A Few Comments About Monoidal Categories

Total Page:16

File Type:pdf, Size:1020Kb

A Few Comments About Monoidal Categories A few comments about monoidal categories Angel Toledo April 30, 2019 Contents 1 Categories 1 2 Monoidal categories 4 2.1 Generalities . 4 2.2 Symmetry and linear algebra . 6 3 Tannakian reconstruction and a theorem of Deligne 8 1 Categories We will recall a few basic definitions and remarks about general (locally small) categories just sake of consistency and to fix the notation for the following sections. General references on category theory include [ML13] [Rie17] and for [Rot08] for abelian categories. Definition 1.1. A category C consists of the following data: 1. A collection Ob(C) of objects 2. For each two such objects X; Y 2 Ob(C), a set C(X; Y ) of morphisms 3. For every X 2 Ob(C, the set C(X; X) has at least one element 1X called the identity morphism on X 4. For every X; Y; Z 2 Ob(C) there is an operator ◦ : C(X; Y )×C(Y; Z) !C(X; Z) called composition which is associative and for which the identity morphisms act as identity elements, more explicitly we have: (a) ((f ◦ g) ◦ h) = (f ◦ (g ◦ h)) for h 2 C(X; Y ); g 2 C(Y; Z); f 2 C(Z; W ) (b) 1Y ◦ f = f and f ◦ 1X = f for f 2 C(X; Y ) Example 1.1. The following are well known examples of categories 1. Let C be a category, then the category Cop consisting of the same objects of C and Cop(X; Y ) := C(Y; X) is a category called the opposite category of C 2. The category Ens of sets consisting of sets as objects and functions of sets as morphisms 3. The category Top of topological spaces consisting of topological spaces as objects and continuous functions as morphisms 4. The category R-Mod of R-modules over a ring 5. A partial order (P; ≤) with P(x; y) = ∗ iff x ≤ y and P(x; y) = ; otherwise. Note. From now on we will write, for an object X, X 2 C instead of the correct but longer X 2 Ob(C). Being able to treat two objects as essentially the same will be of great importance, and so a way to abstract the notion of isomorphism or equivalence from the usual notions in known categories leads us to the following definition: Definition 1.2. A morphism f 2 C(X; Y ) is called an isomorphism if there exists g 2 D(Y; X) such that f ◦ g = IdY and g ◦ f = IdX While categories are very natural and flexible structures, its important to note that an essential tool in the theory and in its applications is the ability to compare categories in a certain way. The way in which we do this is by using functors between categories, which are nothing but structure preserving maps between the data that forms a category 1 Definition 1.3. A functor F between two categories C; D consists of an assignment F : Ob(C) ! Ob(D) and for every two objects X; Y 2 C a function F : C(X; Y ) !D(F(X); F(Y )) compatible with the composition. In other words: For f 2 C(X; Y ); g 2 C(Y; Z) we have (F(f ◦ g) = F(f) ◦ F(g) and F(1X ) = 1F(X) As with categories, functors occur very naturally all over mathematics in many ways. We have the following examples: Example 1.2. 1. Let C be a category, the identity functor 1C is the functor sending objects and morphisms to themselves. 2. Let C be a category, then for every object X 2 C there are functors C(X; ) and C(;X) acting on morphisms via adequate composition. 3. Let C = T op∗ the category of pointed topological spaces, then we can consider the fundamental group Π1 : C! Groups 4. The forgetful functor F : R − Mod ! Set is the functor sending an R-Module to its underlying set and a morphism of modules to its underlying function. Remark. The forgetful functor can be defined for every category C which has as objects sets with certain structure and structure preserving morphisms as morphisms. Definition 1.4. A functor F : Cop !D is called a contravariant functor from C to D Now that we have a way to compare categories we need to specify what we will require for two categories to be 'the same' in a categorical sense. There is a naive although valid definition: Definition 1.5. Let C and D be two categories, we will say that C and D are isomorphic if there exist functors F : C!D and G : D!C such that F ◦ G = IdD and G ◦ F = 1C Even if this definition makes sense it is a very rigid one and doesn't really capture what we want precisely to identify two categories as having the same categorical properties. To illustrate this we look into the following easily generalizable example: Example 1.3. Let k be a field and C = F inV ectk the category of finite dimensional vector spaces and linear transformations over k. Consider now the category Sk(C) with objects the vector spaces kn and linear transformations between them. It would make sense to think of this category as having the same categorical properties than the category C since every finite dimensional vector space is isomorphic to a vector space of the form kn, however it is not true that these two categories are isomorphic. To see this, suppose there