U-238 Neutron Capture Rate (P28) in Ågesta Power Reactor Fuel

Total Page:16

File Type:pdf, Size:1020Kb

U-238 Neutron Capture Rate (P28) in Ågesta Power Reactor Fuel ÅE-299 UDC 621.039.512.2 621.039.543.4 The Measurement of Epithermal-to-Therma! o U-238 Neutron Capture Rate (p28) in Ågesta Power Reactor Fuel G. Bernander AKTIEBOLAGET ATOMENERGI STOCKHOLM, SWEDEN 1967 AB-299 THE MEASUREMENT OF EPITHERMAL-TO- THERMAL U-238 NEUTRON CAPTURE RATE (o_) IN ÅGESTA Zo —————— POWER REACTOR FUEL G. Bernander (ASEA) SUMMARY The epithermal-to-thermal neutron capture rate ratio p_„ in U-238 in Ågesta fuel has been measured by the chemical separation method. The method involves the isolation of Np-239 from uranium and fission products by reversed phase partition chromatography. Although somewhat elaborate, and in spite of difficulties with residual fission products, the method has yielded reasonably accurate results. Further development work on chemical procedures may lead to some improvement. A comparison with the coincidence method - electronic separation of activities - has not shown any large systematic differen­ ces between the two methods. The separation of the epithermal U-235 activation from the total has been achieved by means of the "l/v subtraction technique" using copper foils as the l/v monitor. The complementary thermal column irradiations required have been performed in the research reactors TRIGA (Helsinki) and Rl (Stockholm). From the measured p_„ values the resonance escape probabi­ lity (p) and the initial conversion ratio (ICR) may be calculated using cross-section data and other lattice parameters. Comparisons with theoretical values of p and ICR as calculated with the BURNUP lattice parameter code are favourable. The results for the 19-pin cluster of the Ågesta fuel are summarized below. Tem­ Experiment Theory pera­ ture P p ICR P ICR <°0 28 35 0.365 + 0.009 0.902 + 0.003 0.775 + 0.005 0.892 0.795 ( 20°C) 212 0.422 + 0.015 0.882 + 0.004 0.833 + 0.008 0.879 0.838 (220°C) Printed and distributed in September 1967 LIST OF CONTENTS Page 1. Introduction 3 2. Derivation of p_„ from measured quantities 4 3. Experiments 10 3. 1. Description of fuel and irradiation technique 10 3.2. Measurements 12 3.3. Np-239 activity determination 14 3.4. Auxiliary measurements 19 3.5. Cu foil activity counting 22 4. Results 23 4.1. Activation data 23 4.2. Derivation of p?fi 25 4.3. Calculation of p and ICR 29 5. Summary and discussion 32 Acknowledgements 33 References 34 List of figures 36 - 3 - 1. INTRODUCTION In conjunction with the commissioning physics tests in the Åge sta power reactor [1,2,3] the resonance-to-thermal U-238 neutron capture was rate ratio, p?ft» measured together with several other parameters. This was part of an effort to assess the resonance absorption charac­ teristics of heavy water moderated and cooled uranium oxide lattices at both ambient and operational temperatures. These characteristics, as represented by p?o» the initial conversion ratio (ICR), or the resonance escape probability (p), are important in predicting initial excess reac­ tivity and fuel burnup. A chemical method was adopted to separate the fission products from the induced Np-239 activities that were taken as a measure of the neutron capture rate in U-238. Thomasen and Windsor [4] reported favourable results with a chemical separation technique, and the high fluxes available in the Ågesta reactor were an advantage with this method since the high specific activities possible would eliminate the uranium background problem. The "l/v subtraction method", originally proposed by Egiazarov et al. [5], was used to separate the epithermally induced Np-239 activity from the total. In this method the l/v activation is monitored with a separate l/v detector, for which copper foils were employed. In order to obtain absolute values of capture rate ratios, an auxiliary irradiation must be carried out in an essentially pure thermal flux. The fuel samples were 10 mm long UO~ pellets with the same diameter as the ordinary fuel. After irradiation, the pellets were dissolved and a small fraction of the solution was processed to sepa­ rate the neptunium from the uranium and fission products. The neptunium finally collected and to be counted with an Nal(Tl) crystal was thus in a dissolved state. There are some advantages in using large fuel samples and subsequent dissolution instead of counting very thin foils of fuel mate­ rial. No irradiation geometry difficulties arise since moderate sur­ face defects and slight misalignments or gaps between pellets introduce only very small errors. The dissolution yields an averaged and uniform activity distribution in the counting samples, reducing also counting - 4 - geometry problems. The relatively high irradiation flux necessary in the Ågesta irradiations (because