Neutron-Physical Simulation of Fast Nuclear Reactor Cores

Total Page:16

File Type:pdf, Size:1020Kb

Neutron-Physical Simulation of Fast Nuclear Reactor Cores Neutron-Physical Simulation of Fast Nuclear Reactor Cores Investigation of New and Emerging Nuclear Reactor Systems Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Dissertation von Friederike Renate Frieß, M.Sc., aus Cuxhaven Tag der Einreichung: 13.6.2017, Tag der Prüfung: 12.7.2017 Juli 2017 — Darmstadt — D 17 1. Gutachten: Prof. Dr. Barbara Drossel 2. Gutachten: Prof. Dr. Wolfgang Liebert Institut für Festkörperphysik Fachbereich Physik Neutron-Physical Simulation of Fast Nuclear Reactor Cores Investigation of New and Emerging Nuclear Reactor Systems Genehmigte Dissertation von Friederike Renate Frieß, M.Sc., aus Cuxhaven 1. Gutachten: Prof. Dr. Barbara Drossel 2. Gutachten: Prof. Dr. Wolfgang Liebert Tag der Einreichung: 13.6.2017 Tag der Prüfung: 12.7.2017 Juli 2017 — Darmstadt — D 17 Contents 1. Introduction 1 1.1. Basics of (Fast) Nuclear Reactors . .2 1.2. Generation IV Nuclear Power Plants . .4 1.3. Special Applications for Fast Nuclear Reactors . .5 1.3.1. Disposition of Weapon-grade Plutonium . .5 1.3.2. Powering Remote Energy Grids . .6 1.3.3. Partitioning and Transmutation . .8 1.4. Research Synopsis . 12 2. Material Assessment & Non-Proliferation 15 2.1. Fissile Materials in the Nuclear Fuel Cycle . 15 2.2. The Existing Non-Proliferation Regime . 16 2.3. General Considerations on Assessing Proliferation Risk . 17 2.4. Spent Fuel Standard . 18 2.5. Figures of Merit . 19 3. Theoretical Basis 23 3.1. Neutron Flux Distribution . 23 3.2. Source Efficiency . 26 3.3. Material Depletion . 27 3.4. Spallation Reaction . 28 3.5. Interaction of Radiation and Tissue . 30 4. Simulation Methods 33 4.1. Monte Carlo Calculation of the Neutron Flux . 33 4.2. Depletion Calculation . 34 4.2.1. Solution Approach for Depletion Calculations . 34 4.2.2. The Depletion Codes MCMATH and VESTA . 35 4.3. Spallation Source . 36 4.3.1. Implementation in MCNPX . 36 4.3.2. Calculation of the Source Efficiency . 37 4.4. Dose Rate Calculations . 38 5. Plutonium Breeding and Disposition in the Russian Fast Reactor BN-800 41 5.1. History of Russian Fast Reactors . 41 5.2. BN-800 Reactor Simulation Model . 42 5.2.1. Description of the Reactor Design . 42 5.2.2. Simulation Parameters . 45 5.3. Results of the BN-800 Simulation . 46 5.3.1. Evolution of the Plutonium Vector . 46 5.3.2. Plutonium Breeding in the Blankets . 47 5.3.3. Dose Rates from Spent Fuel Elements . 49 5.4. Summary . 51 I 6. Plutonium Production in Small, Fast Reactors 53 6.1. Nuclear Batteries The Smallest Nuclear Reactors . 53 6.2. SMR Reactor Simulation− Model . 54 6.2.1. Description of the Reactor Design . 55 6.2.2. Simulation Parameters . 58 6.3. Results of the SMR Simulation . 58 6.3.1. Neutron Flux and Criticality . 59 6.3.2. Material Attractiveness . 60 6.4. Summary . 63 7. Partitioning and Transmutation Fuel Cycle 65 7.1. The History of Accelerator-Driven Systems in Europe . 66 7.2. Accelerator-Driven System Reactor Models . 67 7.2.1. The MYRRHA Reactor Model . 67 7.2.2. The EFIT Reactor Model . 72 7.2.3. Simulation Parameters . 75 7.3. Model Verification . 76 7.3.1. Criticality of the Reactor Cores . 76 7.3.2. Position of the Spallation Source in the Core . 77 7.3.3. Neutron Flux in the Reactor Cores . 78 7.3.4. Source Efficiency . 80 7.3.5. Transmutation of Minor Actinides and Plutonium . 81 7.4. Aging of the Transuranium Vector . 83 7.4.1. The Reactivity Swing During Reactor Operation . 83 7.4.2. Irradiation History and Criticality . 85 7.4.3. Plutonium Vectors from a European P&T Scenario . 87 7.5. Characteristics of the Spent Fuel Elements . 89 7.5.1. Activity . 90 7.5.2. Heat Development . 