Comparative Study of Thoracic Structures of Adults of Hydrophiloidea and Histeroidea with Phylogenetic Implications (Coleoptera, Polyphaga) Rolf G

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Study of Thoracic Structures of Adults of Hydrophiloidea and Histeroidea with Phylogenetic Implications (Coleoptera, Polyphaga) Rolf G ARTICLE IN PRESS Organisms, Diversity & Evolution 4 (2004) 1–34 www.elsevier.de/ode Comparative study of thoracic structures of adults of Hydrophiloidea and Histeroidea with phylogenetic implications (Coleoptera, Polyphaga) Rolf G. Beutela,*, Albrecht Komarekb a Institut fur. Spezielle Zoologie und Evolutionsbiologie, Friedrich-Schiller-Universitat. Jena, Erbertstrasse 1, D-07743 Jena, Germany b Naturhistorisches Museum Wien, Burgring 7, A-1010 Wien, Austria Received 24 March 2003; accepted 30 October 2003 Abstract External and internal structures of adults of Hydrophiloidea and Histeroidea were examined. Skeletal and muscular features of Helophorus aquaticus and Margarinotus brunneus are described in detail. Morphological data are presented as a list of characters and data matrix, and analysed together with other characters of adults, characters of larvae, and characters related to reproduction, habitats and feeding habits. The results of the analysis (characters unweighted) of the full dataset unambiguously support the monophyly of the following clades: [Scarabaeoidea (represented by a genus of Lucanidae and a genus of Scarabaeidae)+Hydrophiloidea+Histeroidea], [Hydrophiloidea+Histeroidea], Histeroidea, [Sphaeritidae+Histeridae], Hydrophiloidea, Hydrophiloidea (excluding Helophoridae), Hydrophiloidea (excluding Helophoridae and Hydrochidae), [Epimetopidae+Georissidae], and [Spercheidae+Hydrophilidae]. The monophyly of all histeroid and hydrophiloid families and of Hydrophilidae (represented by hydrophilines and sphaeridiines) excluding Berosus is also supported. The placement of Scarabaeoidea is in contrast to a taxonomic treatment as a lineage with the same rank as Staphyliniformia. Hydraenidae are not closely related to Hydrophiloidea. The clade comprising Hydrophiloidea and Histeroidea is well supported, but mainly by larval features correlated with predacious habits. The position of Spercheidae implies that a considerable number of seemingly plesiomorphic features of the head are due to reversal and specialized feeding habits (filter feeding). Histeridae show a highly derived pattern of thoracic features with unusual muscular modifications, a long horizontal, dorsal part of the mesopleuron, widely separated metacoxae and a strongly simplified metafurca. Hydrophiloidea are well supported by character transformations of the thorax and other body parts, which are probably related to the invasion of the aquatic habitat in the adult stage, e.g. surface modifications related to the ventral plastron. Georissidae+Epimetopidae are characterized by derived features, which may be the result of a secondarily terrestrial or semiterrestrial life style (partly reduced ventral pubescence), and by a weakly sclerotized mesonotum, mesofurca and metafurca. Hydrochidae, Georissidae and Epimetopidae show a considerable number of autapomorphies, whereas Helophoridae are probably close to the groundplan of Hydrophiloidea. The adaptations to an aquatic life style and the specific habits are very different in Hyrophiloidea and the aquatic groups of Adephaga. r 2004 Elsevier GmbH. All rights reserved. Keywords: Staphyliniformia; Hydrophiloidea; Thoracic structures; Phylogeny; Evolution See also Electronic Supplement at http://www.senckenberg.de/odes/04-01.htm *Corresponding author. E-mail address: [email protected] (R.G. Beutel). 