are a pair of functors F : C! Sk(C) and G : Sk(C) !C) as in the definition and consider a n-dimensional vector space V , then F(V ) = km for some m and every endomorphism f : V ! V corresponds to an endomorphism km ! km. From linear algebra we deduce now that km = kn and so n=m, but then if we chose a different n-dimensional vector space V 0 we have F(V ) = F(V 0) and so G can't be an inverse. We thus need a weaker notion which still captures the categorical behaviour of categories but which is much less restrictive. Definition 1.6. Let F : C!D be a functor, we will say that it is faithful if the map C(X; Y ) !D(F(X); F(Y )) is injective. Similarly we will say that it is full if the map is surjective. We will say that F is essentially surjective on objects if for every A 2 D there exists X 2 C such that F(X) =∼ A Definition 1.7. We will say two categories C; D are equivalent if there exists a functor F : C!D which is full, faithful and essentially surjective. We will call this functor an equivalence. It is however not functors on their own that provide the full power of category theory but we also need to introduce a way to compare functors with each other. Definition 1.8. Let F; G : C!D be two functors, a natural transformation between F and G is a family of morphisms φX for every X 2 C such that the following diagram for every f 2 C(X; Y ) F(f) F(X) / F(Y ) φX φY G(f) G(X) / G(Y ) Natural transformations are also very common in nature, as we can see from the following example: 2 Example 1.4. Let C = F inV ectk the category of finite dimensional vector spaces over a field k, then there is a natural transformation between functor ∗∗ : C!C sending a vector space to its double dual and a linear transformation to its associated double dual transformation, and the identity functor. In fact this natural equivalence is a natural isomorphism meaning that all the morphisms φX are isomorphisms. This previous fact comes from unwrapping the definitions, as all we have to check is that for every linear transformation f : V ! W the linear transformation f ∗∗ : V ∗∗ ! W ∗∗ commutes with the isomorphisms V ! V ∗∗ given by sending a vector to its evaluation functional evv(f) := f(v). ∗∗ This is clear since f (evv) is the map sending a functional g : W ! k to evv(f ◦ g) = g(f(v)) = evf(v)(g) which is what we wanted to show. To illustrate fully the details of the definition, it is important to note that although a finite dimensional vector space is isomorphic to its dual vector space Hom(V; k), it is not true that this assignment is a natural transformation. Finally we introduce a general construction of inductive limits within categories which are a broad concept covering a lot of phenomena occurring within different categories as we will show through some examples. Definition 1.9. An initial ( resp. terminal ) object Z in a category C is an object such that jC(Z; X)j = 1 (resp jC(X; Z)j = 1 ) for every X 2 C If an object is both initial and terminal, we will say that it is a zero. As usual, these universal properties imply that these objects are unique up to isomorphism. Definition 1.10. A diagram in a category C is a functor F : D!C, if we want to make explicit the role of the category D we say that F is a D-shaped diagram. Definition 1.11. A cone (resp. cocone ) over an object X 2 C for a diagram F is a natural transformation between the constant functor CX : D!C sending every object to X and every morphism to the identity on X, and F ( resp. a natural transformation between F and the constant functor CX ).
Recommended publications
  • Combinatorial Operads from Monoids Samuele Giraudo
    Combinatorial operads from monoids Samuele Giraudo To cite this version: Samuele Giraudo. Combinatorial operads from monoids. Journal of Algebraic Combinatorics, Springer Verlag, 2015, 41 (2), pp.493-538. 10.1007/s10801-014-0543-4. hal-01236471 HAL Id: hal-01236471 https://hal.archives-ouvertes.fr/hal-01236471 Submitted on 1 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. COMBINATORIAL OPERADS FROM MONOIDS SAMUELE GIRAUDO Abstract. We introduce a functorial construction which, from a monoid, produces a set- operad. We obtain new (symmetric or not) operads as suboperads or quotients of the operads obtained from usual monoids such as the additive and multiplicative monoids of integers and cyclic monoids. They involve various familiar combinatorial objects: endo- functions, parking functions, packed words, permutations, planar rooted trees, trees with a fixed arity, Schröder trees, Motzkin words, integer compositions, directed animals, and segmented integer compositions. We also recover some already known (symmetric or not) operads: the magmatic operad, the associative commutative operad, the diassociative op- erad, and the triassociative operad. We provide presentations by generators and relations of all constructed nonsymmetric operads. Contents Introduction 1 1. Syntax trees and operads3 1.1.