92 7.5.3. Gamma Dose Rate . 94 7.6. Inventory of Long-lived Fission Products . 97 7.6.1. Importance for Long-term Safety Analysis . 97 7.6.2. Concentration of Long-lived Fission Products in the Spent P&T-Fuel . 101 7.6.3. Total Inventory in a Simplified Scenario . 103 7.7. Summary . 106 8. Conclusion 109 Bibliography 115 A. Acronyms 127 B. MCNPX Input Files 129 C. Specific Activities 131 II Zusammenfassung An der Kernenergie scheiden sich die Geister: Befürworter führen die Vorzüge einer erprobten Technologie für die (fast) CO2-freie Stromerzeugung ins Feld. Kritiker hingegen sehen vor allem das ungelöste Abfallproblem, das Risiko schwerer Unfälle und die Verbreitung von kernwaffenfähigem Material. Ungefähr seit der Jahrtausendwende wird von neuen Reaktoren gesprochen, die diese Probleme nicht oder nur in deutlich verminderter Form mit sich bringen sollen: die Reaktoren der sogenannten vierten Generation. Die Hälfte der von einer entsprechenden Interessengruppe vorgeschlagenen Reaktortypen sind dabei schnelle Reaktoren. In schnellen Reaktoren werden, im Gegensatz zu thermischen Reaktoren, die Neutronen im Reaktorkern nicht moderiert, das heißt abgebremst. Schnelle Reaktoren befinden sich seit den 1950er Jahren in der Entwicklung. Aufgrund verschiedener Probleme, wie den hohen Kosten, der Proliferationsgefahr und den Sicher- heitsrisiken der komplizierten Technologie, werden zur Leistungserzeugung bislang fast ausschließ- lich thermische Reaktoren verwendet. Dies mag einer der Gründe sein, warum seit ungefähr 15 Jahren schnelle Reaktoren vermehrt für neue Anwendungsfelder beworben werden. Wichtige Beispiele sind • die Entsorgung von waffengrädigem Plutonium aus ausgemusterten Militärbeständen: Im Falle des zweiten wichtigen Kernwaffenstoffes, dem hoch angereicherten Uran, gibt es eine verhältnismäßig leichte Methode der Entsorgung. Es lässt sich mit Natururan mischen und als Brennstoff für Kernreaktoren verwenden. Für die Entsorgung waffengrädigen Plutoniums gibt es hingegen keine allgemein akzeptierte Lösung. Eine Option wäre die Bestrahlung im schnellen Reaktor. Dadurch ändert sich die Plutoniumzusammensetzung (Isotopenvektor), und hochradioaktive Spaltprodukte werden dem Waffenmaterial hinzugefügt. Die hierdurch entstehende Strahlung erschwert den Zugriff. Beide Aspekte zusammen sollen das verbliebene Plutonium proliferationsresistenter machen. • die dezentrale Energieversorgung abgelegener Gegenden mit nur kleinem Energiebedarf: Viele kleine Kommunen, beispielsweise in Kanada und Alaska, aber auch in Ländern des ge- ografischen Südens, sind bei ihrer Energieversorgung auf teure Dieselgeneratoren angewiesen. Eine Lösung verspricht das Konzept sogenannter nuklearer Batterien, also sehr kleiner Kern- reaktoren mit sehr lange im Kern verbleibendem Brennstoff. Zusätzlich liegen die Investi- tionskosten pro Reaktor im Vergleich zu großen Leistungsreaktoren deutlich niedriger. Diese Eigenschaften sollen die kleinen Reaktoren auch für Schwellenländer attraktiv machen, trotz höherer Kosten pro installierter Kilowattstunde. • die Behandlung von radioaktivem Abfall, der möglicherweise weitreichendste Ansatz: Die wiederholte Bestrahlung der abgebrannten Brennelemente in spezialisierten Reaktoren (Trans- mutation) soll unter anderem die zu gewährleistenden Einschlusszeiten für ein immer noch notwendiges Endlager auf einige hundert Jahre im Vergleich zu vorher einer Million Jahren re- duzieren. Zwischen den einzelnen Bestrahlungsschritten ist eine Aufteilung der abgebrannten Brennelemente in verschiedene Stoffströme notwendig (Partitionierung). Das Gesamtkonzept wird dementsprechend auch Partitionierung und Transmutation (P&T) genannt. Die Diskussion über den möglichen Nutzen der schnellen Reaktoren wird von Interessengrup- pierungen der