Taxonomic and Phylogenetic Revision of the Family

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic and Phylogenetic Revision of the Family TAXONOMIC AND PHYLOGENETIC REVISION OF THE FAMILY CHIASMODONTIDAE (PERCIFORMES: ACANTHOMORPHA) Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. _____________________________ Marcelo R. S. de Melo Certificate of Approval: _____________________________ ____________________________ Kenneth M. Halanych Jonathan W. Armbruster, Chair Professor Professor Biological Sciences Biological Sciences _____________________________ _____________________________ Craig Guyer Larry M. Page Professor Curator of Fishes Biological Sciences Florida Museum of Natural History University of Florida _____________________________ George T. Flowers Dean Graduate School Auburn University TAXONOMIC AND PHYLOGENETIC REVISION OF THE FAMILY CHIASMODONTIDAE (PERCIFORMES: ACANTHOMORPHA) Marcelo R. S. de Melo A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 10, 2009 TAXONOMIC AND PHYLOGENETIC REVISION OF THE FAMILY CHIASMODONTIDAE (PERCIFORMES: ACANTHOMORPHA) Marcelo R. S. de Melo Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. _____________________________ Signature of Author _____________________________ Date of Graduation iii VITA Marcelo Roberto Souto de melo, son of Abraão Cavalcanti de Bessa and Amélia Souto de Melo, was born in Brasília, Brazil, on July 9, 1976. He received a Bachelor of Science in Biology in 1999 from Universidade Federal de Goiás (Brazil). In 2001, Marcelo earned a Master in Science degree in Biology at the Brazilian Museu Nacional, Universidade Federal do Rio de Janeiro. In 2004 he was awarded with a fellowship from the Brazilian government to join the Graduate School at Auburn University. Marcelo finished his degree requirements for a Doctor of Philosophy in Biological Sciences in August 10, 2009. iv TAXONOMIC AND PHYLOGENETIC REVISION OF THE FAMILY CHIASMODONTIDAE (PERCIFORMES: ACANTHOMORPHA) Marcelo R. S. de Melo Doctor of Philosophy, August 10, 2009 (M.Sc. Universidade Federal do Rio de Janeiro, 2001) (B. S. Universidade Federal de Goiás, 1999) 563 Typed Pages Directed by Jonathan W. Armbruster The family Chiasmodontidae, commonly known as swallowers, comprises four genera and 33 species distributed in the meso and bathypelagic regions of the Atlantic, Pacific, Indian and Southern Oceans. The species of Chiasmodon and Pseudoscopelus have disjunct distribution, and those of Dysalotus and Kali, wide distributions. The genus Chiasmodon is composed of seven species, two of them new: C. niger; C. subniger; C. braueri; C. microcephalus; C. pluriradiatus; C. asper n. sp.; and C. harteli n. sp. Pseudoscopelus has 16 species, five of them new: P. scriptus; P. sagamianus; P. altipinnis; P. cephalus; P. obtusifrons; P. scutatus; P. aphos; P. parini; P. astronesthidens; P. australis; P. pierbartus; P. bothrorrhinos n. sp.; P. lavenbergi n. sp.; P. paxtoni n. sp.; P. cordilluminatus, n. sp.; and P. odontoglossum sp. n. Dysalotus has only three species, one new: D. alcocki; D. oligoscolus; and D. acanthobrychos. Kali has v seven species, two of them new: K. indica; K. kerberti; K. macrodon; K. macrura; K. parri; K. colubrina, n. sp.; and K. falx, n. sp. The chiasmodontids have several morphologic adaptations related to life in the deep-sea and swallowing of enlarged preys. Those characteristics include the reduction of some bones and muscles, diverse dentition, enlarged mouth, a very distensible stomach and body walls, photophores, and the presence of superficial neuromasts on head and body. One of the most remarkable characteristics is the innumerous superficial neuromasts, which are present in all chiasmodontids. The superficial neuromasts are more concentrated in the head, but are also present on body along the trunk lateral-line canal, on upper and lower lobes of the caudal fin, and dorsal part, anterior and to the first- dorsal fin. The distribution of neuromasts is described, as well as their innervation. A phylogenetic analysis was made based on 161 morphological characters obtained from osteology, myology, lateral line system, dentition and miscellaneous. The monophyly of the Chiasmodontidae is corroborated by 24 synapomorphies. Within the chiasmodontids, two major clades are formed: the Chiasmodon clade is composed of Chiasmodon and Pseudoscopelus, and supported by 18 synapomorphies; and the Kali clade is composed by Dysalotus and Kali, and supported by 22 synapomorphies. The monophyly of the genus Chiasmodon is supported by 16 synapomorphies; Pseudoscopelus, by 12 synapomorphies; Dysalotus, by 18 synapomorphies; and