of other simultaneous measurements) also favoured the dissolution technique, which allows an arbitrary activity fraction in a sample to be counted. The high specific activity at the same time reduces problems of natural uranium activity background. A disadvantage of chemical separation work is that exceptionally great care must be exercised in order to avoid excessive activity losses in the various processing stages. The procedures were also rather elaborate and time consuming, especially since the separation yield had not been quite complete, necessitating further complementary measure­ ments to establish correction factors. In one of the three measurements reported here, a comparison was made with coincidence counting on unseparated dissolved samples. In this case no significant systematic differences between the two methods could be inferred. In the following, the theoretical background is first treated (section 2); then the experiment and the procedures are described (section 3). Section 4 gives the experimental results, and a summary and discussion concludes the paper. 2. DERIVATION OF p2g FROM MEASURED QUANTITIES In order to emphasize the importance of p?o, the expressions for resonance escape probability (p) and initial conversion ratio (ICR) as a function of p?„ will first be developed; then p?o will be defined in terms of measured quantities. The definitions of p and p?8 found in the literature vary somewhat depending on the lattice parameter model and the form of cross-section convention used. In this paper we shall conform to the Swedish lattice parameter recipe as represented by the BURNUP code [6] which employs Westcott-type cross-section data. Thus p, as calculated from resonance integral data, involves escape from U-238 resonance absorp­ tion only. Fast neutron capture in U-238 (above fission threshold) is wholly accounted for in the fast fission factor, whereas all l/v absorption, including that in the resonance region, is contained in the thermal utilization factor. - 5 - The following notations will be used for the quantities occurring in the formulae: N = neutron radiative capture in U-238 M = neutron absorption (including fission) in U-235 Indices t, r and s denote "thermal" (all l/v capture, re­ sonance, and fast absorption respectively P , P and P are the fast, intermediate, and thermal non- s r At leakage probabilities f = thermal utilization factor T| = number of fast neutrons produced from U-235 fission per thermal absorption in fuel Q = fast fission factor v = number of fast neutrons formed per fission £ = macroscopic absorption cross-section Indices a, c and f denote total absorption, radiative capture, and fission respectively L, = fast neutron group migration length B2 = the buckling of a critical system F = fission rate a = capture-to-fission cross-section ratio R = total-to-thermal neutron capture ratio in U-238 C = neutron capture in Cu-63 Resonance escape probability (p) The p-factor is defined as the fraction of the total number of fast neutrons available for slowing down past the U-238 fission threshold that escape capture in the U-238 resonances (excluding the l/v con­ tribution) during moderation. Then the fraction absorbed in the U-238 resonances is approximately given by (all U-235 capture is accounted for as thermal) N /P 1 P= " (Nt+M)/PsPrPtpf W Since the effective multiplication constant may be written as 6 - k ef,f, = k t» • P srP Pt = Ti-] e rp f • P Psr P.t and Nt + M = T-(28T 'Nt 3. t (where £ (U) = £ , (28) + £ (25)) eq. (1) takes the form cl ctX 3. k S 28 N eff at< > r (?) In an infinite system k , /P = k , whereas in a finite just ' etir' s <» critical system k ,, = 1 and P = l/(l + L B ). Now, p?o is defined by N - N N + N t _ r s ,,, p28 _ N N V> so that N N N^ = p28 " N^* (4) where the term N /N accounts for the fast capture in U-238 included in p?Q« If the U-235 and U-238 total fission rates are F?(- and F_„ respectively, then S_(28) N = —^7 r • F = (v F s S. (28) *28 ff28 28 f s and at N = t ' Sf(25) ' * 25 Combining these two quantities one obtains: - 7 - Ng £f(25) F^g K = "28 *a7^ ' F25 U Thus, if F /F is measured or is calculated from the fast fission ' no28' 12c5 factor, if known, according to F28 , .. V28"1"Q?28 (e-1) F25 V25 then the fast capture contribution may be estimated. Combining eq. (2), (4) and (5) and using the relation S (25) f Tl ^W V25 one gets instead of eq. (2): kSsf f Sat(28) keffa28 F28 p = p 6 TIP1:0 * "OuTjatvwr / * 2"8" - I^TP" v25-" s • F"2- 5 < > The last term in (6) corrects for the fast capture included in the measurement of p?o« This relation is equivalent to the one derived for p by Kouts and Sher [7]. Initial conversion ratio (ICR) The ICR is defined as the number of fissionable nuclei formed from neutron capture in fertile material per fissionable nucleus con­ sumed in fresh fuel.