Nuklearindustrie und der Nuklearforschung bestimmt. Es fehlt eine unabhängige wissenschaftliche Analyse der Versprechen. Die vorliegende Arbeit untersucht die drei genannten Anwendungsgebiete anhand eigener Reaktorsimulationen, um Beiträge zu einer möglichst um- fassenden Beurteilung zu liefern. Computermodelle für die untersuchten Reaktortypen wurden mit öffentlich zugänglichen Daten angefertigt. Mit Hilfe von Monte-Carlo-Simulationen der Neu- tronenverteilung im Kern wurden Abbrandrechnungen mit den Programmen MCNPX, VESTA und MCMATH durchgeführt, die Aufschluss über die Entwicklung der Brennstoffzusammensetzung geben. Der Gehalt an Spaltprodukten und Transuranen ermöglicht direkte Rückschlüsse auf die III Waffentauglichkeit des entstehenden Materials, aber auch auf weitere Eigenschaften, die für die Weiterverarbeitung oder Endlagerung relevant sind. Das Datenmaterial kann dann auch für Fol- gerechnungen zur Bestimmung der Dosisrate herangezogen werden. Eine hohe Dosisrate erfordert entsprechenden Strahlenschutz bei der Handhabung. Ab einer gewissen Grenze, üblicherweise mehr als ein Sievert pro Stunde, wird das Material als sich-selbst-sichernd angesehen. Als Beispiel für Plutonium-Disposition wurde der russische schnelle Brüter BN-800 modelliert, der seit 2015 in Betrieb ist. Für die Entsorgung des waffengrädigen Plutoniums zeigt sich, dass die zuvor in einem russisch-amerikanischen Abkommen formal festgesetzten Kriterien erfüllt werden. Das Verhältnis von Plutonium-240 zu Plutonium-239 im bestrahlten Plutonium ist größer als 0,1. Außerdem liegt das Plutonium in abgebrannten Brennelementen vor, die auch nach einer Abklingzeit von 30 Jahren noch eine Dosisrate von mehr als einem Sievert pro Stunde emittieren. Allerdings wird gleichzeitig in den Brutelementen an der Peripherie des Kerns extrem waffentaugliches Material (Gehalt an Plutonium-239 mehr als 93 %) erbrütet, das zudem nur durch eine sehr geringe Strahlungsbarriere vor Zugriff geschützt ist. Gerade wenn der BN-800, wie von Russland geplant, an andere Länder weiterverkauft werden soll, muss die mögliche Proliferationsgefahr beachtet werden. Der Toshiba 4S wurde
Recommended publications
  • Fuel Geometry Options for a Moderated Low-Enriched Uranium Kilowatt-Class Space Nuclear Reactor T ⁎ Leonardo De Holanda Mencarinia,B,Jeffrey C
    Nuclear Engineering and Design 340 (2018) 122–132 Contents lists available at ScienceDirect Nuclear Engineering and Design journal homepage: www.elsevier.com/locate/nucengdes Fuel geometry options for a moderated low-enriched uranium kilowatt-class space nuclear reactor T ⁎ Leonardo de Holanda Mencarinia,b,Jeffrey C. Kinga, a Nuclear Science and Engineering Program, Colorado School of Mines (CSM), 1500 Illinois St, Hill Hall, 80401 Golden, CO, USA b Subdivisão de Dados Nucleares - Instituto de Estudos Avançados (IEAv), Trevo Coronel Aviador José Alberto Albano do Amarante, n 1, 12228-001 São José dos Campos, SP, Brazil ABSTRACT A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel and could be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. The HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) serves as a basis for a similar reactor fueled with LEU fuel. Based on MCNP6™ neutronics performance estimates, the size of a 5 kWe reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core in four different configurations (a homogeneous fuel/moderator mixture and spherical, disc, and helical fuel geometries) to reduce the mass of uranium required to produce the same excess reactivity, decreasing the size of the reactor. The lowest mass reactor with a given moderator represents a balance between the reflector thickness and core diameter needed to maintain the multiplication factor equal to 1.035, with a H/D ratio of 1.81.
