Genes Associated with Common Variable Immunodeficiency: One Diagnosis to Rule Them All?

Total Page:16

File Type:pdf, Size:1020Kb

Genes Associated with Common Variable Immunodeficiency: One Diagnosis to Rule Them All? See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303747377 Genes associated with common variable immunodeficiency: one diagnosis to rule them all? Article in Journal of Medical Genetics · June 2016 Impact Factor: 6.34 · DOI: 10.1136/jmedgenet-2015-103690 READS 80 6 authors, including: Melissa Dullaers Bart N Lambrecht Ghent University Ghent University 49 PUBLICATIONS 1,114 CITATIONS 278 PUBLICATIONS 15,377 CITATIONS SEE PROFILE SEE PROFILE Elfride De Baere Filomeen Haerynck Ghent University Ghent University 159 PUBLICATIONS 3,452 CITATIONS 60 PUBLICATIONS 629 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Melissa Dullaers letting you access and read them immediately. Retrieved on: 14 June 2016 Downloaded from http://jmg.bmj.com/ on June 5, 2016 - Published by group.bmj.com JMG Online First, published on June 1, 2016 as 10.1136/jmedgenet-2015-103690 Review Genes associated with common variable immunodeficiency: one diagnosis to rule them all? Delfien J A Bogaert,1,2,3,4 Melissa Dullaers,1,4,5 Bart N Lambrecht,4,5 Karim Y Vermaelen,1,5,6 Elfride De Baere,3 Filomeen Haerynck1,2 1Clinical Immunology Research ABSTRACT dominant inheritance.2 So far, a monogenic cause Lab, Department of Pulmonary Common variable immunodeficiency (CVID) is a primary has been identified in 2–10% of patients with Medicine, Ghent University fi 24 Hospital, Ghent, Belgium antibody de ciency characterised by CVID. The majority of these genetic subtypes 2Department of Pediatric hypogammaglobulinaemia, impaired production of are very rare (figure 1 and table 1). The first CVID Immunology and Pulmonology, specific antibodies after immunisation and increased disease genes were discovered using a candidate Centre for Primary susceptibility to infections. CVID shows a considerable gene approach based on single-gene knockout fi – Immunode ciency, Jeffrey phenotypical and genetic heterogeneity. In contrast to mice.5 8 This might explain why many genetic Modell Diagnosis and Research fi Centre, Ghent University many other primary immunode ciencies, monogenic defects described thus far are autosomal recessive. Hospital, Ghent, Belgium forms count for only 2–10% of patients with CVID. The past 4 years, next-generation sequencing 3Center for Medical Genetics, Genes that have been implicated in monogenic CVID (NGS) technologies have accelerated the discovery Ghent University and Ghent include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), of both autosomal recessive and dominant CVID University Hospital, Ghent, Belgium TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 disease genes. In addition, it has become clear that 4Laboratory of (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, the clinical diagnosis of CVID is an umbrella cover- Immunoregulation, VIB PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, ing several genetic subtypes. In fact, many genes Inflammation Research Center, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2. With the initially reported as CVID disease genes are now Ghent, Belgium increasing number of disease genes identified in CVID, it considered to be responsible for distinct disease 5Department of Internal Medicine, Ghent University, has become clear that CVID is an umbrella diagnosis entities (table 1). Moreover, it has been recently Ghent, Belgium and that many of these genetic defects cause distinct suggested that, apart from rare monogenic forms, 6Tumor Immunology disease entities. Moreover, there is accumulating CVID is a complex rather than a Mendelian Laboratory, Department of evidence