Recommended publications
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Wo 2009/108331 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 3 September 2009 (03.09.2009) WO 2009/108331 A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 38/22 (2006.01) CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, PCT/US2009/001213 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, 25 February 2009 (25.02.2009) NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, (25) Filing Language: English UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/066,959 25 February 2008 (25.02.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Not furnished 25 February 2009 (25.02.2009) US ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, (71) Applicant and ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventor: FORSLEY, Lawrence, Parker, Galloway MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), [US/US]; 70 Elmwood Avenue, Rochester, NY 1461 1 OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, (US).
    [Show full text]
  • Relative Fission Product Yield Determination in the Usgs
    RELATIVE FISSION PRODUCT YIELD DETERMINATION IN THE USGS TRIGA MARK I REACTOR by Michael A. Koehl © Copyright by Michael A. Koehl, 2016 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering). Golden, Colorado Date: ____________________ Signed: ________________________ Michael A. Koehl Signed: ________________________ Dr. Jenifer C. Braley Thesis Advisor Golden, Colorado Date: ____________________ Signed: ________________________ Dr. Mark P. Jensen Professor and Director Nuclear Science and Engineering Program ii ABSTRACT Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, ; modified spectral index, ; neutron temperature, ; and gold-based cadmium ratiosφ were determined for various sampling√⁄ positions in the USGS TRIGA Mark I reactor.
    [Show full text]
  • The Electronuclear Conversion of Fertile to Fissile Material
    UCRL-52144 THE ELECTRONUCLEAR CONVERSION OF FERTILE TO FISSILE MATERIAL C. M. Van Atta J. D. Lee H. Heckrotto October 11, 1976 Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48 II\M LAWRENCE lUg LIVERMORE k^tf LABORATORY UnrmsilyotCatftxna/lJvofmofe s$ PC DISTRIBUTION OF THIS DOCUMENmmT IS UMUMWTED NOTICE Thii npoit WM prepared w u account of wot* •pomond by UM Uiilttd Stalwi GovcmiMM. Nittim Uw United Stain nor the United Statn Energy tUwardi it Development AdrnWrtrtUon, not «y of thei* employee!, nor any of their contricton, •ubcontrecton, or their employe*!, makti any warranty, expreai « Implied, or muMi any toga) liability oc reeponafctUty for the accuracy, completenni or uMfulntat of uy Information, apperatui, product or proem dlecloead, or repreienl. that tu UM would not *nfrkig» prrrtt*)}MWiwd r%hl». NOTICE Reference to a oompmy or product rum don not imply approval or nconm ndatjon of the product by the Untnrtity of California or the US. Energy Research A Devetopnient Administration to the uchvton of others that may be suitable. Printed In the United Stitei or America Available from National Technical Information Service U.S. Department of Commerce 528S Port Royal Road Springfield, VA 22161 Price: Printed Copy S : Microfiche $2.25 DMimtic P»t» Ranflt PHca *•#» Rtnft MM 001-025 $ 3.50 326-350 10.00 026-050 4.00 351-375 10.50 051-075 4.50 376-400 10.75 076-100 5.00 401-425 11.00 101-125 5.50 426-450 31.75 126-150 6.00 451-475 12.00 151-175 6.75 476-500 12.50 176-200 7.50 501-525 12.75 201-225 7.75 526-550 13.00 526-250 8.00 551-575 13.50 251-275 9.00 576-600 I3.7S 276-300 9.25 601 -up 301-325 9.75 *Ml J2.50 fot «ch iddltlOMl 100 pip tacmitMt from 601 ID 1,000 flfcK IM 54.50 for eicli iMUknal I0O plfe feenmMI om 1,000 p*o.