1439-6092/$ - see front matter r 2004 Elsevier GmbH. All rights reserved. doi:10.1016/j.ode.2003.10.001 ARTICLE IN PRESS 2 R.G. Beutel, A. Komarek / Organisms, Diversity & Evolution 4 (2004) 1–34 Introduction Histeridae, Sphaeritidae or Synteliidae morphological studies of the thorax and its musculature were so far Hydrophiloidea and Histeroidea are groups which missing. Therefore, the main goal of the present have attracted a lot of attention, and recently a contribution is to provide more detailed information considerable number of studies were dedicated to the on thoracic structures of hydrophiloid and histeroid morphology of larvae (Archangelsky 1997; Beutel 1999) beetles. One representative of the Histeroidea, Margar- or adults (Beutel 1994; Beutel et al. 2001; Anton inotus brunneus (Fabricius), and one representative and Beutel 2004), systematics (Hansen 1991, 1997a; of Hydrophiloidea, Helophorus grandis Illiger, are Beutel 1994; Archangelsky 1998; Caterino and Vogler described in detail, and characters potentially rele- 2002), or taxonomy (e.g. Hansen 1997a, 1999). Never- vant for phylogenetic analyis are presented in a theless, the level of knowledge on structural features data matrix. Thoracic muscle features are presented is not fully satisfying at present. Information on in Table 1. These are combined with further charac- structural features of the thorax is surprisingly sparse. ters of adults and larvae, and subjected to cladistic The thoracic musculature of two representatives of analysis. The phylogenetic results are discussed, and Hydrophilidae (sensu Hansen 1991) was examined by possible implications for the classifications are consid- Larsen! (1966), and the data were presented in a ered. The role of thoracic character transformations comprehensive table in this study. Thoracic features in the evolution of the groups is outlined, as are were treated in a list of characters and included in a different evolutionary trends in Hydrophiloidea and large data matrix by Hansen (1991, 1997a). However, he hydradephagan beetles. The data presented may con- did not present detailed descriptions and did not tribute to a future total evidence analysis, including examine internal structures. For members of the molecular data. Table 1. Thoracic muscles of Hydrophiloidea and Histeroidea BeutelandHaas12369 101112131415161718222324252730313940424344454647505152535455585960 Larsen12345! 6 7891011121314151617181920282930313233 35363637383940 Genus Priacma x xxxx xxxxxxxxxx xxx xxxxxxxxxxxxx—xxx—xx Hydroscapha x xxxx x—xx—xxx?x xxx xxxx—x——x————xx xx —x Ochthebius —?x —x x x —x ——x x x x x x ? ? —x?x x x x ———? x ——? ? —— —? Helophorus x xx?xxx—x——xxxxx xx—?—xxxxx——— —x ——— x x ——x Hydrophilus x x—xx x—x——xxxxx xx——xxxxx——x—x———x — ——x Sphaeridium x x—xx x—x——xxxxx x————xxxx——— —x ——— x — ——x Margarinotus x x—xx x—x——xxxxx?xx——xxxxx——x—x———?x1 x——x Nicrophorus x x —x x x —x ——x x x x x x x x —x x x x x ————x ——— x x — —x Creophilus x x —x x x —x ——x x x x x x x — ——x x x x ——x —x ——— x —— —x Lucanus x x —x x x —x x —x x x x — x x x ——x x x x ————x ——— x x — —x Amphimallon x x—xx x—xx—xxxx— x x x ——x —x x ——x —x ——— x —— —x Aphodius x x —x x x —x ——x x x x — x x x ——x x x x ——x —x ——x x x — —x Cetonia x x —x x x —x ——x x x x — x x x ——x x x x ——x —x ——— x —— —x Beutel and Haas 61 62 64 65 66 67 68 69 70 71 72 79 80 82 83 84 85 86 87 88 90 91 93 94 95 96 97 98 00 01 02 03 04 05 07 08 09 11 13 Larsen! 