that at least a subgroup of patients with CVID disease.249 Pulmonary Medicine, Ghent University Hospital, Ghent, has a complex rather than a monogenic inheritance. This This review outlines current knowledge on the Belgium review aims to discuss current knowledge regarding the molecular basis of CVID, covering both monogenic molecular genetic basis of CVID with an emphasis on and complex forms, and linking with clinical and Correspondence to the relationship with the clinical and immunological immunological phenotypes. Dr Filomeen Haerynck, Princess phenotype. Elisabeth Children’s Hospital, 3K12D, Ghent University GENES ASSOCIATED WITH MONOGENIC Hospital, De Pintelaan 185, FORMS OF CVID Ghent 9000, Belgium; INTRODUCTION Genes encoding receptors and ligands [email protected] Common variable immunodeficiency (CVID) is one ICOS deficiency fi Received 10 February 2016 of the most prevalent primary immunode ciencies Inducible T cell costimulator (ICOS) is a T cell Revised 7 May 2016 (PIDs) with an important morbidity and high surface receptor that belongs to the CD28/CTLA-4 Accepted 10 May 2016 number of medical encounters.12According to the (cytotoxic T lymphocyte-associated antigen 4) international consensus statement, CVID is defined family (figure 2).5 Reciprocal ICOS–ICOS ligand by a marked decrease in serum IgG, decreased IgM interactions are essential for germinal centre (GC) and/or IgA, poor antibody responses to vaccines, formation and terminal B cell differentiation, and exclusion of defined causes of hypogammaglo- effector T cell responses and immune tolerance.5 bulinaemia.2 Its prevalence is estimated between ICOS was the first disease gene identified for 1/10 000 and 1/50 000 in Caucasians; it is rarely monogenic forms of CVID, using a candidate gene described in Asian and African populations.23Age approach based on prior evidence from single-gene of onset is variable, with a peak incidence in child- knockout mice.5 Hitherto, biallelic ICOS mutations hood and in the second and third decades of resulting in complete loss of protein expression – life.23Although patients with CVID share many have been reported in seven families.51013 clinical and immunological features, the degree and Haplotype analysis in the four German/Austrian severity of the presenting phenotype varies consid- families segregating an identical ICOS mutation erably between affected individuals.2 The most con- was indicative for a common founder.10 14 sistent clinical feature is increased susceptibility to ICOS-deficient patients had a variable phenotype (respiratory tract) infections. Patients may also with variable age of onset and severity (table 1).5 – develop complications related to disrupted immune 10 13 Patients commonly presented recurrent homoeostasis such as autoimmunity.2 Besides respiratory tract infections and autoimmune compli- – To cite: Bogaert DJA, impaired Ig production by B cells, abnormalities in cations.51013 Patients with two novel ICOS muta- Dullaers M, Lambrecht BN, almost all components of the immune system have tions published in 2015 extended the clinical et al. J Med Genet Published 2 fl Online First: [please include been described in CVID. spectrum: early onset in ammatory bowel disease, Day Month Year] The majority of CVID cases occur sporadically.2 hepatomegaly with raised liver enzymes, cyto- doi:10.1136/jmedgenet- About 5–25% of patients have a positive family megalovirus viraemia and Pneumocystis jirovecii 2015-103690 history, of which most demonstrate an autosomal pneumonia.12 13 Enteropathy in one ICOS-deficient Bogaert DJA, et al. J Med Genet 2016;0:1–16. doi:10.1136/jmedgenet-2015-103690 1 Copyright Article author (or their employer) 2016. Produced by BMJ Publishing Group Ltd under licence. Downloaded from http://jmg.bmj.com/ on June 5, 2016 - Published by group.bmj.com Review Figure 1 Estimated share of each disease gene within the common variable immunodeficiency population based on published cases. patient resolved after haematopoietic stem cell transplantation Variants in the genes encoding TACI and BAFF-R have been while diarrhoea persisted in his non-transplanted sister. This indi- identified in patients with CVID by means of a candidate gene – cates that inflammatory gut complications are disease-intrinsic.12 approach based on single-gene knockout mice.6 8 Although ini- Noteworthy, decreased ICOS expression was previously reported tially thought to be fully penetrant, it is currently believed that in an adult Caucasian man with Crohn’s-like colitis and panhypo- monoallelic TNFRSF13B and monoallelic and biallelic gammaglobulinaemia.15 Unfortunately, no mutation analysis of TNFRSF13C variants are by themselves not sufficient to cause a – ICOS was performed.15 CVID phenotype.18 22 All ICOS-deficient patients had very low to absent memory B cells and some also showed a loss of bone marrow plasma TNFRSF13B (encoding TACI) variants 510–14 cells. This might be due to defective GC reactions in the Biallelic and monoallelic loss-of-function variants in 14 fi absence of ICOS signalling. ICOS-de cient patients also TNFRSF13B have been registered in at least 2147 patients based demonstrated varying degrees of T cell defects (table 1). In con- on the Jeffrey Modell Centers Global Network report.1 Biallelic fi trast to the rst-reported German/Austrian families, the TNFRSF13B variants have always been associated with some – Japanese, Kuwaiti and Pakistani sibling pairs demonstrated pro- degree of antibody deficiency,6 7 19 20 23 27 except for a homo- nounced T cell defects with viral and opportunistic infections zygous C104R variant in a 25-year-old member of a fi resembling combined immunode ciency (CID) rather than CVID-affected family who was asymptomatic and had normal 510–14 CVID. Therefore, ICOS mutations are no longer consid- Ig levels at the time of the study.24 The latter individual could ered to cause a pure CVID phenotype
Recommended publications
  • Deregulated Gene Expression Pathways in Myelodysplastic Syndrome Hematopoietic Stem Cells
    Leukemia (2010) 24, 756–764 & 2010 Macmillan Publishers Limited All rights reserved 0887-6924/10 $32.00 www.nature.com/leu ORIGINAL ARTICLE Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells A Pellagatti1, M Cazzola2, A Giagounidis3, J Perry1, L Malcovati2, MG Della Porta2,MJa¨dersten4, S Killick5, A Verma6, CJ Norbury7, E Hellstro¨m-Lindberg4, JS Wainscoat1 and J Boultwood1 1LRF Molecular Haematology Unit, NDCLS, John Radcliffe Hospital, Oxford, UK; 2Department of Hematology Oncology, University of Pavia Medical School, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; 3Medizinische Klinik II, St Johannes Hospital, Duisburg, Germany; 4Division of Hematology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden; 5Department of Haematology, Royal Bournemouth Hospital, Bournemouth, UK; 6Albert Einstein College of Medicine, Bronx, NY, USA and 7Sir William Dunn School of Pathology, University of Oxford, Oxford, UK To gain insight into the molecular pathogenesis of the the World Health Organization.6,7 Patients with refractory myelodysplastic syndromes (MDS), we performed global gene anemia (RA) with or without ringed sideroblasts, according to expression profiling and pathway analysis on the hemato- poietic stem cells (HSC) of 183 MDS patients as compared with the the French–American–British classification, were subdivided HSC of 17 healthy controls. The most significantly deregulated based on the presence or absence of multilineage dysplasia. In pathways in MDS include interferon signaling, thrombopoietin addition, patients with RA with excess blasts (RAEB) were signaling and the Wnt pathways. Among the most signifi- subdivided into two categories, RAEB1 and RAEB2, based on the cantly deregulated gene pathways in early MDS are immuno- percentage of bone marrow blasts.