    [Show full text]
  • Conceptual Design Report Jülich High
    General Allgemeines ual Design Report ual Design Report Concept Jülich High Brilliance Neutron Source Source Jülich High Brilliance Neutron 8 Conceptual Design Report Jülich High Brilliance Neutron Source (HBS) T. Brückel, T. Gutberlet (Eds.) J. Baggemann, S. Böhm, P. Doege, J. Fenske, M. Feygenson, A. Glavic, O. Holderer, S. Jaksch, M. Jentschel, S. Kleefisch, H. Kleines, J. Li, K. Lieutenant,P . Mastinu, E. Mauerhofer, O. Meusel, S. Pasini, H. Podlech, M. Rimmler, U. Rücker, T. Schrader, W. Schweika, M. Strobl, E. Vezhlev, J. Voigt, P. Zakalek, O. Zimmer Allgemeines / General Allgemeines / General Band / Volume 8 Band / Volume 8 ISBN 978-3-95806-501-7 ISBN 978-3-95806-501-7 T. Brückel, T. Gutberlet (Eds.) Gutberlet T. Brückel, T. Jülich High Brilliance Neutron Source (HBS) 1 100 mA proton ion source 2 70 MeV linear accelerator 5 3 Proton beam multiplexer system 5 4 Individual neutron target stations 4 5 Various instruments in the experimental halls 3 5 4 2 1 5 5 5 5 4 3 5 4 5 5 Schriften des Forschungszentrums Jülich Reihe Allgemeines / General Band / Volume 8 CONTENT I. Executive summary 7 II. Foreword 11 III. Rationale 13 1. Neutron provision 13 1.1 Reactor based fission neutron sources 14 1.2 Spallation neutron sources 15 1.3 Accelerator driven neutron sources 15 2. Neutron landscape 16 3. Baseline design 18 3.1 Comparison to existing sources 19 IV. Science case 21 1. Chemistry 24 2. Geoscience 25 3. Environment 26 4. Engineering 27 5. Information and quantum technologies 28 6. Nanotechnology 29 7. Energy technology 30 8.
    [Show full text]
  • On the Calculation of the Fast Fission Factor
    AE-27 On the Calculation of the w < Fast Fission Factor B. Almgren AKTIEBOLAGET ATOMENERGI STOCKHOLM • SWEDEN • I960 AE-27 ON THE CALCULATION OF THE FAST FISSION FACTOR E. Almgren Summary: Definitions of the fast fission factor e ars discussed. Different methods of calculation of e are compared. Group constants for one -, two- and three- group calculations have been evaluated using the best obtainable basic data. The effects of back-scattering, coupling and (n, 2n)-reactions are discussed. Completion of manuscript in June 1960 Printed and distributed in November 1960 LIST OF CONTENTS Page 1. Definitions 3 2. Formulas for the fast fission factor e and the fast fission ratio R 3 3. Calculation of group constants 7 4. Collision probabilities 10 5. Numerical results 12 6. Discussion 12 7. Acknowledgements 13 Preferences 14 On the calculation of the fast fission factor. 1. Definitions The fast fission factor e may be defined in different ways. Carlvik and Pershagen (3) have defined e as "the number of neutrons which are either slowed down below 0, 1 MeV in the fuel or leave the fuel, per primary neu- tron from thermal fission". This definition has been used in Sweden, since it was proposed (1956). Another commonly used definition is due to Spinrad (2) "the number of neutrons making first collision with moderator per neutron arising from thermal fission". The choice of definition must be consistent with the definition of the resonance escape probability. The above-mentioned definitions include in e some of the capture below the fast fission threshold. However, they do not include the effects of (n, 2n)-reactions or capture of high energy neutrons in the moderator.
