The Effect of a Ketogenic Diet on Mitochondria Function in Human Skeletal Muscle During

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of a Ketogenic Diet on Mitochondria Function in Human Skeletal Muscle During The effect of a ketogenic diet on mitochondria function in human skeletal muscle during adaptation to chronic exercise training and the potential involvement of metabolic dysregulation Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Vincent J. Miller, MS Ohio State University Nutrition Program The Ohio State University 2019 Dissertation Committee Jeff S. Volek, PhD, RD, Advisor William J. Kraemer, PhD W. David Arnold, MD Frederick A. Villamena, PhD Copyrighted by Vincent J. Miller 2019 2 Abstract Objective: The prominent influence of skeletal muscle mitochondria on health and physical capacity can be enhanced through diet and exercise. Ketogenic diets have great potential to drive this enhancement, but prior research is limited, particularly in humans. Therefore, the objective of the present research was to characterize changes in skeletal muscle mitochondria function induced by a ketogenic diet during adaptation to chronic exercise. Methods: Twenty-nine participants completed a 12-week supervised exercise program while following a ketogenic diet (KD, n=15, males=13) or their habitual mixed diet (MD, n=14, males=12). Body composition was measured using dual-energy x-ray absorptiometry (iDXA, GE Healthcare, Chicago, IL). Blood was drawn in a fasted and resting state and serum insulin and glucose were measured using an enzyme-linked immunosorbent assay kit (Calbiotech, El Cajon, CA) and a hexokinase reagent set (Pointe Scientific, Canton, MI), respectively. Homeostatic model assessment of insulin resistance (HOMA-IR) was calculated based on insulin and glucose values. Respiratory quotient (RQ) was measured through gas exchange (TruOne 2400, Parvo Medics, Sandy, UT). Muscle biopsies were collected from the Vastus lateralis, from which mitochondria were isolated. O2 consumption and membrane potential were measured with a Clark-type electrode fitted with a tetraphenylphosphonium electrode. H2O2 and ATP production were measured using fluorescence (Amplex Ultra Red) and luminescence (luciferase) assays, respectively. Each test was repeated with a carbohydrate- (pyruvate), fat- (palmitoyl-L-carnitine), and ketone-based (β- ii hydroxybutyrate+acetoacetate) substrate. Results: Participants were matched by age, gender, and body fat (KD vs MD: 27.4±1.8 vs 24.6±2.4 yrs, 25.6±1.3% vs 22.0±2.3%). At baseline, HOMA- IR was greater in KD (2.1±0.3 vs 1.5±0.2, p=0.056) and decreased during the intervention (2.11±0.3 to 1.11±0.1, p=0.008). Weight loss was greater for KD (-6.9±0.9 vs 0.7±0.4 kg, p<0.001), as was decrease in body fat percentage (-5.4±0.7 vs -0.7±0.5 %, p<0.001). Mean daily blood β-hydroxybutyrate concentration for KD was 1.2±0.2 mM and RQ decreased only in KD (0.82 to 0.75, p=0.001), all indicating the ketogenic diet induced a profound shift in energy metabolism towards reliance on fat oxidation. An effect of time was observed for increases in mitochondrial protein (p=0.019) and respiratory control ratio (RCR, p=0.003). Time by diet interactions indicate a lesser increase in H2O2 (p=0.098) and a relative increase in ATP production (p=0.003) and efficiency (based on ATP/O2 and ATP/H2O2, p<0.005) for KD. With the fat-based substrate, RCR and ATP production increased only for KD (4.7±0.3 to 5.6±0.2, p=0.009; 20.9±4.2 to 28.4±4.6 nmol/mg/min, p=0.028). ATP production with the ketone-based substrate was 4 to 8 times lower than with other substrates, indicating that ketones are minimally oxidized in human skeletal muscle. Conclusions: While the effects of time for mitochondrial protein and RCR indicate exercise-induced enhancement of mitochondria function, the time by diet interactions for ATP, ATP/O2, and ATP/H2O2 indicate augmentation of this enhancement by the ketogenic diet, particularly in relation to fat oxidation. The improvement in HOMA-IR for KD suggests that these improvements may have partly been related to rescue of metabolic impairment. Further research is strongly encouraged for determination of mitochondria function as a target through which ketogenic diets improve metabolic health. iii Dedication Dad, you always wanted me to be a doctor, and even though you meant the other kind of doctor, I know without a doubt there is nobody who would be more proud. I will be forever grateful for everything you have done for me and your memory will forever inspire me to live my life in a way that would make you proud and to help others avoid what stole your brilliant mind. I miss you dearly. 