Glycogen Metabolism in Lafora Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phosphorylation of Mcardle Phosphorylase Induces Activity (Human Skeletal Muscle/Protein Kinase) CESARE G
Proc. Nati. Acad. Sci. USA Vol. 78, No. 5, pp. 2688-2692, May 1981 Biochemistry Phosphorylation of McArdle phosphorylase induces activity (human skeletal muscle/protein kinase) CESARE G. CERRI AND JOSEPH H. WILLNER Department of Neurology and H. Houston Merritt Clinical Research Center for Muscular Dystrophy and Related Diseases, Columbia University College of Physicians and Surgeons, New York, New York 10032 Communicated by Harry Grundfest, January 7, 1981 ABSTRACT In McArdle disease, myophosphorylase defi- mediate between those of phosphorylases b and a. Karpatkin ciency, enzyme activity is absent but the presence of an altered et al. (19, 20) found that incubation of human platelets with enzyme protein can frequently be demonstrated. We have found MgATP+ resulted in an increase in total phosphorylase activity that phosphorylation of this protein in vitro can result in catalytic and concluded that the data were "consistent with the presence activity. We studied muscle of four patients; all lacked myophos- in human platelets of inactive dimer and monomer species of phorylase activity, but myophosphorylase protein was demon- phosphorylase, which require MgATP for activation." Because strated by immunodiffusion or gel electrophoresis. Incubation of activation of these isozymes was probably due to protein phos- muscle homogenate supernatants with cyclic AMP-dependent pro- phorylation and also because incomplete phosphorylation could tein kinase and ATP resulted in phosphorylase activity. The ac- tivated enzyme comigrated with normal human myophosphory- result in reduced activity, we evaluated the possibility that the lase in gel electrophoresis. Incubation with [y-32P]ATP resulted activity ofphosphorylase in McArdle muscle could be restored in incorporation of 32P into the band possessing phosphorylase by phosphorylation of the inactive phosphorylase protein pres- activity. -
Enzymatic Encoding Methods for Efficient Synthesis Of
(19) TZZ__T (11) EP 1 957 644 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/10 (2006.01) C12Q 1/68 (2006.01) 01.12.2010 Bulletin 2010/48 C40B 40/06 (2006.01) C40B 50/06 (2006.01) (21) Application number: 06818144.5 (86) International application number: PCT/DK2006/000685 (22) Date of filing: 01.12.2006 (87) International publication number: WO 2007/062664 (07.06.2007 Gazette 2007/23) (54) ENZYMATIC ENCODING METHODS FOR EFFICIENT SYNTHESIS OF LARGE LIBRARIES ENZYMVERMITTELNDE KODIERUNGSMETHODEN FÜR EINE EFFIZIENTE SYNTHESE VON GROSSEN BIBLIOTHEKEN PROCEDES DE CODAGE ENZYMATIQUE DESTINES A LA SYNTHESE EFFICACE DE BIBLIOTHEQUES IMPORTANTES (84) Designated Contracting States: • GOLDBECH, Anne AT BE BG CH CY CZ DE DK EE ES FI FR GB GR DK-2200 Copenhagen N (DK) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI • DE LEON, Daen SK TR DK-2300 Copenhagen S (DK) Designated Extension States: • KALDOR, Ditte Kievsmose AL BA HR MK RS DK-2880 Bagsvaerd (DK) • SLØK, Frank Abilgaard (30) Priority: 01.12.2005 DK 200501704 DK-3450 Allerød (DK) 02.12.2005 US 741490 P • HUSEMOEN, Birgitte Nystrup DK-2500 Valby (DK) (43) Date of publication of application: • DOLBERG, Johannes 20.08.2008 Bulletin 2008/34 DK-1674 Copenhagen V (DK) • JENSEN, Kim Birkebæk (73) Proprietor: Nuevolution A/S DK-2610 Rødovre (DK) 2100 Copenhagen 0 (DK) • PETERSEN, Lene DK-2100 Copenhagen Ø (DK) (72) Inventors: • NØRREGAARD-MADSEN, Mads • FRANCH, Thomas DK-3460 Birkerød (DK) DK-3070 Snekkersten (DK) • GODSKESEN, -
(Glycogen Storage Disease Type V) and Anesthesia a Case Report And