41 42 43 44 45 46 52 47 48 49 50 60 61 62 63 64 65 66 67 68 69 70 71 71 72 73 74 75 76 77 78 79 81 82 83 84 85 Genus Priacma x xxxx xxxxxxxxxx xxx xxxxxxxxxxxxxx xxxx xxx Hydroscapha x —xxxxxxx—xxx——xxx ——x—x—abxx—x—xxx?—x—x Ochthebius x ——?—xx—x——xxx?—?xxx——x—xx?abxx—xxx ?xxx xxx Helophorus x x—x—?xx—x——xxx—xxx ——x—xxabxx—x xx x xxx xx x Hydrophilus x x—x—xx—— —xxxx—xxx ——x—xxabxx—x xx — xxx x— x Sphaeridium xx— x—xx—x—xxxx—xxx ——x—xxabxx—x xx x xxx xx x Margarinotus x xxx—xx—?—xxxx—xx—?——x—xxab— xx— xx — xx—?x— x Nicrophorus x ——x—xx—x——xxx—xxx ——x—xxabxxxx xx x xxx x— x Creophilus x x—x—x——x——xxx—xxx ——x—xxabxxxxxx —xxx x—x Lucanus x x —x — x x ————x x x — x x x ——x —xxabxxxxxx xxxx x—x Amphimallon x x —x — x ———x —x x x — x x x ——x —xxabxxxxxx —xxx x—x Aphodius x x—x—xx———xxxx—xxx ——x—xxabxxxxxx xxxx x—x Cetonia x x —x — x ———x —x x x — x x x ——x —xxab—x—xxx —xxx x—x Muscle numbers refer to Beutel and Haas (2000: 1–31 prothorax, 39–72 mesothorax, 79–113 metathorax), and Larsen! (1966), respectively. Intrinsic leg muscles not listed (present in all adult beetles). x=present; —=absent; a, b=separate subcomponents of one muscle; boldface=characters which may provide phylogenetic information; 1=with atypical origin (see text). ARTICLE IN PRESS R.G. Beutel, A. Komarek / Organisms, Diversity & Evolution 4 (2004) 1–34 3 Materials and methods Morphological techniques List of taxa examined (classification after Hansen Thoracic segments of selected specimens (micr.) were embedded in Historesin, sectioned at 3–5 mm (cross- 1991) sections and longitudinal sections), and stained with methylene-blue and acid fuchsine. Specimens of S. Specimens from the collection of the first author bipustulatum and H. fuscipes were examined with a (collected in Thuringia unless otherwise noted) are SkyScan X-ray CT (Hornschemeyer. et al. 2002). marked with one asterisk, and specimens from the Drawings were made using an ocular grid or a camera Naturhistorisches Museum Wien with two asterisks. lucida. The muscular nomenclature introduced by Representatives of most species were collected at Beutel and Haas (2000) is used in the text, and the different localities. corresponding numbers are used in the illustrations. Staphylinoidea, Hydraenidae, Ochthebiinae: Ochthe- Scanning electronic microscopy was carried out with Ã/ÃÃ bius brevicollis (Baudi, 1864) (diss.=dissected), an FEI (Philips) XL 30 ESEM TMP. Ochthebius exsculptus Germar, 1824Ã/ÃÃ (FAE=etha- nol-formaldehyde-acetic acid; micr.=microtome sec- tions); Hydraeninae: Hydraena gracilis Germar, 1824Ã/ Cladistic analysis ÃÃ (diss.). Staphylinoidea, Leiodidae: Catops subfuscus Kellner, The analysis of the interrelationships of hydrophiloid 1846Ã/ÃÃ (diss.); Silphidae: Nicrophorus vespillo (Lin- (11 genera) and histeroid subgroups (four genera) is naeus, 1758)Ã/ÃÃ (diss.). based on 111 external and internal characters of the Scarabaeoidea, Lucanidae: Lucanus cervus Linnaeus, adult thorax, and 46 additional characters of larvae or 1758Ã/ÃÃ (diss.), Platycerus caraboides Linnaeus, 1758Ã adults and from bionomics.
