Lakes and Reservoirs: Guidelines for Study Design and Sampling

Total Page:16

File Type:pdf, Size:1020Kb

Lakes and Reservoirs: Guidelines for Study Design and Sampling Lakes and Reservoirs: Guidelines for Study Design and Sampling Chapter 10 of Section A, National Field Manual for the Collection of Water-Quality Data Book 9, Handbooks for Water-Resources Investigations Techniques and Methods 9–A10 Supersedes USGS Techniques of Water-Resources Investigations Book 9, Chapter A10, version 1.0 U.S. Department of the Interior U.S. Geological Survey Cover: Photograph of the Annie, “First Boat Ever Launched on Yellowstone Lake." Reported to first be used on June 29, 1871. James Stevenson and H.W. Elliott, 5th annual report, page 96. William Henry Jackson, photographer (Yellowstone National Park). U.S. Geological and Geographical Survey of the Territories, Yellowstone Series, 1871, Vol. III (Hayden Survey). Image file: http://library.usgs.gov/ photo/#/item/51dca2c7e4b097e4d383aebd. Lakes and Reservoirs: Guidelines for Study Design and Sampling By U.S. Geological Survey Chapter 10 of Section A, National Field Manual for the Collection of Water-Quality Data Book 9, Handbooks for Water-Resources Investigations Techniques and Methods 9–A10 Supersedes USGS Techniques of Water-Resources Investigations, Book 9, Chapter A10, version 1.0 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: First release: 2015, online as Techniques of Water-Resources Investigations, book 9, chapter A10, version 1.0 Revised: May 2018, online as Techniques and Methods, book 9, chapter A10 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: U.S. Geological Survey, 2018, Lakes and reservoirs—Guidelines for study design and sampling: U.S. Geological Survey Techniques and Methods, book 9, chap. A10, 48 p., https://doi.org/10.3133/tm9a10. [Supersedes USGS Techniques of Water-Resources Investigations, book 9, chap. A10, version 1.0] ISSN 2328-7055 (online) iii Contents Abstract ...........................................................................................................................................................1 1.0 Introduction .............................................................................................................................................1 1.1 Purpose and Scope .......................................................................................................................3 2.0 Basic Limnology ......................................................................................................................................3 2.1 Physical and Chemical Limnology ..............................................................................................6 2.1.1 Light and Water Clarity .....................................................................................................7 2.1.2 Temperature and Stratification .......................................................................................8 2.1.3 pH .......................................................................................................................................10 2.1.4 Dissolved Oxygen ............................................................................................................10 2.1.5 Phosphorus and Nitrogen ..............................................................................................11 2.1.6 Chlorophyll a .....................................................................................................................11 2.2 Trophic Classification ..................................................................................................................12 2.3 Biological Limnology ..................................................................................................................13 2.3.1 Littoral Zone ......................................................................................................................13 2.3.2 Pelagic Zone .....................................................................................................................14 2.3.3 Profundal Zone .................................................................................................................14 3.0 Comparative Properties of Lakes and Reservoirs ..........................................................................14 3.1 Spatial and Temporal Heterogeneity .......................................................................................15 3.2 Reservoir Aging............................................................................................................................17 4.0 General Considerations for Study Design ........................................................................................18 4.1 Common Study Types ..................................................................................................................19 4.1.1 Reconnaissance Studies ................................................................................................21 4.1.2 Diagnostic Studies ..........................................................................................................22 4.1.3 Interpretive Studies .........................................................................................................22 4.2 Sampling Strategies and Approaches .....................................................................................23 4.2.1 What to Sample ...............................................................................................................23 4.2.2 How Many Samples to Collect ......................................................................................24 4.2.3 Where to Sample: Systematic, Random, and Stratified Approaches ....................25 4.2.4 When to Sample: Seasonal and Diurnal Considerations .........................................25 5.0 Preparations for Data Collection: Data Management and Safety Precautions .........................26 5.1 Site Files ........................................................................................................................................27 5.2 Safety Precautions ......................................................................................................................27 6.0 Field-Measured Properties .................................................................................................................29 6.1 Light Attenuation .........................................................................................................................31 6.2 Multiparameter Instrument Sondes .........................................................................................31 6.2.1 Temperature, Dissolved Oxygen, pH, Specific Electrical Conductance, and Turbidity ..........................................................................................................................31 6.2.2 Algal Biomass: Photosynthetic Pigments ...................................................................32 6.2.3 Ultraviolet Nitrate Sensors ...........................................................................................32 iv 6.3 Methods of Sonde Deployment .................................................................................................32 6.3.1 Profiling .............................................................................................................................32 6.3.2 Water-Quality Monitoring Platforms with Continuous Sensors or Multiparameter Sondes ..............................................................................................33 7.0 Sampling in the Water Column ...........................................................................................................35 8.0 Sampling Bottom Material ..................................................................................................................36 9.0 Sampling Biological Components ......................................................................................................36 9.1 Phytoplankton...............................................................................................................................37 9.1.1 Sample Collection ............................................................................................................37 9.1.2 Ancillary Data ...................................................................................................................37 9.2 Zooplankton ..................................................................................................................................38 9.2.1 Sample Collection ............................................................................................................38 9.2.2 Ancillary Data ..................................................................................................................38 9.3 Microorganisms ...........................................................................................................................38
Recommended publications
  • Coastal Processes and Causes of Shoreline Erosion and Accretion Causes of Shoreline Erosion and Accretion
    Coastal Processes and Causes of Shoreline Erosion and Accretion and Accretion Erosion Causes of Shoreline Heather Weitzner, Great Lakes Coastal Processes and Hazards Specialist Photo by Brittney Rogers, New York Sea Grant York Photo by Brittney Rogers, New New York Sea Grant Waves breaking on the eastern Lake Ontario shore. Wayne County Cooperative Extension A shoreline is a dynamic environment that evolves under the effects of both natural 1581 Route 88 North and human influences. Many areas along New York’s shorelines are naturally subject Newark, NY 14513-9739 315.331.8415 to erosion. Although human actions can impact the erosion process, natural coastal processes, such as wind, waves or ice movement are constantly eroding and/or building www.nyseagrant.org up the shoreline. This constant change may seem alarming, but erosion and accretion (build up of sediment) are natural phenomena experienced by the shoreline in a sort of give and take relationship. This relationship is of particular interest due to its impact on human uses and development of the shore. This fact sheet aims to introduce these processes and causes of erosion and accretion that affect New York’s shorelines. Waves New York’s Sea Grant Extension Program Wind-driven waves are a primary source of coastal erosion along the Great provides Equal Program and Lakes shorelines. Factors affecting wave height, period and length include: Equal Employment Opportunities in 1. Fetch: the distance the wind blows over open water association with Cornell Cooperative 2. Length of time the wind blows Extension, U.S. Department 3. Speed of the wind of Agriculture and 4.
    [Show full text]
  • Mechanisms Contributing to the Deep Chlorophyll Maximum in Lake Superior
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Dissertations, Master's Theses and Master's Reports - Open Reports 2011 Mechanisms contributing to the deep chlorophyll maximum in Lake Superior Marcel L. Dijkstra Michigan Technological University Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Civil and Environmental Engineering Commons Copyright 2011 Marcel L. Dijkstra Recommended Citation Dijkstra, Marcel L., "Mechanisms contributing to the deep chlorophyll maximum in Lake Superior", Master's Thesis, Michigan Technological University, 2011. https://doi.org/10.37099/mtu.dc.etds/231 Follow this and additional works at: https://digitalcommons.mtu.edu/etds Part of the Civil and Environmental Engineering Commons MECHANISMS CONTRIBUTING TO THE DEEP CHLOROPHYLL MAXIMUM IN LAKE SUPERIOR By Marcel L. Dijkstra A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (Environmental Engineering) MICHIGAN TECHNOLOGICAL UNIVERSITY 2011 © 2011 Marcel L. Dijkstra This thesis, “Mechanisms Contributing to the Deep Chlorophyll Maximum in Lake Superior,” is hereby approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE IN ENVIRONMENTAL ENGINEERING. Department of Civil and Environmental Engineering Signatures: Thesis Advisor Dr. Martin Auer Department Chair Dr. David Hand Date Contents List of Figures ......................................................................................................