Pediatric Anesthesia ISSN 1155-5645 REVIEW ARTICLE McArdle’s disease (glycogen storage disease type V) and anesthesia – a case report and review of the literature Georg Bollig1,2 1 Department of Anesthesiology and Intensive Care, Palliative Medicine and Pain Therapy, HELIOS Klinikum Schleswig, Schleswig, Germany 2 Department of Surgical Sciences, Haukeland University Hospital, University of Bergen, Bergen, Norway Keywords Summary general anesthesia; glycogen storage disease; glycogen storage disease type V; McArdles disease (glycogen storage disease type v) is a rare condition in malignant hyperthermia; McArdles disease; which energy-metabolism in the muscle is hampered. A case report is pre- perioperative complications sented and the possible risk for perioperative complications including malig- nant hyperthermia is discussed. A checklist for the anesthesiological Correspondence management of patients with McArdles disease is provided. A short overview Georg Bollig, Department of Anesthesiology of anesthesiological challenges and perioperative complications of other gly- and Intensive Care, Palliative Medicine and Pain Therapy, HELIOS Klinikum Schleswig, cogen storage diseases is given. Schleswig, Germany Email: [email protected] Section Editor: Barbara Brandom Accepted 3 March 2013 doi:10.1111/pan.12164 tachycardia and hypotonia occurred. After the opera- Introduction tion, the anesthesiologist informed the patient about the McArdle’s disease is a rare condition in which energy event and the fact that he had elevated liver enzymes metabolism in the muscle is hampered. A case report (aspartate transaminase = AST, alanine transaminase = will be presented, and the possible risk of perioperative ALT, and lactate dehydrogenase = LDH). An overview problems including malignant hyperthermia is dis- of the patient’s anesthesiological history is given in cussed. -
Guaiacol As a Drug Candidate for Treating Adult Polyglucosan Body Disease
Guaiacol as a drug candidate for treating adult polyglucosan body disease Or Kakhlon, … , Wyatt W. Yue, H. Orhan Akman JCI Insight. 2018;3(17):e99694. https://doi.org/10.1172/jci.insight.99694. Research Article Metabolism Therapeutics Graphical abstract Find the latest version: https://jci.me/99694/pdf RESEARCH ARTICLE Guaiacol as a drug candidate for treating adult polyglucosan body disease Or Kakhlon,1 Igor Ferreira,2 Leonardo J. Solmesky,3 Netaly Khazanov,4 Alexander Lossos,1 Rafael Alvarez,5 Deniz Yetil,6 Sergey Pampou,7 Miguel Weil,3,8 Hanoch Senderowitz,4 Pablo Escriba,5 Wyatt W. Yue,2 and H. Orhan Akman9 1Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel. 2Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom.3 Cell Screening Facility for Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel. 4Department of Chemistry, Bar Ilan University, Ramat Gan, Israel. 5Laboratory of Molecular Cell Biomedicine, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain. 6Connecticut College, Newington, Connecticut USA. 7Columbia University Department of Systems Biology Irving Cancer Research Center, New York, New York, USA. 8Laboratory for Neurodegenerative Diseases and Personalized Medicine, Department of Cell Research and Immunology, The George S. Wise Faculty for Life Sciences, Sagol School of Neurosciences, Tel Aviv University, Ramat Aviv, Tel Aviv, Israel. 9Columbia University Medical Center Department of Neurology, Houston Merritt Neuromuscular diseases research center, New York, New York, USA. Adult polyglucosan body disease (APBD) is a late-onset disease caused by intracellular accumulation of polyglucosan bodies, formed due to glycogen-branching enzyme (GBE) deficiency. -
Dynamic Metabolic Zonation of the Hepatic Glucose Metabolism Is Accomplished by Sinusoidal Plasma Gradients of Nutrients and Hormones
ORIGINAL RESEARCH published: 12 December 2018 doi: 10.3389/fphys.2018.01786 Dynamic Metabolic Zonation of the Hepatic Glucose Metabolism Is Accomplished by Sinusoidal Plasma Gradients of Nutrients and Hormones Nikolaus Berndt 1,2 and Hermann-Georg Holzhütter 1* 1 Computational Biochemistry Group, Institute of Biochemistry, Charite—University Medicine Berlin, Berlin, Germany, 2 Institute for Computational and Imaging Science in Cardiovascular Medicine, Charite—University Medicine Berlin, Berlin, Germany Being the central metabolic organ of vertebrates, the liver possesses the largest repertoire of metabolic enzymes among all tissues and organs. Almost all metabolic pathways are resident in the parenchymal cell, hepatocyte, but the pathway capacities may largely differ depending on the localization of hepatocytes within the liver acinus-a phenomenon that is commonly referred to as metabolic zonation. Metabolic zonation is rather dynamic since gene expression patterns of metabolic enzymes may change