    [Show full text]
  • Compilation and Evaluation of Fission Yield Nuclear Data Iaea, Vienna, 2000 Iaea-Tecdoc-1168 Issn 1011–4289
    IAEA-TECDOC-1168 Compilation and evaluation of fission yield nuclear data Final report of a co-ordinated research project 1991–1996 December 2000 The originating Section of this publication in the IAEA was: Nuclear Data Section International Atomic Energy Agency Wagramer Strasse 5 P.O. Box 100 A-1400 Vienna, Austria COMPILATION AND EVALUATION OF FISSION YIELD NUCLEAR DATA IAEA, VIENNA, 2000 IAEA-TECDOC-1168 ISSN 1011–4289 © IAEA, 2000 Printed by the IAEA in Austria December 2000 FOREWORD Fission product yields are required at several stages of the nuclear fuel cycle and are therefore included in all large international data files for reactor calculations and related applications. Such files are maintained and disseminated by the Nuclear Data Section of the IAEA as a member of an international data centres network. Users of these data are from the fields of reactor design and operation, waste management and nuclear materials safeguards, all of which are essential parts of the IAEA programme. In the 1980s, the number of measured fission yields increased so drastically that the manpower available for evaluating them to meet specific user needs was insufficient. To cope with this task, it was concluded in several meetings on fission product nuclear data, some of them convened by the IAEA, that international co-operation was required, and an IAEA co-ordinated research project (CRP) was recommended. This recommendation was endorsed by the International Nuclear Data Committee, an advisory body for the nuclear data programme of the IAEA. As a consequence, the CRP on the Compilation and Evaluation of Fission Yield Nuclear Data was initiated in 1991, after its scope, objectives and tasks had been defined by a preparatory meeting.
    [Show full text]
  • Wo 2009/108331 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 3 September 2009 (03.09.2009) WO 2009/108331 A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 38/22 (2006.01) CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (21) International Application Number: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, PCT/US2009/001213 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (22) International Filing Date: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, 25 February 2009 (25.02.2009) NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, (25) Filing Language: English UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 61/066,959 25 February 2008 (25.02.2008) US GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, Not furnished 25 February 2009 (25.02.2009) US ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, (71) Applicant and ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventor: FORSLEY, Lawrence, Parker, Galloway MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, TR), [US/US]; 70 Elmwood Avenue, Rochester, NY 1461 1 OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, (US).
    [Show full text]
  • Relative Fission Product Yield Determination in the Usgs
    RELATIVE FISSION PRODUCT YIELD DETERMINATION IN THE USGS TRIGA MARK I REACTOR by Michael A. Koehl © Copyright by Michael A. Koehl, 2016 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Nuclear Engineering). Golden, Colorado Date: ____________________ Signed: ________________________ Michael A. Koehl Signed: ________________________ Dr. Jenifer C. Braley Thesis Advisor Golden, Colorado Date: ____________________ Signed: ________________________ Dr. Mark P. Jensen Professor and Director Nuclear Science and Engineering Program ii ABSTRACT Fission product yield data sets are one of the most important and fundamental compilations of basic information in the nuclear industry. This data has a wide range of applications which include nuclear fuel burnup and nonproliferation safeguards. Relative fission yields constitute a major fraction of the reported yield data and reduce the number of required absolute measurements. Radiochemical separations of fission products reduce interferences, facilitate the measurement of low level radionuclides, and are instrumental in the analysis of low-yielding symmetrical fission products. It is especially useful in the measurement of the valley nuclides and those on the extreme wings of the mass yield curve, including lanthanides, where absolute yields have high errors. This overall project was conducted in three stages: characterization of the neutron flux in irradiation positions within the U.S. Geological Survey TRIGA Mark I Reactor (GSTR), determining the mass attenuation coefficients of precipitates used in radiochemical separations, and measuring the relative fission products in the GSTR. Using the Westcott convention, the Westcott flux, ; modified spectral index, ; neutron temperature, ; and gold-based cadmium ratiosφ were determined for various sampling√⁄ positions in the USGS TRIGA Mark I reactor.