Recommended publications
  • First Record of a Minute Mud-Loving Beetle of the Family Georissidae (Insecta: Coleoptera: Hydrophiloidea) in Thailand
    NAT. HIST. BULL. SIAM SOC. 61(2): 131–133, 2016 First Record of a Minute Mud-loving Beetle of the Family Georissidae (Insecta: Coleoptera: Hydrophiloidea) in Thailand William D. Shepard1 and Robert W. Sites2* The family Georissidae (minute mud-loving beetles) is represented by a single genus, Georissus, which occurs on all continents except Antarctica. However, country records of species of Georissus are scattered. The genus comprises three subgenera (Georissus [Georissus], Georissus [Neogeorissus], and Georissus [Nipponogeorissus]), 80 species, and 2 subspecies (+$16(1/,729.,1 ),.Éÿ(. 2011). Various authors have considered the family as a subfamily within Hydrophilidae; however, current opinion retains family status (6+257 ),.Éÿ(. 2013). Larval, pupal, and adult Georissus are found on damp, sandy shores of lakes and rivers (SHEPARD, 6RPHDGXOWVFDPRXÁDJHWKHPVHOYHVZLWKDFRYHULQJ of sand grains glued to their dorsum (BAMEUL, 1989). Most descriptions of adults are of the external morphology and only a few included a description or illustration of the aedeagus. Larvae have been described by VAN EMDEN (1956), BERTRAND (1972), SPANGLER (1991) and $5&+$1*(/6.< (1997); pupae have been described by BERTRAND (1972) and SHEPARD (2003). The chromosomal karyotype of Georissus crenulatus (Rossi) has been described and illustrated by SHAARAWI & ANGUS (1992), and the life cycle of Georissus californicus LeConte) has been described by SHEPARD (2003). This family is little known because of their small size (many less than 2 mm) and the adults of some taxa conceal themselves with sand and remain still upon disturbance. Although most species are described from a limited number of adults, if a collector takes the time to closely examine sandy shores, the adults can be found.
    [Show full text]
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • ACTA ENTOMOLOGICA 59(1): 253–272 MUSEI NATIONALIS PRAGAE Doi: 10.2478/Aemnp-2019-0021
    2019 ACTA ENTOMOLOGICA 59(1): 253–272 MUSEI NATIONALIS PRAGAE doi: 10.2478/aemnp-2019-0021 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Aquatic Coleoptera of North Oman, with description of new species of Hydraenidae and Hydrophilidae Ignacio RIBERA1), Carles HERNANDO2) & Alexandra CIESLAK1) 1) Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Maritim de la Barceloneta 37, E-08003 Barcelona, Spain; e-mails: [email protected], [email protected] 2) P.O. box 118, E-08911 Badalona, Catalonia, Spain; e-mail: [email protected] Accepted: Abstract. We report the aquatic Coleoptera (families Dryopidae, Dytiscidae, Georissidae, 10th June 2019 Gyrinidae, Heteroceridae, Hydraenidae, Hydrophilidae and Limnichidae) from North Oman, Published online: mostly based on the captures of fourteen localities sampled by the authors in 2010. Four 24th June 2019 species are described as new, all from the Al Hajar mountains, three in family Hydraenidae, Hydraena (Hydraena) naja sp. nov., Ochthebius (Ochthebius) alhajarensis sp. nov. (O. punc- tatus species group) and O. (O.) bernard sp. nov. (O. metallescens species group); and one in family Hydrophilidae, Agraphydrus elongatus sp. nov. Three of the recorded species are new to the Arabian Peninsula, Hydroglyphus farquharensis (Scott, 1912) (Dytiscidae), Hydraena (Hydraenopsis) quadricollis Wollaston, 1864 (Hydraenidae) and Enochrus (Lumetus) cf. quadrinotatus (Guillebeau, 1896) (Hydrophilidae). Ten species already known from the Arabian Peninsula are newly recorded from Oman: Cybister tripunctatus lateralis (Fabricius, 1798) (Dytiscidae), Hydraena (Hydraena) gattolliati Jäch & Delgado, 2010, Ochthebius (Ochthebius) monseti Jä ch & Delgado 2010, Ochthebius (Ochthebius) wurayah Jäch & Delgado, 2010 (all Hydraenidae), Georissus (Neogeorissus) chameleo Fikáč ek & Trávní č ek, 2009 (Georissidae), Enochrus (Methydrus) cf.