in response to nutrition, Edited by: drugs, hormones and pathological states of the liver (e.g., fibrosis and inflammation). Steven Dooley, Universitätsmedizin Mannheim, This fact has to be ultimately taken into account in mathematical models aiming at Medizinische Fakultät Mannheim, the prediction of metabolic liver functions in different physiological and pathological Universität Heidelberg, Germany settings. Here we present a spatially resolved kinetic tissue model of hepatic glucose Reviewed by: metabolism which includes zone-specific temporal changes of enzyme abundances Adil Mardinoglu, Chalmers University of Technology, which are driven by concentration gradients of nutrients, hormones and oxygen along Sweden the hepatic sinusoids. As key modulators of enzyme expression we included oxygen, Rolf Gebhardt, Leipzig University, Germany glucose and the hormones insulin and glucagon which also control enzyme activities *Correspondence: by cAMP-dependent reversible phosphorylation. -
The Role of Sirtuin 2 Activation by Nicotinamide Phosphoribosyltransferase in the Aberrant Proliferation and Survival of Myeloid Leukemia Cells
Acute Myeloid Leukemia Articles and Brief Reports The role of sirtuin 2 activation by nicotinamide phosphoribosyltransferase in the aberrant proliferation and survival of myeloid leukemia cells Lan Dan, 1,4 Olga Klimenkova, 1 Maxim Klimiankou, 1 Jan-Henning Klusman, 2 Marry M. van den Heuvel-Eibrink, 3 Dirk Reinhardt, 2 Karl Welte, 1 and Julia Skokowa 1 1Department of Molecular Hematopoiesis, Children’s Hospital, Hannover Medical School, Hannover, Germany; 2Department of Pediatric Hematology and Oncology, Children’s Hospital, Hannover Medical School, Hannover, Germany; and 3Department of Pediatric Oncology and Hematology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, The Netherlands; 4Department of Pediatrics, The First Affiliated Hospital of GuangXi Medical University, NanNing, China ABSTRACT Acknowledgments: we thank Background A. Gigina, A. Müller Brechlin Inhibitors of nicotinamide phosphoribosyltransferase have recently been validated as therapeu - and M. Reuter for their excellent tic targets in leukemia, but the mechanism of leukemogenic transformation downstream of this technical assistance. enzyme is unclear. Manuscript received on Design and Methods September 14, 2011. Revised version arrived on November 21, Here, we evaluated whether nicotinamide phosphoribosyltransferase’s effects on aberrant pro - 2011. Manuscript accepted liferation and survival of myeloid leukemic cells are dependent on sirtuin and delineated the on December 19, 2011. downstream signaling pathways operating during this process. Correspondence: Results Karl Welte, Department of We identified significant upregulation of sirtuin 2 and nicotinamide phosphoribosyltransferase Molecular Hematopoiesis, Hannover levels in primary acute myeloid leukemia blasts compared to in hematopoietic progenitor cells Medical School, Carl-Neuberg from healthy individuals. Importantly, specific inhibition of nicotinamide phosphoribosyltrans - Str. 1, 30625 Hannover, ferase or sirtuin 2 significantly reduced proliferation and induced apoptosis in human acute Germany. -
Chem331 Glycogen Metabolism
Glycogen metabolism Glycogen review - 1,4 and 1,6 α-glycosidic links ~ every 10 sugars are branched - open helix with many non-reducing ends. Effective storage of glucose Glucose storage Liver glycogen 4.0% 72 g Muscle glycogen 0.7% 245 g Blood Glucose 0.1% 10 g Large amount of water associated with glycogen - 0.5% of total weight Glycogen stored in granules in cytosol w/proteins for synthesis, degradation and control There are very different means of control of glycogen metabolism between liver and muscle Glycogen biosynthetic and degradative cycle Two different pathways - which do not share enzymes like glycolysis and gluconeogenesis glucose -> glycogen glycogenesis - biosynthetic glycogen -> glucose 1-P glycogenolysis - breakdown Evidence for two paths - Patients lacking phosphorylase can still synthesize glycogen - hormonal regulation of both directions Glycogenolysis (glycogen breakdown)- Glycogen Phosphorylase glycogen (n) + Pi -> glucose 1-p + glycogen (n-1) • Enzyme binds and cleaves glycogen into