Kali, by 23 synapomorphies. vi ACKNOWLEDGMENTS The author would like to thank to: Jonathan W. Armbruster, for his guidance and suggestions throughout during my studies. The committee members, Kenneth M. Halanych, Dave Johnson, Craig Guyer, and Larry M. Page for their critical review. The Armbruster lab and family for their friendship during the past five years: Shobnon Ferdous; Lesley de Souza; Keith Ray; Nathan Lujan; Ricardo Betancur; David Werneke; and Brian, Will, and Heather Armbruster. John Paxton (Australian Museum) and Karsten Hartel (Museum of Comparative Zoology – Harvard University) for their support and suggestions during this study. Cindy Keplado and H.J. Walker (University of California in San Diego) for their nicely collaboration on a publication. Auburn University staff, especially Jack Feminella, Mary Mendonça, Sandra Riddle and, in name of the International Education Office crew, Ken McNabb. Peter Raucci, from the Institute of International Education. Financial support was provided by a graduate studies fellowship from the Brazilian governmental agency CAPES, (process BEX 2030/03–9); Schultz fund of the Division of Fishes (USNM), and Ernst Mayr Grants (Harvard University). This work is dedicated to my mother, Amélia Melo, with love. vii Style manual or journal used: Zootaxa. Computer software used: Microsoft Word 2003 (text), Microsoft Excel 2003 (tables), Corel Draw Graphics Suite 12 (figures), Adobe Photoshop CS2 (figures), JMP version 5 (statistic analysis); PAUP* version 4.0b10 (maximum parsimony reconstructions, genetic distance calculations, hypothesis testing), MacClade 4 (dataset handling, ancestral character reconstructions), Mesquite 2.6 (ancestral character reconstructions), TreeRot version 2b2 (produce commands for performing Decay analysis). viii TABLE OF CONTENTS LIST OF TABLES........................................................................................................... xii LIST OF FIGURES .......................................................................................................... xv CHAPTER 1 – INTRODUCTION TO THE FAMILY CHIASMODONTIDAE...............1 General Introduction ........................................................................................................2 Objectives ........................................................................................................................5 References........................................................................................................................7 CHAPTER 2 – REVISION OF THE GENUS CHIASMODON JOHNSON ...................11 Abstract..........................................................................................................................12 Introduction....................................................................................................................12 Material and Methods ....................................................................................................14 List of abbreviations ................................................................................................. 16 Results............................................................................................................................17 Key to the genera of Chiasmodontidae..................................................................... 17 Key to the species of Chiasmodon............................................................................ 19 Chiasmodon Johnson 1864 ....................................................................................... 21 Chiasmodon niger Johnson 1864.............................................................................. 27 Chiasmodon subniger Garman 1899 ........................................................................ 31 Chiasmodon braueri Weber 1913............................................................................. 35 Chiasmodon microcephalus Norman 1929............................................................... 38 Chiasmodon pluriradiatus Parr 1933........................................................................ 41 Chiasmodon asper, new species ............................................................................... 44 Chiasmodon harteli, new species ............................................................................. 47 Discussion......................................................................................................................52 Identification of juveniles ......................................................................................... 53 Unidentified specimen.