    [Show full text]
  • Imm Catalog.Pdf
    $ Gene Symbol A B 3 C 4 D 9 E 10 F 11 G 12 H 13 I 14 J. K 17 L 18 M 19 N 20 O. P 22 R 26 S 27 T 30 U 32 V. W. X. Y. Z 33 A ® ® Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera Gene Symbol Gene ID Antibody Monoclonal Antibody Polyclonal MaxPab Full-length Protein Partial-length Protein Antibody Pair KIt siRNA/Chimera A1CF 29974 ● ● ADAMTS13 11093 ● ● ● ● ● A2M 2 ● ● ● ● ● ● ADAMTS20 80070 ● AACS 65985 ● ● ● ADAMTS5 11096 ● ● ● AANAT 15 ● ● ADAMTS8 11095 ● ● ● ● AATF 26574 ● ● ● ● ● ADAMTSL2 9719 ● AATK 9625 ● ● ● ● ADAMTSL4 54507 ● ● ABCA1 19 ● ● ● ● ● ADAR 103 ● ● ABCA5 23461 ● ● ADARB1 104 ● ● ● ● ABCA7 10347 ● ADARB2 105 ● ABCB9 23457 ● ● ● ● ● ADAT1 23536 ● ● ABCC4 10257 ● ● ● ● ADAT2 134637 ● ● ABCC5 10057 ● ● ● ● ● ADAT3 113179 ● ● ● ABCC8 6833 ● ● ● ● ADCY10 55811 ● ● ABCD2 225 ● ADD1 118 ● ● ● ● ● ● ABCD4 5826 ● ● ● ADD3 120 ● ● ● ABCG1 9619 ● ● ● ● ● ADH5 128 ● ● ● ● ● ● ABL1 25 ● ● ADIPOQ 9370 ● ● ● ● ● ABL2 27 ● ● ● ● ● ADK 132 ● ● ● ● ● ABO 28 ● ● ADM 133 ● ● ● ABP1 26 ● ● ● ● ● ADNP 23394 ● ● ● ● ABR 29 ● ● ● ● ● ADORA1 134 ● ● ACAA2 10449 ● ● ● ● ADORA2A 135 ● ● ● ● ● ● ● ACAN 176 ● ● ● ● ● ● ADORA2B 136 ● ● ACE 1636 ● ● ● ● ADRA1A 148 ● ● ● ● ACE2 59272 ● ● ADRA1B 147 ● ● ACER2 340485 ● ADRA2A 150 ● ● ACHE 43 ● ● ● ● ● ● ADRB1 153 ● ● ACIN1 22985 ● ● ● ADRB2 154 ● ● ● ● ● ACOX1 51 ● ● ● ● ● ADRB3 155 ● ● ● ● ACP5 54 ● ● ● ● ● ● ● ADRBK1 156 ● ● ● ● ACSF2 80221 ● ● ADRM1 11047 ● ● ● ● ACSF3 197322 ● ● AEBP1 165 ● ● ● ● ACSL4 2182 ●
    [Show full text]
  • Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
    Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only.
    [Show full text]
  • The REST/NRSF Pathway As a Central Mechanism in CNS Dysfunction
    The REST/NRSF Pathway as a Central Mechanism in CNS Dysfunction Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Alix Warburton April 2015 Disclaimer The data in this thesis is a result of my own work. The material collected for this thesis has not been presented, nor is currently being presented, either wholly or in part for any other degree or other qualification. All of the research, unless otherwise stated, was performed in the Department of Physiology and Department of Pharmacology, Institute of Translational Medicine, University of Liverpool. All other parties involved in the research presented here, and the nature of their contribution, are listed in the Acknowledgements section of this thesis. i Acknowledgements First and foremost, I would like to express my upmost gratitude to my primary and secondary supervisors Professor John Quinn (a.k.a Prof. Quinny) and Dr Jill Bubb for all of their support, guidance, wisdom (thank you Jill) and encouragement throughout my PhD; I could not have wished for a better pair. I am also extremely grateful to the BBSRC for funding my PhD project. I would also like to extend my thanks to Dr Graeme Sills for providing samples and assistance with my work on the SANAD epilepsy project, Dr Fabio Miyajima for offering his knowledge and knowhow on many occasions, Dr Gerome Breen for being a bioinformatics wizard and providing support on several projects, Dr Minyan Wang’s lab for their help and hospitality during my 3 month visit to Xi'an Jiaotong-Liverpool University, Dr Roshan Koron for assisting with the breast cancer study, Dr Chris Murgatroyd for his invaluable advice on ChIP and Professor Dan Rujescu’s lab for providing clinical samples and support with statistical analyses on the schizophrenia project.