monomers at the end of the polymer (reducing ends of glycogen) • Dimmer interacting at the N-terminus. • rate limiting - controlled step in glycogen breakdown • glycogen phosphorylase - cleavage of 1,4 α glycosidic bond by Pi NOT H2O • Energy of phosphorolysis vs. hydrolysis -low standard state free energy change -transfer potential -driven by Pi concentration -Hydrolysis would require additional step s/ cost of ATP - Think of the difference between adding a phosphate group with hydrolysis • phosphorylation locks glucose in cell (imp. for muscle) • Phosphorylase binds glycogen at storage site and the catalytic site is 4 to 5 glucose residues away from the catalytic site. • Phosphorylase removes 1 residue at a time from glycogen until 4 glucose residues away on either side of 1,6 branch point – stericaly hindered by glycogen storage site • Cleaves without releasing at storage site • general acid/base catalysts • Inorganic phosphate attacks the terminal glucose residue passing through an oxonium ion intermediate. -
Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion
Molecular Neurobiology https://doi.org/10.1007/s12035-018-0997-9 Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion Rishibha Sachdev1,2 & Karin Kappes-Horn3 & Lydia Paulsen1 & Yvonne Duernberger1 & Catharina Pleschka1 & Philip Denner1 & Bishwajit Kundu2 & Jens Reimann3 & Ina Vorberg1,4 Received: 30 August 2017 /Accepted: 7 March 2018 # The Author(s) 2018 Abstract Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM. Keywords Sporadic inclusion body myositis . ER stress . Myostatin . Amyloid precursor protein . Protein misfolding . Atrophy Introduction [5]. Pathological characteristics include vacuolated mus- cle fibers, deposition of proteinaceous material [6, 7], Sporadic inclusion body myositis (sIBM) is the most and T lymphocyte infiltration [8]. -
SEARCH Supplementary Appendix for SLCO1B1 Variants and Statin
Supplementary Appendix This appendix has been provided by the authors to give readers additional information about their work. Supplement to: The SEARCH Collaborative Group. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N Engl J Med 2008;359. DOI: 10.1056/NEJMoa0801936. Supplementary Appendix for: “SLCO1B1 Variants and Statin-Induced Myopathy – A Genomewide Study” CONTENTS SEARCH Collaborative Group Supplementary Tables Supplementary Table 1: Baseline characteristics of 85 myopathy cases and 90 matched controls in SEARCH Supplementary Table 2a: Associations with myopathy for SNPs within SLCO1B1 (+/- 10kb) from the genome-wide association study, candidate genotyping and imputation in SEARCH Supplementary Table 2b: Associations with myopathy for SNPs within CYP3A4 (+/- 10kb) with myopathy in SEARCH Supplementary Table 3: LDL-cholesterol concentrations and reductions with 40mg simvastatin daily in HPS, subdivided by rs4149056 and rs2306283 SLCO1B1 genotypes Supplementary Table 4: Previous candidate gene studies of statin-induced myopathy, myalgia or intolerance (also included in Supplementary Table 5); and findings for associations of these genes with myopathy in SEARCH Supplementary Table 5: Genes previously reported to be associated with statin-induced myopathy, statin intolerance or statin pharmacokinetics; and associations with SNPs in these genes (+/- 10kb) with myopathy in SEARCH Supplementary Table 6: In vivo studies of the association between statin elimination and SLCO1B1 rs4149056 SNP Supplementary Figure Supplementary -
UNIVERSITY of CALIFORNIA, SAN DIEGO Mechanism of Pentose
UNIVERSITY OF CALIFORNIA, SAN DIEGO Mechanism of Pentose Phosphate Pathway Regulation by Akt in de Novo Purine Synthesis During Essential Amino Acid Starvation A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Biology by Deron Trent Amador Committee in charge: Professor Gerard Boss, Chair Professor Eliña Zuniga, Co-Chair Professor Elvira Tour 2012 The Thesis of Deron Trent Amador is approved and it is acceptable in quality and form for publication on microfilm and electronically: ____________________________________________________________________ ____________________________________________________________________ ____________________________________________________________________ Chair University of California, San Diego 2012 iii TABLE OF CONTENTS Signature Page……………………………………………………………………... iii Table of Contents…………………………………………………………….......... iv List of Figures…………………………………………………………………….