Recommended publications
  • Fao Species Catalogue
    FAO Fisheries Synopsis No. 125, Volume 5 FIR/S125 Vol. 5 FAO SPECIES CATALOGUE VOL. 5. BILLFISHES OF THE WORLD AN ANNOTATED AND ILLUSTRATED CATALOGUE OF MARLINS, SAILFISHES, SPEARFISHES AND SWORDFISHES KNOWN TO DATE UNITED NATIONS DEVELOPMENT PROGRAMME FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS FAO Fisheries Synopsis No. 125, Volume 5 FIR/S125 Vol.5 FAO SPECIES CATALOGUE VOL. 5 BILLFISHES OF THE WORLD An Annotated and Illustrated Catalogue of Marlins, Sailfishes, Spearfishes and Swordfishes Known to date MarIins, prepared by Izumi Nakamura Fisheries Research Station Kyoto University Maizuru Kyoto 625, Japan Prepared with the support from the United Nations Development Programme (UNDP) UNITED NATIONS DEVELOPMENT PROGRAMME FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome 1985 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory. city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-42 ISBN 92-5-102232-1 All rights reserved . No part of this publicatlon may be reproduced. stored in a retriewal system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwase, wthout the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations Via delle Terme di Caracalla, 00100 Rome, Italy.
    [Show full text]
  • CHECKLIST and BIOGEOGRAPHY of FISHES from GUADALUPE ISLAND, WESTERN MEXICO Héctor Reyes-Bonilla, Arturo Ayala-Bocos, Luis E
    ReyeS-BONIllA eT Al: CheCklIST AND BIOgeOgRAphy Of fISheS fROm gUADAlUpe ISlAND CalCOfI Rep., Vol. 51, 2010 CHECKLIST AND BIOGEOGRAPHY OF FISHES FROM GUADALUPE ISLAND, WESTERN MEXICO Héctor REyES-BONILLA, Arturo AyALA-BOCOS, LUIS E. Calderon-AGUILERA SAúL GONzáLEz-Romero, ISRAEL SáNCHEz-ALCántara Centro de Investigación Científica y de Educación Superior de Ensenada AND MARIANA Walther MENDOzA Carretera Tijuana - Ensenada # 3918, zona Playitas, C.P. 22860 Universidad Autónoma de Baja California Sur Ensenada, B.C., México Departamento de Biología Marina Tel: +52 646 1750500, ext. 25257; Fax: +52 646 Apartado postal 19-B, CP 23080 [email protected] La Paz, B.C.S., México. Tel: (612) 123-8800, ext. 4160; Fax: (612) 123-8819 NADIA C. Olivares-BAñUELOS [email protected] Reserva de la Biosfera Isla Guadalupe Comisión Nacional de áreas Naturales Protegidas yULIANA R. BEDOLLA-GUzMáN AND Avenida del Puerto 375, local 30 Arturo RAMíREz-VALDEz Fraccionamiento Playas de Ensenada, C.P. 22880 Universidad Autónoma de Baja California Ensenada, B.C., México Facultad de Ciencias Marinas, Instituto de Investigaciones Oceanológicas Universidad Autónoma de Baja California, Carr. Tijuana-Ensenada km. 107, Apartado postal 453, C.P. 22890 Ensenada, B.C., México ABSTRACT recognized the biological and ecological significance of Guadalupe Island, off Baja California, México, is Guadalupe Island, and declared it a Biosphere Reserve an important fishing area which also harbors high (SEMARNAT 2005). marine biodiversity. Based on field data, literature Guadalupe Island is isolated, far away from the main- reviews, and scientific collection records, we pres- land and has limited logistic facilities to conduct scien- ent a comprehensive checklist of the local fish fauna, tific studies.