    [Show full text]
  • Tools for Cell Therapy and Immunoregulation
    RnDSy-lu-2945 Tools for Cell Therapy and Immunoregulation Target Cell TIM-4 SLAM/CD150 BTNL8 PD-L2/B7-DC B7-H1/PD-L1 (Human) Unknown PD-1 B7-1/CD80 TIM-1 SLAM/CD150 Receptor TIM Family SLAM Family Butyrophilins B7/CD28 Families T Cell Multiple Co-Signaling Molecules Co-stimulatory Co-inhibitory Ig Superfamily Regulate T Cell Activation Target Cell T Cell Target Cell T Cell B7-1/CD80 B7-H1/PD-L1 T cell activation requires two signals: 1) recognition of the antigenic peptide/ B7-1/CD80 B7-2/CD86 CTLA-4 major histocompatibility complex (MHC) by the T cell receptor (TCR) and 2) CD28 antigen-independent co-stimulation induced by interactions between B7-2/CD86 B7-H1/PD-L1 B7-1/CD80 co-signaling molecules expressed on target cells, such as antigen-presenting PD-L2/B7-DC PD-1 ICOS cells (APCs), and their T cell-expressed receptors. Engagement of the TCR in B7-H2/ICOS L 2Ig B7-H3 (Mouse) the absence of this second co-stimulatory signal typically results in T cell B7-H1/PD-L1 B7/CD28 Families 4Ig B7-H3 (Human) anergy or apoptosis. In addition, T cell activation can be negatively regulated Unknown Receptors by co-inhibitory molecules present on APCs. Therefore, integration of the 2Ig B7-H3 Unknown B7-H4 (Mouse) Receptors signals transduced by co-stimulatory and co-inhibitory molecules following TCR B7-H5 4Ig B7-H3 engagement directs the outcome and magnitude of a T cell response Unknown Ligand (Human) B7-H5 including the enhancement or suppression of T cell proliferation, B7-H7 Unknown Receptor differentiation, and/or cytokine secretion.
    [Show full text]
  • Peking University-Juntendo University Joint Symposium on Cancer Research and Treatment ADAM28 (A Disintegrin and Metalloproteinase 28) in Cancer Cell Proliferation and Progression
    Whatʼs New from Juntendo University, Tokyo Juntendo Medical Journal 2017. 63(5), 322-325 Peking University - Juntendo University Joint Symposium on Cancer Research and Treatment ADAM28 (a Disintegrin and Metalloproteinase 28) in Cancer Cell Proliferation and Progression YASUNORI OKADA* *Department of Pathophysiology for Locomotive and Neoplastic Diseases, Juntendo University Graduate School of Medicine, Tokyo, Japan A disintegrinandmetalloproteinase 28 (ADAM28) is overexpressedpredominantlyby carcinoma cells in more than 70% of the non-small cell lung carcinomas, showing positive correlations with carcinoma cell proliferation and metastasis. ADAM28 cleaves insulin-like growth factor binding protein-3 (IGFBP-3) in the IGF-I/IGFBP-3 complex, leading to stimulation of cell proliferation by intact IGF-I released from the complex. ADAM28 also degrades von Willebrand factor (VWF), which induces apoptosis in human carcinoma cell lines with negligible ADAM28 expression, andthe VWF digestionby ADAM28-expressing carcinoma cells facilitates them to escape from VWF-induced apoptosis, resulting in promotion of metastasis. We have developed human antibodies against ADAM28 andshown that one of them significantly inhibits tumor growth andmetastasis using lung adenocarcinoma cells. Our data suggest that ADAM28 may be a new molecular target for therapy of the patients with ADAM28-expressing non-small cell lung carcinoma. Key words: a disintegrin and metalloproteinase 28 (ADAM28), cell proliferation, invasion, metastasis, human antibody inhibitor Introduction human cancers 2). However, development of the synthetic inhibitors of MMPs andtheir application Cancer cell proliferation andprogression are for treatment of the cancer patients failed 3). modulated by proteolytic cleavage of tissue micro- On the other hand, members of the ADAM (a environmental factors such as extracellular matrix disintegrin and metalloproteinase) gene family, (ECM), growth factors andcytokines, receptors another family belonging to the metzincin gene andcell adhesionmolecules.