    [Show full text]
  • Scarabaeidae) in Finland (Coleoptera)
    © Entomologica Fennica. 27 .VIII.1991 Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera) Olof Bistrom, Hans Silfverberg & Ilpo Rutanen Bistrom, 0., Silfverberg, H. & Rutanen, I. 1991: Abundance and distribution of coprophilous Histerini (Histeridae) and Onthophagus and Aphodius (Scarabaeidae) in Finland (Coleoptera).- Entomol. Fennica 2:53-66. The distribution and occmTence, with the time-factor taken into consideration, were monitored in Finland for the mainly dung-living histerid genera Margarinotus, Hister, and Atholus (all predators), and for the Scarabaeidae genera Onthophagus and Aphodius, in which almost all species are dung-feeders. All available records from Finland of the 54 species studied were gathered and distribution maps based on the UTM grid are provided for each species with brief comments on the occmTence of the species today. Within the Histeridae the following species showed a decline in their occurrence: Margarinotus pwpurascens, M. neglectus, Hister funestus, H. bissexstriatus and Atholus bimaculatus, and within the Scarabaeidae: Onthophagus nuchicornis, 0. gibbulus, O.fracticornis, 0 . similis , Aphodius subterraneus, A. sphacelatus and A. merdarius. The four Onthophagus species and A. sphacelatus disappeared in the 1950s and 1960s and are at present probably extinct in Finland. Changes in the agricultural ecosystems, caused by different kinds of changes in the traditional husbandry, are suggested as a reason for the decline in the occuJTence of certain vulnerable species. Olof Bistrom & Hans Si!fverberg, Finnish Museum of Natural Hist01y, Zoo­ logical Museum, Entomology Division, N. Jarnviigsg. 13 , SF-00100 Helsingfors, Finland llpo Rutanen, Water and Environment Research Institute, P.O. Box 250, SF- 00101 Helsinki, Finland 1.
    [Show full text]
  • ECOGRAPHY E3271 Ribera, I., Foster, G
    ECOGRAPHY E3271 Ribera, I., Foster, G. N. and Vogler, A. P. 2003. Does habitat use explain large scale species rich- ness patterns of aquatic beetles in Europe? – Eco- graphy 26: 145–152. Appendix Data set used in the analyses. Species were compiled from the literature, updated until December 1999 (see References). Only main source references for the habitat of the species are listed. H, habitat: 0, running; 1, running and stagnant; 2, stagnant; ?, unknown. Sites (in brackets, total number of species): 1, Mallorca (141); 2, Holland (272); 3, Corsica (192); 4, France (460); 5, Denmark (245); 6, Sweden (273); 7, Norway (219); 8, Finland (243); 9, Iberia (469); 10, Britain (248); 11, Ireland (180); 12, Germany (358); 13, Italy (478); 14, Sicily (235); 15, Sardinia (237). No.Genus Species SuperFamily H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 Hydroscapha granulum Myxophaga 0 1 1 1 1 1 2 Microsporus acaroides Myxophaga 1 1 1 1 3 Microsporus hispanicus Myxophaga 0 1 1 1 1 4 Microsporus spississimus Myxophaga 0 1 1 5 Aulonogyrus concinnus Hydradephaga 1 1 1 1 1 1 1 1 1 6 Aulonogyrus striatus Hydradephaga 0 1 1 1 1 1 1 1 7 Gyrinus minutus Hydradephaga 2 1 1 1 1 1 1 1 1 1 1 1 1 8 Gyrinus aeratus Hydradephaga 1 1 1 1 1 1 1 1 1 1 9 Gyrinus caspius Hydradephaga 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 Gyrinus colymbus Hydradephaga 2 1 1 1 1 1 11 Gyrinus dejeani Hydradephaga 1 1 1 1 1 1 1 12 Gyrinus distinctus Hydradephaga 2 1 1 1 1 1 1 1 1 1 1 1 1 1 13 Gyrinus marinus Hydradephaga 1 1 1 1 1 1 1 1 1 1 1 1 14 Gyrinus natator Hydradephaga 2 1 1 1 1 1 1 1 1 15 Gyrinus
    [Show full text]