    [Show full text]
  • 22.4 Optimization of He-II UCN Source with Spallation Neutron Source
    JP0150620 JAERI-Conf 2001-002 ICANS-XV 15th Meeting of the International Collaboration on Advanced Neutron Sources November 6-9,2000 Tsukuba, Japan 22.4 Optimization of He-II UCN Source with Spallation Neutron Source K. Mishima1, M. Ooi2, E. Choi1, Y. Kiyanagi2, Y. Masuda3*, S. Muto3, M. Tanaka4 and M. Yoshimura1 1 Research Center for Nuclear Physics, Osaka University, Ibaraki-shi, 567-0047 Japan 2 Hokkaido University, Sapporo-shi, 060-0808 Japan 3 KEK, 1-1 Oho, Tsukuba-shi, 305-0801 Japan 4 Kobe Tokiwa Collage, Kobe-shi, 653-0838 Japan * [email protected] Abstract A spallation neutron source was designed for super thermal UCN production in He-II. The configuration of neutron production target, moderator and He-II bottle was optimized in order to obtain high neutron flux with low y heating in He-II. In the optimization the advantage of the spallation neutron source is used: The spallation neutron source has high n/y ratio and freedom in target moderator configuration in comparison with the reactor. As a result, a great improvement in UCN density is expected compared with the present most intense UCN source at the Grenoble reactor. Introduction Ultra cold neutrons (UCNs) have been used for the measurements of /3 -decay lifetime, neutron electric dipole moment (EDM) and so on. UCNs have also a promising role in neutron p-decay asymmetry experiments. The experimental accuracy and - 1094 - JAERI-Conf 2001-002 possibility in these experiments are limited by UCN density. The motivation of the present work is to realize high intensity UCN source far beyond the Grenoble UCN source that is the most intense UCN source at present.
    [Show full text]
  • Safety Aspects in Plutonium Handling
    B.A.R.C./I-259 1 < n GOVERNMENT OF INDIA ATOMIC ENERGY COMMISSION SAFETY ASPBCTS IN PLUTONIUM HANDLING by S. Janardhanan, T. N. Krishnamurthi, S. B. Dabhadkar and S. D. Soman Health Physics Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1973 B.AJI.C./I-259 GOVERNMENT OF INDIA ATOMIC ENERGY COMISSION SA5BTY ASPECTS IN FTAJTONIUM HANDLING by S. Janardhanan, T.N. Krishnamurthl, S.D. Dabhadkar and S.D. Soman Health HiyBics Division BHABHA ATOMIC RESEARCH CENTRE BOMBAY, INDIA 1973 COMPEMPS fege So. 1. INTRODUCTION 1 2. RADIOLOGICAL SAFETY 1 2.1 Formation of ELutoniun iBotopes 1 2.2 Nuclear Characteristics of FLutoniua Radionuclides 2 2.3 External Hazardo 2 2.4 Internal Hazards 23 3. ENGINEERING SAFETY 31 "5.1 Glove Box for Hutoniun Handling 31 3.2 Design Safety Consideration 32 3.3 Ventilation for Hutonlum Laboratory 35 3.4 Surfaoe Finish for Plutonium Laboratory 36 3.5 Ere -commie 8 ioning Checks for Plutonium Laboratory 56 4. aONTAMINVTION EVALUATION, CONTROL AND HffiVENTION 37 4.1 Special Technique for Pu-Alr Monitoring 38 4i2 Surface and Bars onnel Monitoring 39 4.3 Decontamination 39 5. PLUTONIUM FIRE SAFETY 48 5.1 Plutonium Metal FireB . 49 5.2 Protective Measures for Hutonium Fires 50 5.3 Fire Safety in Storage, Handling and Shipment of 51 HLutonium Metal 6. CRITICALITY SAFETY . 51 6.1 Oriticality BarameterB 52 6.2 MethodB of Criticality Control 54 6.3 Safety FactorB 55 Page No. 6.4 Criticelity Data 57 6.5 Soluble Poisons 61 f, .6 Solid Poisons 61 f) .7 Pipe Intersections 61 6.8 Storage of Pu Metal, Compounds and Solution 61 6.9 Transport of Plutonium Metal, Compounds and Solution 68 6.10 Magnitude of Critieality Accident 68 6.11 Administration of Nuclear Safety 72 REFERENCES 73 Appendix-Is Design Details of a Typical Inert Atmosphere 75 Glove Box for Plutonium Handling laboratory Appendix-Hi Design Details of a Typical Normal Atmosphere 79 Glove Box and Pumehood SAFETY ASPECTS ITT PLUTONIUM HANDLING by S.