    [Show full text]
  • A Convenient Category for Higher-Order Probability Theory
    A Convenient Category for Higher-Order Probability Theory Chris Heunen Ohad Kammar Sam Staton Hongseok Yang University of Edinburgh, UK University of Oxford, UK University of Oxford, UK University of Oxford, UK Abstract—Higher-order probabilistic programming languages 1 (defquery Bayesian-linear-regression allow programmers to write sophisticated models in machine 2 let let sample normal learning and statistics in a succinct and structured way, but step ( [f ( [s ( ( 0.0 3.0)) 3 sample normal outside the standard measure-theoretic formalization of proba- b ( ( 0.0 3.0))] 4 fn + * bility theory. Programs may use both higher-order functions and ( [x] ( ( s x) b)))] continuous distributions, or even define a probability distribution 5 (observe (normal (f 1.0) 0.5) 2.5) on functions. But standard probability theory does not handle 6 (observe (normal (f 2.0) 0.5) 3.8) higher-order functions well: the category of measurable spaces 7 (observe (normal (f 3.0) 0.5) 4.5) is not cartesian closed. 8 (observe (normal (f 4.0) 0.5) 6.2) Here we introduce quasi-Borel spaces. We show that these 9 (observe (normal (f 5.0) 0.5) 8.0) spaces: form a new formalization of probability theory replacing 10 (predict :f f))) measurable spaces; form a cartesian closed category and so support higher-order functions; form a well-pointed category and so support good proof principles for equational reasoning; and support continuous probability distributions. We demonstrate the use of quasi-Borel spaces for higher-order functions and proba- bility by: showing that a well-known construction of probability theory involving random functions gains a cleaner expression; and generalizing de Finetti’s theorem, that is a crucial theorem in probability theory, to quasi-Borel spaces.
    [Show full text]
  • Arxiv:2001.09075V1 [Math.AG] 24 Jan 2020
    A topos-theoretic view of difference algebra Ivan Tomašić Ivan Tomašić, School of Mathematical Sciences, Queen Mary Uni- versity of London, London, E1 4NS, United Kingdom E-mail address: [email protected] arXiv:2001.09075v1 [math.AG] 24 Jan 2020 2000 Mathematics Subject Classification. Primary . Secondary . Key words and phrases. difference algebra, topos theory, cohomology, enriched category Contents Introduction iv Part I. E GA 1 1. Category theory essentials 2 2. Topoi 7 3. Enriched category theory 13 4. Internal category theory 25 5. Algebraic structures in enriched categories and topoi 41 6. Topos cohomology 51 7. Enriched homological algebra 56 8. Algebraicgeometryoverabasetopos 64 9. Relative Galois theory 70 10. Cohomologyinrelativealgebraicgeometry 74 11. Group cohomology 76 Part II. σGA 87 12. Difference categories 88 13. The topos of difference sets 96 14. Generalised difference categories 111 15. Enriched difference presheaves 121 16. Difference algebra 126 17. Difference homological algebra 136 18. Difference algebraic geometry 142 19. Difference Galois theory 148 20. Cohomologyofdifferenceschemes 151 21. Cohomologyofdifferencealgebraicgroups 157 22. Comparison to literature 168 Bibliography 171 iii Introduction 0.1. The origins of difference algebra. Difference algebra can be traced back to considerations involving recurrence relations, recursively defined sequences, rudi- mentary dynamical systems, functional equations and the study of associated dif- ference equations. Let k be a commutative ring with identity, and let us write R = kN for the ring (k-algebra) of k-valued sequences, and let σ : R R be the shift endomorphism given by → σ(x0, x1,...) = (x1, x2,...). The first difference operator ∆ : R R is defined as → ∆= σ id, − and, for r N, the r-th difference operator ∆r : R R is the r-th compositional power/iterate∈ of ∆, i.e., → r r ∆r = (σ id)r = ( 1)r−iσi.