  • Epuraeosoma, a New Genus of Histerinae and Phylogeny of the Family Histeridae (Coleoptera, Histeroidea)
    ANNALES ZOOLOGIO (Warszawa), 1999, 49(3): 209-230 EPURAEOSOMA, A NEW GENUS OF HISTERINAE AND PHYLOGENY OF THE FAMILY HISTERIDAE (COLEOPTERA, HISTEROIDEA) Stan isław A dam Śl ip iń s k i 1 a n d S ław om ir Ma zu r 2 1Muzeum i Instytut Zoologii PAN, ul. Wilcza 64, 00-679 Warszawa, Poland e-mail: [email protected] 2Katedra Ochrony Lasu i Ekologii, SGGW, ul. Rakowiecka 26/30, 02-528 Warszawa, Poland e-mail: [email protected] Abstract. — Epuraeosoma gen. nov. (type species: E. kapleri sp. nov.) from Malaysia, Sabah is described, and its taxonomic placement is discussed. The current concept of the phylogeny and classification of Histeridae is critically examined. Based on cladistic analysis of 50 taxa and 29 characters of adult Histeridae a new hypothesis of phylogeny of the family is presented. In the concordance with the proposed phylogeny, the family is divided into three groups: Niponiomorphae (incl. Niponiinae), Abraeomorphae and Histeromorphae. The Abraeomorphae includes: Abraeinae, Saprininae, Dendrophilinae and Trypanaeinae. The Histeromorphae is divided into 4 subfamilies: Histerinae, Onthophilinae, Chlamydopsinae and Hetaeriinae. Key words. — Coleoptera, Histeroidea, Histeridae, new genus, phylogeny, classification. Introduction subfamily level taxa. Óhara provided cladogram which in his opinion presented the most parsimonious solution to the Members of the family Histeridae are small or moderately given data set. large beetles which due to their rigid and compact body, 2 Biology and the immature stages of Histeridae are poorly abdominal tergites exposed and the geniculate, clubbed known. In the most recent treatment of immatures by antennae are generally well recognized by most of entomolo­ Newton (1991), there is a brief diagnosis and description of gists.
    [Show full text]
  • Dartington Report on Beetles 2015
    Report on beetles (Coleoptera) collected from the Dartington Hall Estate, 2015 by Dr Martin Luff 1. Introduction and Methods The majority of beetle recording in 2015 was concentrated on three sites and habitats: 1. Further sampling of moss on the Deer Park wall (SX794635), as mentioned in my 2014 report. This was done on two dates in March by MLL and again in October, aided by Messrs Tony Allen and Clive Turner, both experienced coleopterists. 2. Beetles associated with the decomposing body of a dead deer. The recently (accidentally) killed deer was acquired on 12th May by Mike Newby who pegged it out under wire netting in the small wood adjacent to 'Flushing Meadow', here referred to as 'Flushing Copse' (SX802625). The body was lifted regularly and beaten over a collecting tray, initially every week, then fortnightly and then monthly until early October. In addition, two pitfall traps were installed just beside the corpse, with a small amount of preservative in each. These were emptied each time the site was visited. 3. Water beetles sampled on 28th October, together with Tony Allen and Clive Turner, from the ponds and wheel-rut puddles on Berryman's Marsh (SX799615). Other work again included the contents of the nest boxes from Dartington Hills and Berrymans Marsh at the end of October, thanks to Mike Newby and his volunteer helpers. 2. Results In all, 203 beetle species were recorded in 2015, of which 85 (41.8%) were additions to the Dartington list. This increase over the 32% new in 2014 (Luff, 2015) results partly from sampling habitats (carrion, fresh-water) not previously examined.