    [Show full text]
  • Cross Sections and Neutron Yields for U-233, U-235 and Pu-239 at 2200
    AE-11 Cross sections and neutron yields for U233, U235 and Pu239 at 2200 mjsec. N.G. Sjostrand andJ.S. Story AKTIEBOLAGET ATOMENERGI STOCKHOLM • SWEDEN • I960 ADDENDUM to report AE - 11 233 Cross sections and neutron yields for U and Pu239 at 2200 m/sec. N. Go Sjostrand and J. S. Story This is a preliminary report written in February 1959 and not intended for wide distribution. No corrections or additions have been made for this new edition. AE-11 Cross sections and neutron yields for U233, U235 and Pu239 at 2200 m/sec. N.G. Sjostrand and J.S. Story Summary: The experimental information on the 2200 m/sec values for <r , , ™ 233 235 239 3-ds (T^, a, V, and rj for U , U and Pu has been collected and discussed. The values will later be used in an evaluation of a "best" set of data. In an appendix the isotopic abundances of the uranium isotopes are discussed and 239 also the alpha activities of the uranium isotopes and Pu . Printed April 1960 LIST OF CONTENTS Page The absorption cross-sections 2 Notes on data in Table 3 4 The fission cross section 5 The capture to fission ratio 9 The number of neutrons per fission 11 The number of fission neutrons per absorbed neutron 14 Appendix. Half-lives and atomic abundances of the isotopes in natural uranium 20 Notation 20 Experimental Results. Mass spectrometry 20 Alpha Counting Experiments 21 Assessment of Recommended Values 26 References 29 TABLES 1. g-factors according to WESTCOTT (1958) 1 2. 2 3.0".
    [Show full text]
  • TRIUMF Ultracold Neutron Source
    TRIUMF Ultracold Neutron Source J.W. Martin (Spokesperson)1, L. Buchmann2, J.D. Bowman3, L. Clarke4, C. Davis2, B.W. Filippone5, M. Gericke6, R. Golub4, K. Hatanaka7, M. Hayden8, T.M. Ito9, S. Jeong10, I. Kato2, S. Komamiya11, E. Korobkina4, E. Korkmaz12, L. Lee6, Y. Masuda9, K. Matsuta13, A. Micherdzinska1, W.D. Ramsay6, S.A. Page6, B. Plaster14, I. Tanihata7, W.T.H. van Oers6, Y. Watanabe10, S. Yamashita11, and T. Yoshioka11 1University of Winnipeg, Winnipeg, MB 2TRIUMF, Vancouver, BC 3Oak Ridge National Laboratory, Oak Ridge, TN, USA 4North Carolina State University, Raleigh, NC, USA 5California Institute of Technology, Pasadena, CA, USA 6University of Manitoba, Winnipeg, MB 7Research Center for Nuclear Physics, Osaka University, Osaka, Japan 8Simon Fraser University, Burnaby, BC 9Los Alamos National Laboratory, Los Alamos, NM, USA 10KEK, 1-1 Oho, Tsukuba, Ibaraki, Japan 11The University of Tokyo, Tokyo, Japan 12University of Northern British Columbia, Prince George, BC 13Osaka University, Toyonaka, Osaka, Japan 14University of Kentucky, Lexington, KY, USA March 17, 2008 1 Executive Summary We propose the construction of the world’s highest density source of ultracold neutrons (UCN) at TRIUMF. The truly high density that could be obtained at TRIUMF would allow a class of precision measurements to be conducted with significantly improved statistical and systematic uncertainties, and thus more significant results. This source would therefore make a major impact on studies of fundamental physics with UCN that would complement and enhance the ISAC program. A window of opportunity exists to capitalize on the successes of Y. Masuda’s group at KEK and at RCNP, thereby allowing the TRIUMF project to surpass other proposed sources elsewhere.