    [Show full text]
  • An Introduction to Operad Theory
    AN INTRODUCTION TO OPERAD THEORY SAIMA SAMCHUCK-SCHNARCH Abstract. We give an introduction to category theory and operad theory aimed at the undergraduate level. We first explore operads in the category of sets, and then generalize to other familiar categories. Finally, we develop tools to construct operads via generators and relations, and provide several examples of operads in various categories. Throughout, we highlight the ways in which operads can be seen to encode the properties of algebraic structures across different categories. Contents 1. Introduction1 2. Preliminary Definitions2 2.1. Algebraic Structures2 2.2. Category Theory4 3. Operads in the Category of Sets 12 3.1. Basic Definitions 13 3.2. Tree Diagram Visualizations 14 3.3. Morphisms and Algebras over Operads of Sets 17 4. General Operads 22 4.1. Basic Definitions 22 4.2. Morphisms and Algebras over General Operads 27 5. Operads via Generators and Relations 33 5.1. Quotient Operads and Free Operads 33 5.2. More Examples of Operads 38 5.3. Coloured Operads 43 References 44 1. Introduction Sets equipped with operations are ubiquitous in mathematics, and many familiar operati- ons share key properties. For instance, the addition of real numbers, composition of functions, and concatenation of strings are all associative operations with an identity element. In other words, all three are examples of monoids. Rather than working with particular examples of sets and operations directly, it is often more convenient to abstract out their common pro- perties and work with algebraic structures instead. For instance, one can prove that in any monoid, arbitrarily long products x1x2 ··· xn have an unambiguous value, and thus brackets 2010 Mathematics Subject Classification.
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • MAS4107 Linear Algebra 2 Linear Maps And
    Introduction Groups and Fields Vector Spaces Subspaces, Linear . Bases and Coordinates MAS4107 Linear Algebra 2 Linear Maps and . Change of Basis Peter Sin More on Linear Maps University of Florida Linear Endomorphisms email: [email protected]fl.edu Quotient Spaces Spaces of Linear . General Prerequisites Direct Sums Minimal polynomial Familiarity with the notion of mathematical proof and some experience in read- Bilinear Forms ing and writing proofs. Familiarity with standard mathematical notation such as Hermitian Forms summations and notations of set theory. Euclidean and . Self-Adjoint Linear . Linear Algebra Prerequisites Notation Familiarity with the notion of linear independence. Gaussian elimination (reduction by row operations) to solve systems of equations. This is the most important algorithm and it will be assumed and used freely in the classes, for example to find JJ J I II coordinate vectors with respect to basis and to compute the matrix of a linear map, to test for linear dependence, etc. The determinant of a square matrix by cofactors Back and also by row operations. Full Screen Close Quit Introduction 0. Introduction Groups and Fields Vector Spaces These notes include some topics from MAS4105, which you should have seen in one Subspaces, Linear . form or another, but probably presented in a totally different way. They have been Bases and Coordinates written in a terse style, so you should read very slowly and with patience. Please Linear Maps and . feel free to email me with any questions or comments. The notes are in electronic Change of Basis form so sections can be changed very easily to incorporate improvements.
    [Show full text]
  • Reasoning About Meaning in Natural Language with Compact Closed Categories and Frobenius Algebras ∗
    Reasoning about Meaning in Natural Language with Compact Closed Categories and Frobenius Algebras ∗ Authors: Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, Stephen Pulman, Bob Coecke y Affiliation: Department of Computer Science, University of Oxford Address: Wolfson Building, Parks Road, Oxford, OX1 3QD Emails: [email protected] Abstract Compact closed categories have found applications in modeling quantum information pro- tocols by Abramsky-Coecke. They also provide semantics for Lambek's pregroup algebras, applied to formalizing the grammatical structure of natural language, and are implicit in a distributional model of word meaning based on vector spaces. Specifically, in previous work Coecke-Clark-Sadrzadeh used the product category of pregroups with vector spaces and provided a distributional model of meaning for sentences. We recast this theory in terms of strongly monoidal functors and advance it via Frobenius algebras over vector spaces. The former are used to formalize topological quantum field theories by Atiyah and Baez-Dolan, and the latter are used to model classical data in quantum protocols by Coecke-Pavlovic- Vicary. The Frobenius algebras enable us to work in a single space in which meanings of words, phrases, and sentences of any structure live. Hence we can compare meanings of different language constructs and enhance the applicability of the theory. We report on experimental results on a number of language tasks and verify the theoretical predictions. 1 Introduction Compact closed categories were first introduced by Kelly [21] in early 1970's. Some thirty years later they found applications in quantum mechanics [1], whereby the vector space foundations of quantum mechanics were recasted in a higher order language and quantum protocols such as teleportation found succinct conceptual proofs.