    [Show full text]
  • The Electronuclear Conversion of Fertile to Fissile Material
    UCRL-52144 THE ELECTRONUCLEAR CONVERSION OF FERTILE TO FISSILE MATERIAL C. M. Van Atta J. D. Lee H. Heckrotto October 11, 1976 Prepared for U.S. Energy Research & Development Administration under contract No. W-7405-Eng-48 II\M LAWRENCE lUg LIVERMORE k^tf LABORATORY UnrmsilyotCatftxna/lJvofmofe s$ PC DISTRIBUTION OF THIS DOCUMENmmT IS UMUMWTED NOTICE Thii npoit WM prepared w u account of wot* •pomond by UM Uiilttd Stalwi GovcmiMM. Nittim Uw United Stain nor the United Statn Energy tUwardi it Development AdrnWrtrtUon, not «y of thei* employee!, nor any of their contricton, •ubcontrecton, or their employe*!, makti any warranty, expreai « Implied, or muMi any toga) liability oc reeponafctUty for the accuracy, completenni or uMfulntat of uy Information, apperatui, product or proem dlecloead, or repreienl. that tu UM would not *nfrkig» prrrtt*)}MWiwd r%hl». NOTICE Reference to a oompmy or product rum don not imply approval or nconm ndatjon of the product by the Untnrtity of California or the US. Energy Research A Devetopnient Administration to the uchvton of others that may be suitable. Printed In the United Stitei or America Available from National Technical Information Service U.S. Department of Commerce 528S Port Royal Road Springfield, VA 22161 Price: Printed Copy S : Microfiche $2.25 DMimtic P»t» Ranflt PHca *•#» Rtnft MM 001-025 $ 3.50 326-350 10.00 026-050 4.00 351-375 10.50 051-075 4.50 376-400 10.75 076-100 5.00 401-425 11.00 101-125 5.50 426-450 31.75 126-150 6.00 451-475 12.00 151-175 6.75 476-500 12.50 176-200 7.50 501-525 12.75 201-225 7.75 526-550 13.00 526-250 8.00 551-575 13.50 251-275 9.00 576-600 I3.7S 276-300 9.25 601 -up 301-325 9.75 *Ml J2.50 fot «ch iddltlOMl 100 pip tacmitMt from 601 ID 1,000 flfcK IM 54.50 for eicli iMUknal I0O plfe feenmMI om 1,000 p*o.
    [Show full text]
  • A Comparison of Advanced Nuclear Technologies
    A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D MARCH 2017 B | CHAPTER NAME ABOUT THE CENTER ON GLOBAL ENERGY POLICY The Center on Global Energy Policy provides independent, balanced, data-driven analysis to help policymakers navigate the complex world of energy. We approach energy as an economic, security, and environmental concern. And we draw on the resources of a world-class institution, faculty with real-world experience, and a location in the world’s finance and media capital. Visit us at energypolicy.columbia.edu facebook.com/ColumbiaUEnergy twitter.com/ColumbiaUEnergy ABOUT THE SCHOOL OF INTERNATIONAL AND PUBLIC AFFAIRS SIPA’s mission is to empower people to serve the global public interest. Our goal is to foster economic growth, sustainable development, social progress, and democratic governance by educating public policy professionals, producing policy-related research, and conveying the results to the world. Based in New York City, with a student body that is 50 percent international and educational partners in cities around the world, SIPA is the most global of public policy schools. For more information, please visit www.sipa.columbia.edu A COMPARISON OF ADVANCED NUCLEAR TECHNOLOGIES Andrew C. Kadak, Ph.D* MARCH 2017 *Andrew C. Kadak is the former president of Yankee Atomic Electric Company and professor of the practice at the Massachusetts Institute of Technology. He continues to consult on nuclear operations, advanced nuclear power plants, and policy and regulatory matters in the United States. He also serves on senior nuclear safety oversight boards in China. He is a graduate of MIT from the Nuclear Science and Engineering Department.