    [Show full text]
  • The First Evidence of Intrinsic Epidermal Bioluminescence Within Ray-Finned Fishes in the Linebelly Swallower Pseudoscopelus Sagamianus (Chiasmodontidae)
    Received: 10 July 2019 Accepted: 22 October 2019 DOI: 10.1111/jfb.14179 BRIEF COMMUNICATION FISH The first evidence of intrinsic epidermal bioluminescence within ray-finned fishes in the linebelly swallower Pseudoscopelus sagamianus (Chiasmodontidae) Michael J. Ghedotti1,2 | W. Leo Smith3 | Matthew P. Davis4 1Department of Biology, Regis University, Denver, Colorado, USA Abstract 2Bell Museum of Natural History, University of External and histological examination of the photophores of the linebelly swallower Minnesota, St. Paul, Minnesota, USA Pseudoscopelus sagamianus reveal three epidermal layers of cells that form the light- 3Department of Ecology and Evolutionary Biology and Biodiversity Institute, University producing and light-transmitting components of the photophores. Photophores of Kansas, Lawrence, Kansas, USA among the examined photophore tracts are not significantly different in structure but 4 Department of Biological Sciences, St. Cloud the presence of mucous cells in the superficial layers of the photophore suggest con- State University, St. Cloud, Minnesota, USA tinued function of the epidermal photophore in contributing to the mucous coat. This Correspondence is the first evidence of intrinsic bioluminescence in primarily epidermal photophores Michael J. Ghedotti, Department of Biology, Regis University, 3333 Regis Boulevard, reported in ray-finned fishes. Denver, CO, 80221-1099, USA. Email: [email protected] KEYWORDS Funding information bioluminescence, deep-sea, histology, integument, photophores, Pseudoscopelus sagamianus, The work primarily was supported by funding Scombriformes from a Regis URSC Grant to M.J.G., a University of Kansas GRF allocation (#2105077) to W.L.S. and National Science Foundation grants (DEB 1258141 and DEB 1543654) to M.P.D. and W.L.S. provided monetary support.
    [Show full text]
  • Revisión Taxonómica De La Ictiología Marina De Galicia: Clase Actinopteri (Orden Trachiniformes Al Orden Tetraodontiformes)
    Nova Acta Científica Compostelana (Bioloxía), 28: 77-104 (2021) - ISSN 2340-0021 ARTÍCULO DE INVESTIGACIÓN Revisión taxonómica de la ictiología marina de Galicia: Clase Actinopteri (Orden Trachiniformes al Orden Tetraodontiformes) Taxonomic review of Galician marine ichthyology: Classe Actinopteri (Order Trachiniformes to Order Tetraodontiformes) *RAFAEL BAÑÓN, TOÑO MAÑO Grupo de Estudos do Medio Mariño (GEMM), Puerto Deportivo s/n 15960 Ribeira, A Coruña, España. *[email protected]; [email protected] (Recibido 29/11/2020; Aceptado 26/03/2021) Resumen En este trabajo se realiza una revisión taxonómica de los peces óseos de Galicia (Clase Actinopteri) del Orden Trachiniformes al Orden Tetraodontiformes, a través de los distintos tratados y publicaciones ictio- lógicas publicadas a lo largo de la historia. Se listan un total de 188 especies, de las cuales 5 se consideran dudosas, al no estar su presencia suficientemente demostrada. Una revisión de la bibliografía y nomenclatura científica nos ha permitido citar nuevas especies para Galicia y reasignar antiguas denominaciones a nuevas especies, subsanando errores de identificación de otros autores. El orden Perciformes, con 145 especies, es el más numeroso de los peces de Galicia. A este orden pertenecen especies de alto interés comercial como el jurel Trachurus trachurus y la caballa Scomber scombrus. El listado incluye también los primeros registros para Galicia de especies de carácter tropical desplazadas hacia el norte debido al cambio climático a lo largo de estas últimas décadas. Algunas de estas especies son el jurelo azul Caranx crysos, el pez globo Lagocephalus laevigatus y el mero tropical Epinephelus aeneus. Palabras clave: Peces óseos, nomenclatura, ictiología, tropicalización.
    [Show full text]
  • Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
    European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences.