    [Show full text]
  • Two Constructions in Monoidal Categories Equivariantly Extended Drinfel’D Centers and Partially Dualized Hopf Algebras
    Two constructions in monoidal categories Equivariantly extended Drinfel'd Centers and Partially dualized Hopf Algebras Dissertation zur Erlangung des Doktorgrades an der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften Fachbereich Mathematik der Universit¨atHamburg vorgelegt von Alexander Barvels Hamburg, 2014 Tag der Disputation: 02.07.2014 Folgende Gutachter empfehlen die Annahme der Dissertation: Prof. Dr. Christoph Schweigert und Prof. Dr. Sonia Natale Contents Introduction iii Topological field theories and generalizations . iii Extending braided categories . vii Algebraic structures and monoidal categories . ix Outline . .x 1. Algebra in monoidal categories 1 1.1. Conventions and notations . .1 1.2. Categories of modules . .3 1.3. Bialgebras and Hopf algebras . 12 2. Yetter-Drinfel'd modules 25 2.1. Definitions . 25 2.2. Equivalences of Yetter-Drinfel'd categories . 31 3. Graded categories and group actions 39 3.1. Graded categories and (co)graded bialgebras . 39 3.2. Weak group actions . 41 3.3. Equivariant categories and braidings . 48 4. Equivariant Drinfel'd center 51 4.1. Half-braidings . 51 4.2. The main construction . 55 4.3. The Hopf algebra case . 61 5. Partial dualization of Hopf algebras 71 5.1. Radford biproduct and projection theorem . 71 5.2. The partial dual . 73 5.3. Examples . 75 A. Category theory 89 A.1. Basic notions . 89 A.2. Adjunctions and monads . 91 i ii Contents A.3. Monoidal categories . 92 A.4. Modular categories . 97 References 99 Introduction The fruitful interplay between topology and algebra has a long tradi- tion. On one hand, invariants of topological spaces, such as the homotopy groups, homology groups, etc.
    [Show full text]
  • Relations: Categories, Monoidal Categories, and Props
    Logical Methods in Computer Science Vol. 14(3:14)2018, pp. 1–25 Submitted Oct. 12, 2017 https://lmcs.episciences.org/ Published Sep. 03, 2018 UNIVERSAL CONSTRUCTIONS FOR (CO)RELATIONS: CATEGORIES, MONOIDAL CATEGORIES, AND PROPS BRENDAN FONG AND FABIO ZANASI Massachusetts Institute of Technology, United States of America e-mail address: [email protected] University College London, United Kingdom e-mail address: [email protected] Abstract. Calculi of string diagrams are increasingly used to present the syntax and algebraic structure of various families of circuits, including signal flow graphs, electrical circuits and quantum processes. In many such approaches, the semantic interpretation for diagrams is given in terms of relations or corelations (generalised equivalence relations) of some kind. In this paper we show how semantic categories of both relations and corelations can be characterised as colimits of simpler categories. This modular perspective is important as it simplifies the task of giving a complete axiomatisation for semantic equivalence of string diagrams. Moreover, our general result unifies various theorems that are independently found in literature and are relevant for program semantics, quantum computation and control theory. 1. Introduction Network-style diagrammatic languages appear in diverse fields as a tool to reason about computational models of various kinds, including signal processing circuits, quantum pro- cesses, Bayesian networks and Petri nets, amongst many others. In the last few years, there have been more and more contributions towards a uniform, formal theory of these languages which borrows from the well-established methods of programming language semantics. A significant insight stemming from many such approaches is that a compositional analysis of network diagrams, enabling their reduction to elementary components, is more effective when system behaviour is thought of as a relation instead of a function.