    [Show full text]
  • Glossary of Terms Used in Lake Almanor Water Quality Reports
    Glossary of Terms Used in Lake Almanor Water Quality Reports Algae. Algae (the plural form of alga) are one-celled plants that do not have a central vascular system for respiration and nutrient flow. Usually algae are very small, microscopic size. However, some are much larger, such a sea lettuce, but are still algae because each cell can survive on its own and there is no central vascular system. Various estimates indicate there are over 70,000 species of algae that inhabit fresh water. “Blue green algae”. These are more correctly Cyanobacteria, and not algae. The chlorophyll in each cell is spread throughout the entire cell. This contrasts with a true algae cell which has a firmer wall, like a pea, and the chlorophyll is in sacks called chloroplasts. Most of the harmful algae bloom (HAB) problems in US lakes are caused by only about 30 species of cyanobacteria. Cyanobacteria are found in many lakes and can destroy a lake's utility by producing potent toxins (cyanotoxins), taste, and odor in the lake water. The toxins can kill or harm humans that contact the lake water. Anoxic. Anoxic water has little or no measurable dissolved oxygen. Bloom. A "bloom" usually refers to excessive algal growth. Cladocera. Relatively large members of the zooplankton, such as Daphnia (water fleas), that are primarily filter feeders that eat algae and other phytoplankton. Coldwater Fishery. Waters in which the maximum mean monthly temperature generally does not exceed a certain value and, when other ecological factors are favorable, are capable of supporting year-round populations of cold water aquatic life, such as trout.
    [Show full text]
  • Pond and Lake Ecosystems a Pond Or Lake Ecosystem Includes Biotic
    Pond and Lake Ecosystems A pond or lake ecosystem includes biotic (living) plants, animals and micro-organisms, as well as abiotic (nonliving) physical and chemical interactions. Pond and lake ecosystems are a prime example of lentic ecosystems. Lentic refers to stationary or relatively still water, from the Latin lentus, which means sluggish. A typical lake has distinct zones of biological communities linked to the physical structure of the lake. (Figure below) The littoral zone is the near shore area where sunlight penetrates all the way to the sediment and allows aquatic plants (macrophytes) to grow. Light levels of about 1% or less of surface values usually define this depth. The 1% light level also defines the euphotic zone of the lake, which is the layer from the surface down to the depth where light levels become too low for photosynthesizers. In most lakes, the sunlit euphotic zone occurs within the epilimnion. However, in unusually transparent lakes, photosynthesis may occur well below the thermocline into the perennially cold hypolimnion. For example, in western Lake Superior near Duluth, MN, summertime algal photosynthesis and growth can persist to depths of at least 25 meters, while the mixed layer, or epilimnion, only extends down to about 10 meters. Ultra-oligotrophic Lake Tahoe, CA/NV, is so transparent that algal growth historically extended to over 100 meters, though its mixed layer only extends to about 10 meters in summer. Unfortunately, inadequate management of the Lake Tahoe basin since about 1960 has led to a significant loss of transparency due to increased algal growth and increased sediment inputs from stream and shoreline erosion.
    [Show full text]
  • Estimates of Hypolimnetic Oxygen Deficits in Ponds
    Aquacullure and Fisheries Management 1989, 20, 167-172 Estimates of hypolimnetic oxygen deficits in ponds W. Y. B. CHANG Center for Great Lakes and Aquatic Sciences, University of Michigan, Ann Arbor, Michigan, USA Abstract. Shallow tropical integrated culture ponds in the Pearl River Delta. China, have been found to stratify almost daily, with high organic loadings and dense algal growth. The dissolved oxygen (DO) concentration is super-saturated in the epilimnion and is under 2 mg/l in the hypolimnion (>lm). The compensation depth corresponds to twice the Secchi disk depth ranging from 50 to 80cm. As a result, little or no net oxygen is produced in the hypolimnion (> 1 m). The low DO concentration in the hypolimnion causes organic materials, such as unused organic wastes and senescent algae cells, to be incompletely oxidized, since the rate of oxygen consumption by oxidable matter in water is dependent on the dissolved oxygen concentration in water. This material becomes the source of hypolimnetic oxygen deficits (HOD) which can drive whole pond DO to a dangerously low level, should sudden destratification occur. An improved estimate of hypolimnetic oxygen deficits is introduced in this article, and the advantages of this method are discussed. Introduction Oxygen is an important parameter in fish culture, and adequate levels of dissolved oxygen (DO) are essential for maintaining optimum fish growth. Inadequate dissolved oxygen and poor water quality are frequently found in ponds receiving organic wastes and can lead to many serious problems for fish culture in ponds. Problems of low dissolved oxygen are particularly prevalent in ponds during the night and early morning when there are high densities of fish and large additions of organic wastes and feeds (Schroeder 1974; Boyd 1982; Chang 1986).