49! iv Acknowledgments A variety of people have made the research in this dissertation possible by providing critical contributions, directly supporting my work, or by influencing my path towards pursuing a PhD. I would like to acknowledge my sincere appreciation to each of these individuals. Thank you, Mr. Mandracchia, for inspiring me to care about education. Your interest in my ability was the turning point that converted me from an apathetical high-school student to an avid, life-long learner. Thank you, Mom, for always believing in me, for pushing me to be the best I can be, and for giving me the gift of persistence. Thank you, Kayla, for understanding and gracefully accepting the sacrifices involved in this process. As much as I have tried to teach and demonstrate to you the meaning of good character, you continue to teach me instead. Thank you, Kim, for standing by me for the past two decades. Actions speak louder than words and the sacrifices you have made on my behalf speak volumes. Even when you think my ideas are extreme or obsessive, which they often are, you still support me. Thank you, Dr. Sarah Everman, for helping me through the decision to pursue a PhD, and thank you, Dr. Paul Arciero, for welcoming me into your lab to gain research experience. I consider you both friends as much as mentors. Each of you were instrumental in helping me get to this point and I will always be grateful. v Thank you, Dr. Jon Parquette, for allowing me to use your freeze dryer, and thank you, Cassidy Creemer, for your assistance. Thank you, Jacquie Stewart and Dr. Eric England, for providing me with the animal tissue needed to develop the mitochondria assays that are the foundation of this research. Thank you to my labmates for your support and assistance, especially Rich LaFountain for co-leading this study with me and Emily Barnhart for supervising the exercise training. Thank you to our study participants who graciously subjected themselves to the muscle biopsies that made this research possible. Finally, thank you to my committee members, each of whom supported me throughout this project and helped to make it the best it could be. Dr. Villamena, thank you for sharing your expertise on oxidative stress. The knowledge I gained from your outstanding course greatly enhanced this project and your support exemplifies the benefit of the interdisciplinary nature of the OSUN program. Dr. Arnold, thank you for enabling this research to be a reality! The possibility of not finding a physician to perform muscle biopsies was close to becoming a very disappointing reality until you saved the day and managed to fit us into your busy schedule. My involvement with the biopsy procedure was an unexpected experience that turned out to be one of my best memories from this project. Thank you also for your support with other areas of the project and for the opportunities you have given me to expand my research exposure. Although I was unable to follow through with our plans for the motor neuron study, I enjoyed collaborating with you and very much appreciate the opportunities to analyze spinal cord mitochondria and gain exposure to animal research. vi Dr. Kraemer, thank you for inspiring me to better understand the implications of mitochondria localization in the myocyte and for expanding my knowledge of endocrinology. I came to Ohio State excited about the prospect of working with you and maintaining kinesiology as part of my focus on nutrition. Having the opportunity to interact with you and your team has been both a pleasure and a privilege. I am grateful for all of your support and honored to have you as a member of my committee. Dr. Volek, you have been the driving force behind this life-changing process and I will forever be grateful for your wise guidance and generous support. You invited me into your lab despite my limited research experience, and you fully supported my interest in mitochondria research despite it being a complex and completely new area of focus within our team. The sacrifices I made and imposed on my family to pursue a PhD came with tremendous pressure, but the work that you enabled me to do confirms that I made the right choice. Your appreciation for genuine academic pursuit is highly admirable. I feel privileged to have benefited from it and am very proud of having contributed to your mission of advancing scientific understanding of nutritional ketosis and its potential to benefit public health (and service). vii Vita 1993 ……………….. Carmel High School 1997 ……………….. BS Mechanical Engineering, Rensselaer Polytechnic Institute 2012 ……………….. MS Human Nutrition, University of Bridgeport 2014 ……………….. MS Human Movement/Kinesiology, A. T. Still University 2015 to present ……. PhD Ohio State University Nutrition, The Ohio State University Publications LaFoundtain, R. A., Miller, V. J., Barnhart, E. C., Hyde, P. N., Crabtree, C. D., McSwiney, F. T., . Volek, J. S. Extended ketogenic diet and physical training intervention in military personnel.