    [Show full text]
  • Letters to the Editors
    NUCLEAR SCIENCE AND ENGINEERING: 10, 362-366 (1961) Letters to the Editors Spatial Dependence of Thermal-Neutron cantly alter the experimental determination of the thermal utilization. Spectra and the Interpretation of Thermal Second, the pronounced spatial dependence of the Utilization Measurements thermal-neutron spectra will not usually permit equating the activation ratio to the flux ratio. Bigham has measured the temperature dependence of the ratio of the Pu239 to The thermal utilization, /, is usually defined as the U235 average fission cross sections in a Maxwellian spectrum number of thermal neutrons absorbed in the fuel per thermal (3). In light w^ater, at 50°C, a value of 1.44 was measured, 2b5 neutron absorbed in the lattice. For a low U enrichment whereas the value at 95°C was 1.51. Klein has made room lattice consisting of uranium fuel rods temperature measurements of Pu239 fission reaction rates relative to U235 in light-water uranium-metal lattices f <f>mVmNm*m(Tm) + 0cl Vol N0i (Tcl^cl)]"1 containing 1.3% U235 enrichment (4). The measured ratios ^ 1 0uFu[iV26 *26(ru) + iV28^28(Tu)] J of the Pu239 to U235 fission reaction rates below the cadmium where V is the volume of the material; N is the atomic cutoff is 2.00 for a 2.35:1 water-to-metal lattice, and 2.37 density; a (T) is the microscopic absorption cross section for a 1:1 water-to-metal lattice. These latter ratios are averaged over an appropriate thermal-neutron spectrum approximately proportional to the ratio of the average characterized by a neutron temperature, T; and <f> denotes Pu239 to U235 thermal-fission cross sections.
    [Show full text]
  • JAERI-Review 2000-031
    JAERI-Review 2000-031 Japan Atomic Energy Research Institute A-p»PnifYt>-fr{i, n^uf-timn^m%mm^m%mmM (T319-1195 f- (=f 319-1195 This report is issued irregularly. Inquiries about availability of the reports should be addressed to Research Information Division, Department of Intellectual Resources, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken T 319-1195, Japan. CO Japan Atomic Energy Research Institute, 2001 JAERI-Review 2000-031 £22 ** (2000^ 10 E 23 -^) T. Oft. Hft lc ICANS •. T319-H95 £ttfta&nvxfttta£&tii 2-4 JAERI-Review 2000-031 Outline of Spallation Neutron Source Engineering Noboru WATANABE* Center for Neutron Science Tokai Research Establishment Japan Atomic Energy Research Institute Tokai-mura, Naka-gun, Ibaraki-ken (Received October 23, 2000) Slow neutrons such as cold and thermal neutrons are unique probes which can determine structures and dynamics of condensed matter in atomic scale. The neutron scattering technique is indispensable not only for basic sciences such as condensed matter research and life science, but also for basic industrial technology in 21 century. It is believed that to survive in the science- technology competition in 21 century would be almost impossible without neutron scattering. However, the intensity of neutrons presently available is much lower than synchrotron radiation sources, etc. Thus, R&D of intense neutron sources become most important. The High-Intensity Proton Accelerator Project is now being promoted jointly by Japan Atomic Energy Research Institute and High Energy Accelerator Research Organization, but there has so far been no good text which covers all the aspects of pulsed spallation neutron sources.
    [Show full text]