    [Show full text]
  • Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes
    Old Dominion University ODU Digital Commons Biological Sciences Theses & Dissertations Biological Sciences Summer 2016 Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes Christi Linardich Old Dominion University, [email protected] Follow this and additional works at: https://digitalcommons.odu.edu/biology_etds Part of the Biodiversity Commons, Biology Commons, Environmental Health and Protection Commons, and the Marine Biology Commons Recommended Citation Linardich, Christi. "Hotspots, Extinction Risk and Conservation Priorities of Greater Caribbean and Gulf of Mexico Marine Bony Shorefishes" (2016). Master of Science (MS), Thesis, Biological Sciences, Old Dominion University, DOI: 10.25777/hydh-jp82 https://digitalcommons.odu.edu/biology_etds/13 This Thesis is brought to you for free and open access by the Biological Sciences at ODU Digital Commons. It has been accepted for inclusion in Biological Sciences Theses & Dissertations by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES by Christi Linardich B.A. December 2006, Florida Gulf Coast University A Thesis Submitted to the Faculty of Old Dominion University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE BIOLOGY OLD DOMINION UNIVERSITY August 2016 Approved by: Kent E. Carpenter (Advisor) Beth Polidoro (Member) Holly Gaff (Member) ABSTRACT HOTSPOTS, EXTINCTION RISK AND CONSERVATION PRIORITIES OF GREATER CARIBBEAN AND GULF OF MEXICO MARINE BONY SHOREFISHES Christi Linardich Old Dominion University, 2016 Advisor: Dr. Kent E. Carpenter Understanding the status of species is important for allocation of resources to redress biodiversity loss.
    [Show full text]
  • Wainwright-Et-Al.-2012.Pdf
    Copyedited by: ES MANUSCRIPT CATEGORY: Article Syst. Biol. 61(6):1001–1027, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/sys060 Advance Access publication on June 27, 2012 The Evolution of Pharyngognathy: A Phylogenetic and Functional Appraisal of the Pharyngeal Jaw Key Innovation in Labroid Fishes and Beyond ,∗ PETER C. WAINWRIGHT1 ,W.LEO SMITH2,SAMANTHA A. PRICE1,KEVIN L. TANG3,JOHN S. SPARKS4,LARA A. FERRY5, , KRISTEN L. KUHN6 7,RON I. EYTAN6, AND THOMAS J. NEAR6 1Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616; 2Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605; 3Department of Biology, University of Michigan-Flint, Flint, MI 48502; 4Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; 5Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069; 6Department of Ecology and Evolution, Peabody Museum of Natural History, Yale University, New Haven, CT 06520; and 7USDA-ARS, Beneficial Insects Introduction Research Unit, 501 South Chapel Street, Newark, DE 19713, USA; ∗ Correspondence to be sent to: Department of Evolution & Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA; E-mail: [email protected]. Received 22 September 2011; reviews returned 30 November 2011; accepted 22 June 2012 Associate Editor: Luke Harmon Abstract.—The perciform group Labroidei includes approximately 2600 species and comprises some of the most diverse and successful lineages of teleost fishes.