Recommended publications
  • The Limited Role of Glucagon for Ketogenesis During Fasting Or in Response to SGLT2 Inhibition
    882 Diabetes Volume 69, May 2020 The Limited Role of Glucagon for Ketogenesis During Fasting or in Response to SGLT2 Inhibition Megan E. Capozzi,1 Reilly W. Coch,1,2 Jepchumba Koech,1 Inna I. Astapova,1,2 Jacob B. Wait,1 Sara E. Encisco,1 Jonathan D. Douros,1 Kimberly El,1 Brian Finan,3 Kyle W. Sloop,4 Mark A. Herman,1,2,5 David A. D’Alessio,1,2 and Jonathan E. Campbell1,2,5 Diabetes 2020;69:882–892 | https://doi.org/10.2337/db19-1216 Glucagon is classically described as a counterregula- the oxidation of fatty acids, a shift in fuel utilization that tory hormone that plays an essential role in the pro- coordinates energy needs and glucose production (2). The tection against hypoglycemia. In addition to its role in actions of glucagon to increase lipid oxidation, including the regulation of glucose metabolism, glucagon has the production of ketone bodies that is a downstream end been described to promote ketosis in the fasted state. point of this process, have been defined by numerous – Sodium glucose cotransporter 2 inhibitors (SGLT2i) are experiments with cultured hepatocytes (3–5). Moreover, a new class of glucose-lowering drugs that act primarily the classic studies of Gerich et al. (6), using somatostatin to in the kidney, but some reports have described direct reduce circulating glucagon and mitigate diabetic ketoaci- effects of SGLT2i on a-cells to stimulate glucagon se- dosis (DKA), add to the now ingrained belief that glucagon cretion. Interestingly, SGLT2 inhibition also results in increased endogenous glucose production and ketone has both glucogenic and ketogenic activities.
    [Show full text]
  • Global Proteomics Analysis of the Response to Starvation in C. Elegans*DS
    Research Author’s Choice © 2015 by The American Society for Biochemistry and Molecular Biology, Inc. This paper is available on line at http://www.mcponline.org Global Proteomics Analysis of the Response to Starvation in C. elegans*□S Mark Larance‡¶, Ehsan Pourkarimi‡¶, Bin Wang‡, Alejandro Brenes Murillo, Robert Kent, Angus I. Lamond‡§, and Anton Gartner‡§ Periodic starvation of animals induces large shifts in me- ment, however, requires feeding and progresses through four tabolism but may also influence many other cellular sys- developmental stages (L1-L4). The effect of starvation varies tems and can lead to adaption to prolonged starvation at these different developmental stages. Hatching of L1 stage conditions. To date, there is limited understanding of larvae in the absence of food leads to a starvation response how starvation affects gene expression, particularly at without overt morphogenesis that allows for ϳ2 weeks of the protein level. Here, we have used mass-spectro- survival (2). Mid- and late-stage L4 larvae, upon starvation, metry-based quantitative proteomics to identify global develop into adults but preserve resources by reducing germ changes in the Caenorhabditis elegans proteome due to cell proliferation and thereby holding a limited number of acute starvation of young adult animals. Measuring changes in the abundance of over 5,000 proteins, we embryos (3, 4). show that acute starvation rapidly alters the levels of Conserved genetic pathways have been identified that link hundreds of proteins, many involved in central metabolic nutrient availability to metabolic remodeling, stress resistance pathways, highlighting key regulatory responses. Surpris- pathways, and enhanced life span. Many of these pathways ingly, we also detect changes in the abundance of chro- overlap and include TOR, AMPK, autophagy, and insulin/ matin-associated proteins, including specific linker his- IGF-1 signaling.