    [Show full text]
  • INTERTIDAL ZONATION Introduction to Oceanography Spring 2017 The
    INTERTIDAL ZONATION Introduction to Oceanography Spring 2017 The Intertidal Zone is the narrow belt along the shoreline lying between the lowest and highest tide marks. The intertidal or littoral zone is subdivided broadly into four vertical zones based on the amount of time the zone is submerged. From highest to lowest, they are Supratidal or Spray Zone Upper Intertidal submergence time Middle Intertidal Littoral Zone influenced by tides Lower Intertidal Subtidal Sublittoral Zone permanently submerged The intertidal zone may also be subdivided on the basis of the vertical distribution of the species that dominate a particular zone. However, zone divisions should, in most cases, be regarded as approximate! No single system of subdivision gives perfectly consistent results everywhere. Please refer to the intertidal zonation scheme given in the attached table (last page). Zonal Distribution of organisms is controlled by PHYSICAL factors (which set the UPPER limit of each zone): 1) tidal range 2) wave exposure or the degree of sheltering from surf 3) type of substrate, e.g., sand, cobble, rock 4) relative time exposed to air (controls overheating, desiccation, and salinity changes). BIOLOGICAL factors (which set the LOWER limit of each zone): 1) predation 2) competition for space 3) adaptation to biological or physical factors of the environment Species dominance patterns change abruptly in response to physical and/or biological factors. For example, tide pools provide permanently submerged areas in higher tidal zones; overhangs provide shaded areas of lower temperature; protected crevices provide permanently moist areas. Such subhabitats within a zone can contain quite different organisms from those typical for the zone.
    [Show full text]
  • Hydrogeology of Near-Shore Submarine Groundwater Discharge
    Hydrogeology and Geochemistry of Near-shore Submarine Groundwater Discharge at Flamengo Bay, Ubatuba, Brazil June A. Oberdorfer (San Jose State University) Matthew Charette, Matthew Allen (Woods Hole Oceanographic Institution) Jonathan B. Martin (University of Florida) and Jaye E. Cable (Louisiana State University) Abstract: Near-shore discharge of fresh groundwater from the fractured granitic rock is strongly controlled by the local geology. Freshwater flows primarily through a zone of weathered granite to a distance of 24 m offshore. In the nearshore environment this weathered granite is covered by about 0.5 m of well-sorted, coarse sands with sea water salinity, with an abrupt transition to much lower salinity once the weathered granite is penetrated. Further offshore, low-permeability marine sediments contained saline porewater, marking the limit of offshore migration of freshwater. Freshwater flux rates based on tidal signal and hydraulic gradient analysis indicate a fresh submarine groundwater discharge of 0.17 to 1.6 m3/d per m of shoreline. Dissolved inorganic nitrogen and silicate were elevated in the porewater relative to seawater, and appeared to be a net source of nutrients to the overlying water column. The major ion concentrations suggest that the freshwater within the aquifer has a short residence time. Major element concentrations do not reflect alteration of the granitic rocks, possibly because the alteration occurred prior to development of the current discharge zones, or from elevated water/rock ratios. Introduction While there has been a growing interest over the last two decades in quantifying the discharge of groundwater to the coastal zone, the majority of studies have been carried out in aquifers consisting of unlithified sediments or in karst environments.