    [Show full text]
  • Beryllium – a Unique Material in Nuclear Applications
    INEEL/CON-04-01869 PREPRINT Beryllium – A Unique Material In Nuclear Applications T. A. Tomberlin November 15, 2004 36th International SAMPE Technical Conference This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be made before publication, this preprint should not be cited or reproduced without permission of the author. This document was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, or any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for any third party's use, or the results of such use, of any information, apparatus, product or process disclosed in this report, or represents that its use by such third party would not infringe privately owned rights. The views expressed in this paper are not necessarily those of the U.S. Government or the sponsoring agency. BERYLLIUM – A UNIQUE MATERIAL IN NUCLEAR APPLICATIONS T. A. Tomberlin Idaho National Engineering and Environmental Laboratory P.O. Box 1625 2525 North Fremont Ave. Idaho Falls, ID 83415 E-mail: [email protected] ABSTRACT Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector.
    [Show full text]
  • Nuclear Weapons Technology 101 for Policy Wonks Bruce T
    NUCLEAR WEAPONS TECHNOLOGY FOR POLICY WONKS NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN BRUCE T. GOODWIN BRUCE T. Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS BRUCE T. GOODWIN Center for Global Security Research Lawrence Livermore National Laboratory August 2021 NUCLEAR WEAPONS TECHNOLOGY 101 FOR POLICY WONKS | 1 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344. The views and opinions of the author expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC. ISBN-978-1-952565-11-3 LCCN-2021907474 LLNL-MI-823628 TID-61681 2 | BRUCE T. GOODWIN Table of Contents About the Author. 2 Introduction . .3 The Revolution in Physics That Led to the Bomb . 4 The Nuclear Arms Race Begins. 6 Fission and Fusion are "Natural" Processes . 7 The Basics of the Operation of Nuclear Explosives. 8 The Atom . .9 Isotopes . .9 Half-life . 10 Fission . 10 Chain Reaction . 11 Critical Mass . 11 Fusion . 14 Types of Nuclear Weapons . 16 Finally, How Nuclear Weapons Work . 19 Fission Explosives . 19 Fusion Explosives . 22 Staged Thermonuclear Explosives: the H-bomb . 23 The Modern, Miniature Hydrogen Bomb . 25 Intrinsically Safe Nuclear Weapons . 32 Underground Testing . 35 The End of Nuclear Testing and the Advent of Science-Based Stockpile Stewardship . 39 Stockpile Stewardship Today . 41 Appendix 1: The Nuclear Weapons Complex .
    [Show full text]
  • Reactor Physics Analysis of Air-Cooled Nuclear System
    REACTOR PHYSICS ANALYSIS OF AIR-COOLED NUCLEAR SYSTEM A Thesis by HANNIEL JOUVAIN HONANG Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, Pavel V. Tsvetkov Committee Members, Marc Holtzapple Sean McDeavitt Head of Department, Yassin Hassan May 2016 Major Subject: Nuclear Engineering Copyright 2016 Hanniel Jouvain Honang ABSTRACT The design of SACRé (Small Air-Cooled Reactor) fixated on evaluations of air as a potential coolant. The assessment offered in this thesis focused on reactor physic analyses, and materials review and incorporation in a system defined by a highly corrosive environment. The oxidizing nature of air at high-temperature warrants the need to examine and compare materials for their oxidation temperature, their melting and boiling temperature, and their thermal conductivity. Material choices for the fuel, the cladding, the system’s casing/structural material and the reflector were evaluated in this study. Survey of materials and literature lead to the selection of six different cladding materials which are FeCrAl, APMT, Inconel 718 and stainless steel of type 304, 316 and 310. A review of their thermal properties, for a high oxidation temperature and melting temperature and the exhibition of a hard neutron spectrum lead to the selection of APMT steel material. This material was not only be selected as the fuel cladding but also as a casing for reflector and shielding materials. The design of this 600 MWth system was investigated considering reflector materials for fast spectrum. Lead-based reflectors (lead bismuth eutectic, lead oxide and pure lead), magnesium-based reflectors (magnesium oxide and magnesium aluminum oxide), and aluminum oxide reflectors were evaluated in this thesis.