    [Show full text]
  • Chiasmodontidae
    FAMILY Chiasmodontidae Jordan & Gilbert, 1883 - snaketooth fishes, swallowers [=Gargaropterinae] GENUS Chiasmodon Johnson, 1864 - swallowers [=Chiasmodus, Ponerodon] Species Chiasmodon asper Melo, 2009 - Melo's swallower Species Chiasmodon braueri Weber, 1913 - Banda Sea swallower Species Chiasmodon lavenbergi Prokovfiev, 2008 - Coral Sea swallower Species Chiasmodon microcephalus Norman, 1929 - Norman's swallower Species Chiasmodon niger Johnson, 1864 - black swallower [=bolangeri, harteli] Species Chiasmodon pluriradiatus Parr, 1933 - Parr's swallower Species Chiasmodon subniger Garman, 1899 - Garman's swallower GENUS Dysalotus MacGilchrist, 1905 - swallowers Species Dysalotus alcocki MacGilchrist, 1905 - Bengal swallower Species Dysalotus oligoscolus Johnson & Cohen, 1974 - Johnson's swallower Species Dysalotus pouliulii Melo, 2017 - Hawaiian swallower GENUS Kali Lloyd, 1909 - swallowers [=Dolichodon, Gargaropteron, Hemicyclodon, Odontonema] Species Kali colubrina Melo, 2008 - Brazilian swallower [=caribbaea] Species Kali falx Melo, 2008 - Guinean swallower Species Kali indica Lloyd, 1909 - Indian swallower Species Kali kerberti (Weber, 1913) - Kerbert's swallower [=normani] Species Kali macrodon (Norman, 1929) - bigtooth swallower [=pterodactylops] Species Kali macrura (Parr, 1933) - Acklins Island swallower Species Kali parri Johnson & Cohen, 1974 - Parr's kali swallower GENUS Pseudoscopelus Lutken, 1892 - swallowers [=Myersiscus] Species Pseudoscopelus albeolus Prokofiev & Kukuev, 2008 - Antarctic swallower Species Pseudoscopelus
    [Show full text]
  • Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U
    Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Jorge R. García Sais SEDAR26-RD-02 FINAL REPORT Inventory and Atlas of Corals and Coral Reefs, with Emphasis on Deep-Water Coral Reefs from the U. S. Caribbean EEZ Submitted to the: Caribbean Fishery Management Council San Juan, Puerto Rico By: Dr. Jorge R. García Sais dba Reef Surveys P. O. Box 3015;Lajas, P. R. 00667 [email protected] December, 2005 i Table of Contents Page I. Executive Summary 1 II. Introduction 4 III. Study Objectives 7 IV. Methods 8 A. Recuperation of Historical Data 8 B. Atlas map of deep reefs of PR and the USVI 11 C. Field Study at Isla Desecheo, PR 12 1. Sessile-Benthic Communities 12 2. Fishes and Motile Megabenthic Invertebrates 13 3. Statistical Analyses 15 V. Results and Discussion 15 A. Literature Review 15 1. Historical Overview 15 2. Recent Investigations 22 B. Geographical Distribution and Physical Characteristics 36 of Deep Reef Systems of Puerto Rico and the U. S. Virgin Islands C. Taxonomic Characterization of Sessile-Benthic 49 Communities Associated With Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Benthic Algae 49 2. Sponges (Phylum Porifera) 53 3. Corals (Phylum Cnidaria: Scleractinia 57 and Antipatharia) 4. Gorgonians (Sub-Class Octocorallia 65 D. Taxonomic Characterization of Sessile-Benthic Communities 68 Associated with Deep Sea Habitats of Puerto Rico and the U. S. Virgin Islands 1. Echinoderms 68 2. Decapod Crustaceans 72 3. Mollusks 78 E.
    [Show full text]
  • A Comprehensive Petrochemical Vulnerability Index for Marine Fishes in the Gulf Of
    A Comprehensive Petrochemical Vulnerability Index for Marine Fishes in the Gulf of Mexico by Megan Woodyard A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science Approved April 2020 by the Graduate Supervisory Committee: Beth Polidoro, Co-Chair Steven Saul, Co-Chair Cole Matson ARIZONA STATE UNIVERSITY May 2020 ABSTRACT The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British Petroleum's (BP) Deepwater Horizon (2010), have occurred in the region. However, the Gulf is also of critical significance to thousands of unique species, many of which may be irreparably harmed by accidental petrochemical exposure. To better manage the conservation and recovery of marine species in the Gulf ecosystem, a Petrochemical Vulnerability Index was developed to determine the potential impact of a petrochemical influx on Gulf marine fishes, therein providing an objective framework with which to determine the best immediate and long- term management strategies for resource managers and decision-makers. The resulting Petrochemical Vulnerability Index (PVI) was developed and applied to all bony fishes and shark/ray species in the Gulf of Mexico (1,670 spp), based on a theoretical petrochemical vulnerability framework developed by peer review. The PVI for fishes embodies three key facets of species vulnerability: likelihood of exposure, individual sensitivity, and population resilience, and comprised of 11 total metrics (Distribution, Longevity, Mobility, Habitat, Pre-Adult Stage Length, Pre-Adult Exposure; Increased Adult Sensitivity Due to UV Light, Increased Pre-Adult Sensitivity Due to UV Light; and Abundance, Reproductive Turnover Rate, Diet/Habitat Specialization).
