engineering, Anekal, Bengaluru. [6].Assistant Professor, Department of Computer Science and Engineering, Sri Sairam College of Engineering, Anekal, Bengaluru Abstract:- In the means of current technologies Use of data, information has grown significantly over the last few years. The information processing facing an issue like where the data is originating from multiple sources in an uncontrolled environment. The reason for the uncontrolled environment is the data gathered beyond the organization and generated by many people working outside the organization. The intent of this paper is delving into this unformatted information and build the framework in such a way that the information becomes more managed and used in the organization. Case and point for resume submitted for particular positions should become searchable. In this framework, we try and solve the problem and provide suggestions on how to solve other similar problem. In this paper, we describe an end-to-end system that automatically extracts RDF triples describing entity relations and properties from unstructured text. This system is based on a pipeline of text processing modules that includes an asemantic parser and a co-reference solver. -
NOTE Our Lucky Moments with Frederick Jelinek
The Prague Bulletin of Mathematical Linguistics NUMBER 88 DECEMBER 2007 91–92 NOTE Our Lucky Moments with Frederick Jelinek Barbora Vidová Hladká is contribution is going to be a congratulation to Frederick Jelinek’s birthday jubilee. Be- fore I reach the very congratulation I would like to remind a lucky moment that had a strong influence on the life of a certain Institute of Charles University in Prague aer 1989. And it is by no chance that the honored person witnessed the above mentioned moment and its con- sequences. From my personal point of view, I have become one of the ”victims” of this lucky moment so I really appreciate the opportunity to wish well to Fred via the Prague Bulletin circulating the institutions over the world. e crucial events in November 1989 in Czech Republic brought freedom to a lot of people. Freedom to scientists in the group of computational linguistics at the Faculty of Mathematics and Physics, Charles University changed (among other things) their subdepartment into an independent department of the faculty in 1990, namely the Institute of Formal and Applied Linguistics (ÚFAL) headed by Eva Hajičová. Freedom to Fred Jelinek made it possible for him (among other things) to give a two term course on spoken and written language analysis at the Czech Technical University in Prague in 1991-1992. At that time, Fred was a senior manager of the IBM T.J. Watson Research Center, Yorktown Heights, NY and he was heading a group carrying out research on continuous speech recognition, machine translation and text parsing and understanding.