    [Show full text]
  • Mediator of DNA Damage Checkpoint 1 (MDC1) Is a Novel Estrogen Receptor Co-Regulator in Invasive 6 Lobular Carcinoma of the Breast 7 8 Evelyn K
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.423142; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Running Title: MDC1 co-regulates ER in ILC 2 3 Research article 4 5 Mediator of DNA damage checkpoint 1 (MDC1) is a novel estrogen receptor co-regulator in invasive 6 lobular carcinoma of the breast 7 8 Evelyn K. Bordeaux1+, Joseph L. Sottnik1+, Sanjana Mehrotra1, Sarah E. Ferrara2, Andrew E. Goodspeed2,3, James 9 C. Costello2,3, Matthew J. Sikora1 10 11 +EKB and JLS contributed equally to this project. 12 13 Affiliations 14 1Dept. of Pathology, University of Colorado Anschutz Medical Campus 15 2Biostatistics and Bioinformatics Shared Resource, University of Colorado Comprehensive Cancer Center 16 3Dept. of Pharmacology, University of Colorado Anschutz Medical Campus 17 18 Corresponding author 19 Matthew J. Sikora, PhD.; Mail Stop 8104, Research Complex 1 South, Room 5117, 12801 E. 17th Ave.; Aurora, 20 CO 80045. Tel: (303)724-4301; Fax: (303)724-3712; email: [email protected]. Twitter: 21 @mjsikora 22 23 Authors' contributions 24 MJS conceived of the project. MJS, EKB, and JLS designed and performed experiments. JLS developed models 25 for the project. EKB, JLS, SM, and AEG contributed to data analysis and interpretation. SEF, AEG, and JCC 26 developed and performed informatics analyses. MJS wrote the draft manuscript; all authors read and revised the 27 manuscript and have read and approved of this version of the manuscript.
    [Show full text]
  • The Multifaceted Role of CMA in Glioma: Enemy Or Ally?
    International Journal of Molecular Sciences Review The Multifaceted Role of CMA in Glioma: Enemy or Ally? Alessia Lo Dico 1,† , Cristina Martelli 1,† , Cecilia Diceglie 1 and Luisa Ottobrini 1,2,* 1 Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; [email protected] (A.L.D.); [email protected] (C.M.); [email protected] (C.D.) 2 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy * Correspondence: [email protected]; Tel.: +39-02(50)-330-404; Fax: +39-02(50)-330-425 † Authors contributed equally to this work. Abstract: Chaperone-mediated autophagy (CMA) is a catabolic pathway fundamental for cell home- ostasis, by which specific damaged or non-essential proteins are degraded. CMA activity has three main levels of regulation. The first regulatory level is based on the targetability of specific proteins possessing a KFERQ-like domain, which can be recognized by specific chaperones and delivered to the lysosomes. Target protein unfolding and translocation into the lysosomal lumen constitutes the second level of CMA regulation and is based on the modulation of Lamp2A multimerization. Finally, the activity of some accessory proteins represents the third regulatory level of CMA activity. CMA’s role in oncology has not been fully clarified covering both pro-survival and pro-death roles in different contexts. Taking all this into account, it is possible to comprehend the actual complexity of both CMA regulation and the cellular consequences of its activity allowing it to be elected as a modulatory and not only catabolic machinery.
    [Show full text]
  • Aiolos Overexpression in Systemic Lupus Erythematosus B Cell
    Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 This information is current as Modulation of Cereblon Activity of September 27, 2021. Yumi Nakayama, Jolanta Kosek, Lori Capone, Eun Mi Hur, Peter H. Schafer and Garth E. Ringheim J Immunol 2017; 199:2388-2407; Prepublished online 28 August 2017; Downloaded from doi: 10.4049/jimmunol.1601725 http://www.jimmunol.org/content/199/7/2388 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/08/26/jimmunol.160172 Material 5.DCSupplemental References This article cites 131 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/199/7/2388.full#ref-list-1 Why The JI? Submit online. by guest on September 27, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Detection of Pathogenic Isoforms of IKZF1 in Leukemic Cell
    cancers Article Detection of Pathogenic Isoforms of IKZF1 in Leukemic Cell Lines and Acute Lymphoblastic Leukemia Samples: Identification of a Novel Truncated IKZF1 Transcript in SUP-B15 Weiqiang Zhao 1,*, Ying Li 2 , Chenjiao Yao 2 , Guojuan Zhang 1, Kevin Y. Zhao 1, Wei Chen 1, Peng Ru 1, Xiaokang Pan 1, Huolin Tu 1 and Daniel Jones 1 1 The James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; [email protected] (G.Z.); [email protected] (K.Y.Z.); [email protected] (W.C.); [email protected] (P.R.); [email protected] (X.P.); [email protected] (H.T.); [email protected] (D.J.) 2 The Department of Pediatrics and Department of Hematology, Xiang-Ya Third Hospital, Changsha 410013, China; [email protected] (Y.L.); [email protected] (C.Y.) * Correspondence: [email protected]; Tel.: +1-6142934210 Received: 27 August 2020; Accepted: 22 October 2020; Published: 28 October 2020 Simple Summary: Abnormal RNA splicing plays a fundamental role in leukemogenesis in acute lymphoblastic leukemia (ALL). Many cases of high-risk B-cell ALL cases, including BCR-ABL1+ and BCR-ABL1-like ALL, share a common molecular mechanism of aberrant fusion transcripts involving tyrosine kinase genes combined with dysregulation of the transcription factor and lymphocyte differentiation factor IKZF1. Dysfunction of IKZF1 in ALL is caused by mutation and gene deletion but also alternative splicing resulting in exon skipping with production of aberrant IKZF1 proteins. We report here an assay to detect aberrantly spliced isoforms of IKZF1 in ALL to assist in diagnosis, outcome prediction, and therapy selection in ALL and the identification of a novel altered IKZF1 product in a model ALL cell line.