    [Show full text]
  • Triploidy in Chinese Parthenogenetic
    COMPARATIVE A peer-reviewed open-access journal CompCytogen 14(1): 1–10 Triploidy(2020) in Chinese parthenogenetic Helophorus orientalis 1 doi: 10.3897/CompCytogen.v14i1.47656 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Triploidy in Chinese parthenogenetic Helophorus orientalis Motschulsky, 1860, further data on parthenogenetic H. brevipalpis Bedel, 1881 and a brief discussion of parthenogenesis in Hydrophiloidea (Coleoptera) Robert B. Angus1,2, Fenglong Jia1 1 Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China 2 Department of Life Sciences (Insects), The Natural History Museum, Cromwell Road, London SW7 5BD, UK Corresponding author: Robert B. Angus ([email protected]); Fenglong Jia ([email protected], [email protected]) Academic editor: C. Nokkala | Received 27 October 2019 | Accepted 18 December 2019 | Published 13 January 2020 http://zoobank.org/10F6E8F2-74B9-4966-A775-EAF199B66029 Citation: Angus RB, Jia F (2020) Triploidy in Chinese parthenogenetic Helophorus orientalis Motschulsky, 1860, further data on parthenogenetic H. brevipalpis Bedel, 1881 and a brief discussion of parthenogenesis in Hydrophiloidea (Coleoptera). Comparative Cytogenetics 14(1): 1–10. https://doi.org/10.3897/CompCytogen.v14i1.47656 Abstract The chromosomes of triploid parthenogenetic Helophorus orientalis Motschulsky, 1860 are described from material from two localities in Heilongjiang, China. 3n = 33. All the chromosomes have clear centromeric C-bands, and in the longest chromosome one replicate appears to be consistently longer than the other two. The chromosomes of additional triploid parthenogenetic H. brevipalpis Bedel, 1881, from Spain and Italy, are described. In one Italian population one of the autosomes is represented by only two replicates and another appears more evenly metacentric than in material from Spain and the other Italian locality.
    [Show full text]
  • Coleoptera: Introduction and Key to Families
    Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON Vol. IV. Part 1. HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS COLEOPTERA INTRODUCTION AND KEYS TO FAMILIES By R. A. CROWSON LONDON Published by the Society and Sold at its Rooms 41, Queen's Gate, S.W. 7 31st December, 1956 Price-res. c~ . HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows : I. Part 1. General Introduction. Part 9. Ephemeroptera. , 2. Thysanura. 10. Odonata. , 3. Protura. , 11. Thysanoptera. 4. Collembola. , 12. Neuroptera. , 5. Dermaptera and , 13. Mecoptera. Orthoptera. , 14. Trichoptera. , 6. Plecoptera. , 15. Strepsiptera. , 7. Psocoptera. , 16. Siphonaptera. , 8. Anoplura. 11. Hemiptera. Ill. Lepidoptera. IV. and V. Coleoptera. VI. Hymenoptera : Symphyta and Aculeata. VII. Hymenoptera: Ichneumonoidea. VIII. Hymenoptera : Cynipoidea, Chalcidoidea, and Serphoidea. IX. Diptera: Nematocera and Brachycera. X. Diptera: Cyclorrhapha. Volumes 11 to X will be divided into parts of convenient size, but it is not possible to specify in advance the taxonomic content of each part. Conciseness and cheapness are main objectives in this new series, and each part will be the work of a specialist, or of a group of specialists.
    [Show full text]
  • The Biodiversity of Flying Coleoptera Associated With
    THE BIODIVERSITY OF FLYING COLEOPTERA ASSOCIATED WITH INTEGRATED PEST MANAGEMENT OF THE DOUGLAS-FIR BEETLE (Dendroctonus pseudotsugae Hopkins) IN INTERIOR DOUGLAS-FIR (Pseudotsuga menziesii Franco). By Susanna Lynn Carson B. Sc., The University of Victoria, 1994 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming To t(p^-feguired standard THE UNIVERSITY OF BRITISH COLUMBIA 2002 © Susanna Lynn Carson, 2002 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. 1 further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver, Canada DE-6 (2/88) Abstract Increasing forest management resulting from bark beetle attack in British Columbia's forests has created a need to assess the impact of single species management on local insect biodiversity. In the Fort St James Forest District, in central British Columbia, Douglas-fir (Pseudotsuga menziesii Franco) (Fd) grows at the northern limit of its North American range. At the district level the species is rare (representing 1% of timber stands), and in the early 1990's growing populations of the Douglas-fir beetle (Dendroctonus pseudotsuage Hopkins) threatened the loss of all mature Douglas-fir habitat in the district.