    [Show full text]
  • Beach Nourishment: Massdep's Guide to Best Management Practices for Projects in Massachusetts
    BBEACHEACH NNOURISHMEOURISHMENNTT MassDEP’sMassDEP’s GuideGuide toto BestBest ManagementManagement PracticesPractices forfor ProjectsProjects inin MassachusettsMassachusetts March 2007 acknowledgements LEAD AUTHORS: Rebecca Haney (Coastal Zone Management), Liz Kouloheras, (MassDEP), Vin Malkoski (Mass. Division of Marine Fisheries), Jim Mahala (MassDEP) and Yvonne Unger (MassDEP) CONTRIBUTORS: From MassDEP: Fred Civian, Jen D’Urso, Glenn Haas, Lealdon Langley, Hilary Schwarzenbach and Jim Sprague. From Coastal Zone Management: Bob Boeri, Mark Borrelli, David Janik, Julia Knisel and Wendolyn Quigley. Engineering consultants from Applied Coastal Research and Engineering Inc. also reviewed the document for technical accuracy. Lead Editor: David Noonan (MassDEP) Design and Layout: Sandra Rabb (MassDEP) Photography: Sandra Rabb (MassDEP) unless otherwise noted. Massachusetts Massachusetts Office Department of of Coastal Zone Environmental Protection Management 1 Winter Street 251 Causeway Street Boston, MA Boston, MA table of contents I. Glossary of Terms 1 II. Summary 3 II. Overview 6 • Purpose 6 • Beach Nourishment 6 • Specifications and Best Management Practices 7 • Permit Requirements and Timelines 8 III. Technical Attachments A. Beach Stability Determination 13 B. Receiving Beach Characterization 17 C. Source Material Characterization 21 D. Sample Problem: Beach and Borrow Site Sediment Analysis to Determine Stability of Nourishment Material for Shore Protection 22 E. Generic Beach Monitoring Plan 27 F. Sample Easement 29 G. References 31 GLOSSARY Accretion - the gradual addition of land by deposition of water-borne sediment. Beach Fill – also called “artificial nourishment”, “beach nourishment”, “replenishment”, and “restoration,” comprises the placement of sediment within the nearshore sediment transport system (see littoral zone). (paraphrased from Dean, 2002) Beach Profile – the cross-sectional shape of a beach plotted perpendicular to the shoreline.
    [Show full text]
  • Variability in Epilimnion Depth Estimations in Lakes Harriet L
    https://doi.org/10.5194/hess-2020-222 Preprint. Discussion started: 10 June 2020 c Author(s) 2020. CC BY 4.0 License. Variability in epilimnion depth estimations in lakes Harriet L. Wilson1, Ana I. Ayala2, Ian D. Jones3, Alec Rolston4, Don Pierson2, Elvira de Eyto5, Hans- Peter Grossart6, Marie-Elodie Perga7, R. Iestyn Woolway1, Eleanor Jennings1 5 1Center for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Ireland 2Department of Ecology and Genetics, Limnology, Uppsala University, Uppsala, Sweden 3Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK 4An Fóram Uisce, National Water Forum, Ireland 5Marine Institute, Furnace, Newport, Co. Mayo, Ireland 10 6Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany 7University of Lausanne, Faculty of Geoscience and Environment, CH 1015 Lausanne, Switzerland Correspondence to: Harriet L. Wilson ([email protected]) 15 Abstract. The “epilimnion” is the surface layer of a lake typically characterised as well-mixed and is decoupled from the “metalimnion” due to a rapid change in density. The concept of the epilimnion, and more widely, the three-layered structure of a stratified lake, is fundamental in limnology and calculating the depth of the epilimnion is essential to understanding many physical and ecological lake processes. Despite the ubiquity of the term, however, there is no objective or generic approach for defining the epilimnion and a diverse number of approaches prevail in the literature. Given the increasing 20 availability of water temperature and density profile data from lakes with a high spatio-temporal resolution, automated calculations, using such data, are particularly common, and have vast potential for use with evolving long-term, globally measured and modelled datasets.
    [Show full text]
  • Appendix 1 : Marine Habitat Types Definitions. Update Of
    Appendix 1 Marine Habitat types definitions. Update of “Interpretation Manual of European Union Habitats” COASTAL AND HALOPHYTIC HABITATS Open sea and tidal areas 1110 Sandbanks which are slightly covered by sea water all the time PAL.CLASS.: 11.125, 11.22, 11.31 1. Definition: Sandbanks are elevated, elongated, rounded or irregular topographic features, permanently submerged and predominantly surrounded by deeper water. They consist mainly of sandy sediments, but larger grain sizes, including boulders and cobbles, or smaller grain sizes including mud may also be present on a sandbank. Banks where sandy sediments occur in a layer over hard substrata are classed as sandbanks if the associated biota are dependent on the sand rather than on the underlying hard substrata. “Slightly covered by sea water all the time” means that above a sandbank the water depth is seldom more than 20 m below chart datum. Sandbanks can, however, extend beneath 20 m below chart datum. It can, therefore, be appropriate to include in designations such areas where they are part of the feature and host its biological assemblages. 2. Characteristic animal and plant species 2.1. Vegetation: North Atlantic including North Sea: Zostera sp., free living species of the Corallinaceae family. On many sandbanks macrophytes do not occur. Central Atlantic Islands (Macaronesian Islands): Cymodocea nodosa and Zostera noltii. On many sandbanks free living species of Corallinaceae are conspicuous elements of biotic assemblages, with relevant role as feeding and nursery grounds for invertebrates and fish. On many sandbanks macrophytes do not occur. Baltic Sea: Zostera sp., Potamogeton spp., Ruppia spp., Tolypella nidifica, Zannichellia spp., carophytes.