    [Show full text]
  • Intrinsic Specificity of DNA Binding and Function of Class II Bhlh
    INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS APPROVED BY SUPERVISORY COMMITTEE Jane E. Johnson Ph.D. Helmut Kramer Ph.D. Genevieve Konopka Ph.D. Raymond MacDonald Ph.D. INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS by BRADFORD HARRIS CASEY DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas December, 2016 DEDICATION This work is dedicated to my family, who have taught me pursue truth in all forms. To my grandparents for inspiring my curiosity, my parents for teaching me the value of a life in the service of others, my sisters for reminding me of the importance of patience, and to Rachel, who is both “the beautiful one”, and “the smart one”, and insists that I am clever and beautiful, too. Copyright by Bradford Harris Casey, 2016 All Rights Reserved INTRINSIC SPECIFICITY OF BINDING AND REGULATORY FUNCTION OF CLASS II BHLH TRANSCRIPTION FACTORS Publication No. Bradford Harris Casey The University of Texas Southwestern Medical Center at Dallas, 2016 Jane E. Johnson, Ph.D. PREFACE Embryonic development begins with a single cell, and gives rise to the many diverse cells which comprise the complex structures of the adult animal. Distinct cell fates require precise regulation to develop and maintain their functional characteristics. Transcription factors provide a mechanism to select tissue-specific programs of gene expression from the shared genome.
    [Show full text]
  • ATP-Binding and Hydrolysis in Inflammasome Activation
    molecules Review ATP-Binding and Hydrolysis in Inflammasome Activation Christina F. Sandall, Bjoern K. Ziehr and Justin A. MacDonald * Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada; [email protected] (C.F.S.); [email protected] (B.K.Z.) * Correspondence: [email protected]; Tel.: +1-403-210-8433 Academic Editor: Massimo Bertinaria Received: 15 September 2020; Accepted: 3 October 2020; Published: 7 October 2020 Abstract: The prototypical model for NOD-like receptor (NLR) inflammasome assembly includes nucleotide-dependent activation of the NLR downstream of pathogen- or danger-associated molecular pattern (PAMP or DAMP) recognition, followed by nucleation of hetero-oligomeric platforms that lie upstream of inflammatory responses associated with innate immunity. As members of the STAND ATPases, the NLRs are generally thought to share a similar model of ATP-dependent activation and effect. However, recent observations have challenged this paradigm to reveal novel and complex biochemical processes to discern NLRs from other STAND proteins. In this review, we highlight past findings that identify the regulatory importance of conserved ATP-binding and hydrolysis motifs within the nucleotide-binding NACHT domain of NLRs and explore recent breakthroughs that generate connections between NLR protein structure and function. Indeed, newly deposited NLR structures for NLRC4 and NLRP3 have provided unique perspectives on the ATP-dependency of inflammasome activation. Novel molecular dynamic simulations of NLRP3 examined the active site of ADP- and ATP-bound models. The findings support distinctions in nucleotide-binding domain topology with occupancy of ATP or ADP that are in turn disseminated on to the global protein structure.
    [Show full text]