    [Show full text]
  • New and Little Known Species of Hydroglyphus (Coleoptera: Dytiscidae) from Arabia and Adjacent Areas
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 30.vi.2009 Volume 49(1), pp. 93–102 ISSN 0374-1036 New and little known species of Hydroglyphus (Coleoptera: Dytiscidae) from Arabia and adjacent areas Jiří HÁJEK1) & Günther WEWALKA2) 1) Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha 4, Czech Republic; e-mail: [email protected] 2) Starkfriedgasse 16, A-1190 Wien, Austria; e-mail: [email protected] Abstract. Hydroglyphus sinuspersicus sp. nov. is described from the United Arab Emirates, Oman and Iran. It is very similar to H. major (Sharp, 1882). Hydro- glyphus gujaratensis (Vazirani, 1973) known previously only from Gujarat (India) is redescribed, based on recently collected material from Rajasthan (India), Iran and Oman. The fi rst national records are given for Hydroglyphus major from Libya and for H. infi rmus (Boheman, 1848) from Oman and Yemen. Keywords. Dytiscidae, Hydroglyphus, description, new species, new records, Oriental Region, Palaearctic Region, India, Iran, Libya, Oman, United Arab Emirates, Yemen. Introduction The genus Hydroglyphus Motschulsky, 1853 of the tribe Bidessini includes 87 species from the Old World (NILSSON 2001). Most species occur in the tropics of Africa, Asia and Australia. The genus is well characterised by the absence of transverse cervical line, three- segmented parameres, and well-developed sutural line of elytra (BISTRÖM 1988). BISTRÖM (1986) published a review of the African species, including also species from the Arabian Peninsula. Subsequently, WEWALKA (2004) described an additional species from Socotra Island, Yemen. The Oriental fauna remains unrevised except the Indian species that were treated by VAZIRANI (1969). During our studies of the fauna of predaceous diving beetles of the Arabian Peninsula and adjacent areas, we have found a number of specimens of two peculiar species of Hydroglyphus, which we could not identify.
    [Show full text]
  • UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL Catarina Barros De Prado E Castro Tese Orientada P
    UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE BIOLOGIA ANIMAL SEASONAL CARRION DIPTERA AND COLEOPTERA COMMUNITIES FROM LISBON (PORTUGAL) AND THE UTILITY OF FORENSIC ENTOMOLOGY IN LEGAL MEDICINE Catarina Barros de Prado e Castro Tese orientada por: Professor Doutor Artur Raposo Moniz Serrano Professora Doutora María Dolores García García DOUTORAMENTO EM BIOLOGIA (Ecologia) 2011 This study was supported by the Fundação para a Ciência e Tecnologia. PhD Scholarship: SFRH/BD/23066/2005 ________________________________________________________________________ This dissertation should be cited as: Prado e Castro, C. (2011) Seasonal carrion Diptera and Coleoptera communities from Lisbon (Portugal) and the utility of Forensic Entomology in Legal Medicine. PhD Thesis, University of Lisbon, Portugal Nota Prévia Na elaboração da presente dissertação, e nos termos do nº 1 do Artigo 40, Capítulo V, do Regulamento de Estudos Pós-Graduados da Universidade de Lisboa, publicado no Diário da República – II Série Nº 153, de 5 de Julho de 2003, esclarece-se que foram integrados 5 artigos científicos já publicados em revistas internacionais com arbitragem, não indexadas, 2 artigos submetidos em revistas internacionais indexadas, bem como 1 manuscrito ainda em fase de preparação, os quais integram os capítulos da presente tese. Tendo os referidos trabalhos sido realizados em colaboração com outros investigadores, a candidata esclarece que participou integralmente no planeamento, na recolha, análise e discussão dos resultados e na elaboração de
    [Show full text]