    [Show full text]
  • The Hansen Letter
    The Hansen Letter Introduction by Howard Morland, November 2003: This seven-thousand-word letter by Chuck Hansen, dated August 27, 1979, delivered a coup de grace to the government=s case for censorship of my Progressive magazine article on the H- bomb. It is a bit odd that Senator Charles Percy of Illinois was the intended recipient of the letter. He was never involved in The Progressive case, nor was he Chuck Hansen=s senator. He did not, apparently, request such a communication, and after receiving it he did not subsequently play a role in The Progressive case. However, copies of the letter immediately began to circulate among all persons concerned with the case. Hansen=s reason for writing the letter is not entirely clear, except as a vehicle for outlining his theory about the H-bomb secret. As he states in the letter, AThese... are some of the ideas I believe are presented in the Morland article (I have not seen the article).@ The defense attorneys in The Progressive case regarded him as an ally, of sorts, but wanted no part of his call for the punishment of Edward Teller, Theodore Taylor, and George Rathjens for security violations. Nonetheless, the defense was preparing to argue in court that the widespread distribution of this Hansen letter should moot The Progressive case. The letter clearly outlines the three H-bomb principles at issue in the case: separation of stages, compression, and radiation coupling. However it introduces two obvious technical flaws. Hansen describes the use of two primaries, or fission triggers, one at either end of the fusion secondary, which would explode simultaneously to compress the fusion secondary between them.
    [Show full text]
  • On the Calculation of the Fast Fission Factor
    AE-27 On the Calculation of the w < Fast Fission Factor B. Almgren AKTIEBOLAGET ATOMENERGI STOCKHOLM • SWEDEN • I960 AE-27 ON THE CALCULATION OF THE FAST FISSION FACTOR E. Almgren Summary: Definitions of the fast fission factor e ars discussed. Different methods of calculation of e are compared. Group constants for one -, two- and three- group calculations have been evaluated using the best obtainable basic data. The effects of back-scattering, coupling and (n, 2n)-reactions are discussed. Completion of manuscript in June 1960 Printed and distributed in November 1960 LIST OF CONTENTS Page 1. Definitions 3 2. Formulas for the fast fission factor e and the fast fission ratio R 3 3. Calculation of group constants 7 4. Collision probabilities 10 5. Numerical results 12 6. Discussion 12 7. Acknowledgements 13 Preferences 14 On the calculation of the fast fission factor. 1. Definitions The fast fission factor e may be defined in different ways. Carlvik and Pershagen (3) have defined e as "the number of neutrons which are either slowed down below 0, 1 MeV in the fuel or leave the fuel, per primary neu- tron from thermal fission". This definition has been used in Sweden, since it was proposed (1956). Another commonly used definition is due to Spinrad (2) "the number of neutrons making first collision with moderator per neutron arising from thermal fission". The choice of definition must be consistent with the definition of the resonance escape probability. The above-mentioned definitions include in e some of the capture below the fast fission threshold. However, they do not include the effects of (n, 2n)-reactions or capture of high energy neutrons in the moderator.
    [Show full text]
  • The Influence of the Presence Or Absence of a Neutron Reflector on the Critical Mass of Uranium
    Archive of SID The influence of the presence or absence of a neutron reflector on the critical mass of uranium Maryam Noorani Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran [email protected] Farhad Zolfagharpour Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran [email protected] Sara Azimkhani Department of physics, University of Mohaghegh Ardabili, Ardabil, Iran [email protected] Abstract To increase productivity and improve the neutron economy in the reactor, neutron reflection is used. This reflectors cause lack of neutron leakage and reactor fuel can reach critical mass faster. Various materials such as beryllium, neutron, carbon, water, lead and so on could satisfy this property. In this paper, by using the MCNP code, critical mass of uranium in the term of percent of enrichment for different reflectors is obtained. The results show beryllium, carbon and deuterium are an excellent choice for this purpose. Also increasing the thickness of the neutron reflector causes an increase in neutron multiplication factor. Keywords: Neutron reflector, Critical mass, Uranium. www.SID.ir Archive of SID Introduction Initial calculations of critical mass or the amount of fissile material needed to continue nuclear fission refers to Heisenberg works on it (Logan, 1995). Heisenberg expresses that by using fissile material and calculating the critical mass can manufacture nuclear weapon (Serber, 1992) but calculations of nuclear reactors for energy production in 1950s was pursued with greater intensity. Nowadays the calculation of critical mass takes place by computing codes and simulation and codes for neutron transport (Kastanya, 2015). For a nuclear reactor that is working with a constant potential over the time, it is needed that neutron chain reaction takes place inside with the multiplication factor K=1, it means that number of neutrons produced by fission is equal to the total number of neutrons absorbed and leaked out of the reactor core (Krane, 1995).
    [Show full text]