    [Show full text]
  • Carp (No Common Name) (Labeo Dyocheilus)
    Labeo dyocheilus (a carp, no common name) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, May 2012 Revised, April 2018 Web Version, 5/10/2018 Photo: A. Bentley, University of Kansas Biodiversity Institute. Licensed under CC BY 4.0. Available: https://www.gbif.org/occurrence/657030824. (April 2018). 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Asia: Pakistan, India, Bangladesh and Nepal [Talwar and Jhingran 1991]. Known from Maeklong [Vidthayanon et al. 1997], Salween, Chao Phraya and Mekong basins [Vidthayanon et al. 1997, Kottelat 1998].” Froese and Pauly (2018) report that L. dyocheilus is native to 10 countries in all: Afghanistan, Bangladesh, Bhutan, Cambodia, India, Laos, Myanmar, Nepal, Pakistan, and Thailand. Status in the United States This species has not been reported as introduced or established in the U.S. There is no indication that this species is in trade in the U.S. Means of Introductions in the United States This species has not been reported as introduced or established in the U.S. 1 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing From ITIS (2018): “Kingdom Animalia Subkingdom Bilateria Infrakingdom Deuterostomia Phylum Chordata Subphylum Vertebrata Infraphylum Gnathostomata Superclass Actinopterygii Class Teleostei Superorder Ostariophysi Order Cypriniformes Superfamily Cyprinoidea Family Cyprinidae Genus Labeo Species Labeo dyocheilus (McClelland, 1839)” From Eschmeyer et al. (2018): “Current status: Valid as Labeo dyocheilus (McClelland 1839). Cyprinidae: Labeoninae.” Size, Weight, and Age Range From Froese and Pauly (2018): “Max length : 90.0 cm TL male/unsexed; [Talwar and Jhingran 1991]” Environment From Froese and Pauly (2018): “Freshwater; benthopelagic; potamodromous [Riede 2004].” Climate/Range From Froese and Pauly (2018): “Tropical” 2 Distribution Outside the United States Native From Froese and Pauly (2018): “Asia: Pakistan, India, Bangladesh and Nepal [Talwar and Jhingran 1991].
    [Show full text]
  • 61661147.Pdf
    Resource Inventory of Marine and Estuarine Fishes of the West Coast and Alaska: A Checklist of North Pacific and Arctic Ocean Species from Baja California to the Alaska–Yukon Border OCS Study MMS 2005-030 and USGS/NBII 2005-001 Project Cooperation This research addressed an information need identified Milton S. Love by the USGS Western Fisheries Research Center and the Marine Science Institute University of California, Santa Barbara to the Department University of California of the Interior’s Minerals Management Service, Pacific Santa Barbara, CA 93106 OCS Region, Camarillo, California. The resource inventory [email protected] information was further supported by the USGS’s National www.id.ucsb.edu/lovelab Biological Information Infrastructure as part of its ongoing aquatic GAP project in Puget Sound, Washington. Catherine W. Mecklenburg T. Anthony Mecklenburg Report Availability Pt. Stephens Research Available for viewing and in PDF at: P. O. Box 210307 http://wfrc.usgs.gov Auke Bay, AK 99821 http://far.nbii.gov [email protected] http://www.id.ucsb.edu/lovelab Lyman K. Thorsteinson Printed copies available from: Western Fisheries Research Center Milton Love U. S. Geological Survey Marine Science Institute 6505 NE 65th St. University of California, Santa Barbara Seattle, WA 98115 Santa Barbara, CA 93106 [email protected] (805) 893-2935 June 2005 Lyman Thorsteinson Western Fisheries Research Center Much of the research was performed under a coopera- U. S. Geological Survey tive agreement between the USGS’s Western Fisheries
    [Show full text]