… v Abstract……………………………………………………………………………... vii Introduction……………………………………………………………………….… 1 Experimental Procedures……………………………………………………….… 16 Results……………………………………………………………………………… 20 Discussion……………………………………………………………………….…. 32 References……………………………………………………………………….… 36 iv LIST OF FIGURES Figure 1: General schematic diagram of the phosphatidylinositol 3-kinase/Akt signal transduction pathway with targets of Akt and resulting cellular processes.. 3 Figure 2: Schemaric diagram of the non-oxidative branch of the pentose phosphate pathway…………………………………………………………………………… 6 Figure 3: Schematic diagram of the -
Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease
cells Review Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease Marta Migocka-Patrzałek * and Magdalena Elias Department of Animal Developmental Biology, Faculty of Biological Sciences, University of Wroclaw, 50-335 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Glycogen phosphorylase (PG) is a key enzyme taking part in the first step of glycogenolysis. Muscle glycogen phosphorylase (PYGM) differs from other PG isoforms in expression pattern and biochemical properties. The main role of PYGM is providing sufficient energy for muscle contraction. However, it is expressed in tissues other than muscle, such as the brain, lymphoid tissues, and blood. PYGM is important not only in glycogen metabolism, but also in such diverse processes as the insulin and glucagon signaling pathway, insulin resistance, necroptosis, immune response, and phototransduction. PYGM is implicated in several pathological states, such as muscle glycogen phosphorylase deficiency (McArdle disease), schizophrenia, and cancer. Here we attempt to analyze the available data regarding the protein partners of PYGM to shed light on its possible interactions and functions. We also underline the potential for zebrafish to become a convenient and applicable model to study PYGM functions, especially because of its unique features that can complement data obtained from other approaches. Keywords: PYGM; muscle glycogen phosphorylase; functional protein partners; glycogenolysis; McArdle disease; cancer; schizophrenia Citation: Migocka-Patrzałek, M.; Elias, M. Muscle Glycogen Phosphorylase and Its Functional Partners in Health and Disease. Cells 1. Introduction 2021, 10, 883. https://doi.org/ The main energy substrate in animal tissues is glucose, which is stored in the liver and 10.3390/cells10040883 muscles in the form of glycogen, a polymer consisting of glucose molecules. -
Rats Genetically Selected for High Aerobic Exercise Capacity
antioxidants Article Rats Genetically Selected for High Aerobic Exercise Capacity Have Elevated Plasma Bilirubin by Upregulation of Hepatic Biliverdin Reductase-A (BVRA) and Suppression of UGT1A1 1, , 2, 2 3 Terry D. Hinds Jr. * y , Justin F. Creeden y, Darren M. Gordon , Adam C. Spegele , Steven L. Britton 4, Lauren G. Koch 3 and David E. Stec 5,* 1 Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40508, USA 2 Department of Neurosciences, University of Toledo College of Medicine, Toledo, OH 43614, USA; [email protected] (J.F.C.); [email protected] (D.M.G.) 3 Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH 43614, USA; [email protected] (A.C.S.); [email protected] (L.G.K.) 4 Department of Anesthesiology, Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; [email protected] 5 Center for Excellence in Cardiovascular-Renal Research, Department of Physiology & Biophysics, University of Mississippi Medical Center, 2500 North State St, Jackson, MS 392161, USA * Correspondence: [email protected] (T.D.H.J.); [email protected] (D.E.S.) Authors contributed equally. y Received: 24 August 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: Exercise in humans and animals increases plasma bilirubin levels, but the mechanism by which this occurs is unknown. In the present study, we utilized rats genetically selected for high capacity running (HCR) and low capacity running (LCR) to determine pathways in the liver that aerobic exercise modifies to control plasma bilirubin.