    [Show full text]
  • Indirect Consequences of Hypolimnetic Hypoxia on Zooplankton Growth in a Large Eutrophic Lake
    Vol. 16: 217–227, 2012 AQUATIC BIOLOGY Published September 5 doi: 10.3354/ab00442 Aquat Biol Indirect consequences of hypolimnetic hypoxia on zooplankton growth in a large eutrophic lake Daisuke Goto1,8,*, Kara Lindelof2,3, David L. Fanslow4, Stuart A. Ludsin4,5, Steven A. Pothoven4, James J. Roberts2,6, Henry A. Vanderploeg4, Alan E. Wilson2,7, Tomas O. Höök1,2 1Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana 47907, USA 2Cooperative Institute for Limnology and Ecosystems Research, University of Michigan, Ann Arbor, Michigan 48108, USA 3Department of Environmental Sciences, University of Toledo, Toledo, Ohio 43606, USA 4Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric Administration, Ann Arbor, Michigan 48108, USA 5Aquatic Ecology Laboratory, Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, Ohio 43212, USA 6Colorado State University, Department of Fish, Wildlife and Conservation Biology, Fort Collins, Colorado 80523, USA 7Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama 36849, USA 8School of Biological Sciences, University of Nebraska Lincoln, Lincoln, Nebraska 68588, USA ABSTRACT: Diel vertical migration (DVM) of some zooplankters in eutrophic lakes is often com- pressed during peak hypoxia. To better understand the indirect consequences of seasonal hypolimnetic hypoxia, we integrated laboratory-based experimental and field-based observa- tional approaches to quantify how compressed DVM can affect growth of a cladoceran, Daphnia mendotae, in central Lake Erie, North America. To evaluate hypoxia tolerance of D. mendotae, we conducted a survivorship experiment with varying dissolved oxygen concentrations, which −1 demonstrated high sensitivity of D. mendotae to hypoxia (≤2 mg O2 l ), supporting the field obser- vations of their behavioral avoidance of the hypoxic hypolimnion.
    [Show full text]
  • Baja California Sur, Mexico)
    Journal of Marine Science and Engineering Article Geomorphology of a Holocene Hurricane Deposit Eroded from Rhyolite Sea Cliffs on Ensenada Almeja (Baja California Sur, Mexico) Markes E. Johnson 1,* , Rigoberto Guardado-France 2, Erlend M. Johnson 3 and Jorge Ledesma-Vázquez 2 1 Geosciences Department, Williams College, Williamstown, MA 01267, USA 2 Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada 22800, Baja California, Mexico; [email protected] (R.G.-F.); [email protected] (J.L.-V.) 3 Anthropology Department, Tulane University, New Orleans, LA 70018, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-413-597-2329 Received: 22 May 2019; Accepted: 20 June 2019; Published: 22 June 2019 Abstract: This work advances research on the role of hurricanes in degrading the rocky coastline within Mexico’s Gulf of California, most commonly formed by widespread igneous rocks. Under evaluation is a distinct coastal boulder bed (CBB) derived from banded rhyolite with boulders arrayed in a partial-ring configuration against one side of the headland on Ensenada Almeja (Clam Bay) north of Loreto. Preconditions related to the thickness of rhyolite flows and vertical fissures that intersect the flows at right angles along with the specific gravity of banded rhyolite delimit the size, shape and weight of boulders in the Almeja CBB. Mathematical formulae are applied to calculate the wave height generated by storm surge impacting the headland. The average weight of the 25 largest boulders from a transect nearest the bedrock source amounts to 1200 kg but only 30% of the sample is estimated to exceed a full metric ton in weight.
    [Show full text]