    [Show full text]
  • Basic Category Theory and Topos Theory
    Basic Category Theory and Topos Theory Jaap van Oosten Jaap van Oosten Department of Mathematics Utrecht University The Netherlands Revised, February 2016 Contents 1 Categories and Functors 1 1.1 Definitions and examples . 1 1.2 Some special objects and arrows . 5 2 Natural transformations 8 2.1 The Yoneda lemma . 8 2.2 Examples of natural transformations . 11 2.3 Equivalence of categories; an example . 13 3 (Co)cones and (Co)limits 16 3.1 Limits . 16 3.2 Limits by products and equalizers . 23 3.3 Complete Categories . 24 3.4 Colimits . 25 4 A little piece of categorical logic 28 4.1 Regular categories and subobjects . 28 4.2 The logic of regular categories . 34 4.3 The language L(C) and theory T (C) associated to a regular cat- egory C ................................ 39 4.4 The category C(T ) associated to a theory T : Completeness Theorem 41 4.5 Example of a regular category . 44 5 Adjunctions 47 5.1 Adjoint functors . 47 5.2 Expressing (co)completeness by existence of adjoints; preserva- tion of (co)limits by adjoint functors . 52 6 Monads and Algebras 56 6.1 Algebras for a monad . 57 6.2 T -Algebras at least as complete as D . 61 6.3 The Kleisli category of a monad . 62 7 Cartesian closed categories and the λ-calculus 64 7.1 Cartesian closed categories (ccc's); examples and basic facts . 64 7.2 Typed λ-calculus and cartesian closed categories . 68 7.3 Representation of primitive recursive functions in ccc's with nat- ural numbers object .
    [Show full text]
  • OBJ (Application/Pdf)
    GROUPOIDS WITH SEMIGROUP OPERATORS AND ADDITIVE ENDOMORPHISM A THESIS SUBMITTED TO THE FACULTY OF ATLANTA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS POR THE DEGREE OF MASTER OF SCIENCE BY FRED HENDRIX HUGHES DEPARTMENT OF MATHEMATICS ATLANTA, GEORGIA JUNE 1965 TABLE OF CONTENTS Chapter Page I' INTRODUCTION. 1 II GROUPOIDS WITH SEMIGROUP OPERATORS 6 - Ill GROUPOIDS WITH ADDITIVE ENDOMORPHISM 12 BIBLIOGRAPHY 17 ii 4 CHAPTER I INTRODUCTION A set is an undefined termj however, one can say a set is a collec¬ tion of objects according to our sight and perception. Several authors use this definition, a set is a collection of definite distinct objects called elements. This concept is the foundation for mathematics. How¬ ever, it was not until the latter part of the nineteenth century when the concept was formally introduced. From this concept of a set, mathematicians, by placing restrictions on a set, have developed the algebraic structures which we employ. The structures are closely related as the diagram below illustrates. Quasigroup Set The first structure is a groupoid which the writer will discuss the following properties: subgroupiod, antigroupoid, expansive set homor- phism of groupoids in semigroups, groupoid with semigroupoid operators and groupoids with additive endormorphism. Definition 1.1. — A set of elements G - f x,y,z } which is defined by a single-valued binary operation such that x o y ■ z é G (The only restriction is closure) is called a groupiod. Definition 1.2. — The binary operation will be a mapping of the set into itself (AA a direct product.) 1 2 Definition 1.3» — A non-void subset of a groupoid G is called a subgroupoid if and only if AA C A.
    [Show full text]
  • Categories of Quantum and Classical Channels (Extended Abstract)
    Categories of Quantum and Classical Channels (extended abstract) Bob Coecke∗ Chris Heunen† Aleks Kissinger∗ University of Oxford, Department of Computer Science fcoecke,heunen,[email protected] We introduce the CP*–construction on a dagger compact closed category as a generalisation of Selinger’s CPM–construction. While the latter takes a dagger compact closed category and forms its category of “abstract matrix algebras” and completely positive maps, the CP*–construction forms its category of “abstract C*-algebras” and completely positive maps. This analogy is justified by the case of finite-dimensional Hilbert spaces, where the CP*–construction yields the category of finite-dimensional C*-algebras and completely positive maps. The CP*–construction fully embeds Selinger’s CPM–construction in such a way that the objects in the image of the embedding can be thought of as “purely quantum” state spaces. It also embeds the category of classical stochastic maps, whose image consists of “purely classical” state spaces. By allowing classical and quantum data to coexist, this provides elegant abstract notions of preparation, measurement, and more general quantum channels. 1 Introduction One of the motivations driving categorical treatments of quantum mechanics is to place classical and quantum systems on an equal footing in a single category, so that one can study their interactions. The main idea of categorical quantum mechanics [1] is to fix a category (usually dagger compact) whose ob- jects are thought of as state spaces and whose morphisms are evolutions. There are two main variations. • “Dirac style”: Objects form pure state spaces, and isometric morphisms form pure state evolutions.
    [Show full text]