    [Show full text]
  • Dietary Supplements Based on the Ketone Body Β-Hydroxybutyrate Market Analysis and Evaluation of Ingredients of Supplements Used in the USA
    Copyright! Reproduction and dissemination – also partial – applicable to all media only with written permission of Umschau Zeitschriftenverlag GmbH, Wiesbaden. Science & Research | Original Contribution Peer-reviewed | Manuscript received: March 23, 2018 | Revision accepted: July 23, 2018 Dietary supplements based on the ketone body β-hydroxybutyrate Market analysis and evaluation of ingredients of supplements used in the USA Tobias Fischer, Thorsten Marquardt In more recent years, there has Abstract been a continuous growth in low- The use of β-hydroxybutyrate (βHB) as a supplement to the everyday diet is a carb diets. The health merits of new development in the lifestyle supplement market. In the USA, the market is various versions of the diet with growing and the composition of the products varies greatly. The supplements different fat, protein, and carbo- are mainly postulated to be useful for providing energy, for weight loss, for in- hydrate contents are the subject of creasing athletic performance, improving mental performance, and increasing much discussion. Some versions the level of ketone bodies in the blood. Using βHB supplements in the form of are diets that closely correspond a salt has the unfavorable effect of increasing intake of sodium, potassium, cal- to a ketogenic diet and contain less cium, and magnesium. Depending on the salt composition used, it is possible than 50 g of carbohydrate per day for these supplements to cause the reference values to be exceeded by up to five (very low-carb, high-fat – VLCHF) times. Based on the currently available research, side effects cannot be ruled out. [4, 5]. In the U.S.
    [Show full text]
  • Transcriptomic Analysis Reveals Niche Gene Expression Effects of Beta
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427259; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Transcriptomic analysis reveals niche gene expression effects of beta- hydroxybutyrate in primary myotubes Philip M. M. Ruppert1, Guido J. E. J. Hooiveld1, Roland W. J. Hangelbroek1,2, Anja Zeigerer3,4, Sander Kersten1,$ 1Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; 2Euretos B.V., Utrecht, The Netherlands 3Institute for Diabetes and Cancer, Helmholtz Center Munich, 85764 Neuherberg, Germany, Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany; 4German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany $ To whom correspondence should be addressed: Sander Kersten, PhD Division of Human Nutrition and Health Wageningen University Stippeneng 4 6708 WE Wageningen The Netherlands Phone: +31 317 485787 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427259; this version posted January 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abbreviations: βOHB β-hydroxybutyrate AcAc acetoacetate Kbhb lysine β-hydroxybutyrylation HDAC histone deacetylase bioRxiv preprint doi: https://doi.org/10.1101/2021.01.19.427259; this version posted January 20, 2021.
    [Show full text]
  • A Glucose-Starvation Response Regulates the Diffusion of Macromolecules Ryan P
    A glucose-starvation response regulates the diffusion of macromolecules Ryan P. Joyner, Jeffrey H. Tang, Jonne Helenius, Elisa Dultz, Christiane Brune, Liam J. Holt, Sébastien Huet, Daniel J. Müller, Karsten Weis To cite this version: Ryan P. Joyner, Jeffrey H. Tang, Jonne Helenius, Elisa Dultz, Christiane Brune, et al.. Aglucose- starvation response regulates the diffusion of macromolecules. eLife, eLife Sciences Publication, 2016, 5, pp.e09376. 10.7554/eLife.09376. hal-01295659 HAL Id: hal-01295659 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01295659 Submitted on 4 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE A glucose-starvation response regulates the diffusion of macromolecules Ryan P Joyner1, Jeffrey H Tang2, Jonne Helenius3, Elisa Dultz1†, Christiane Brune1, Liam J Holt4, Sebastien Huet5, Daniel J Mu¨ ller3, Karsten Weis1,2* 1Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States; 2Institute of Biochemistry, Department of Biology, ETH Zurich, Zu¨ rich, Switzerland; 3Department of Biosystems Science and Engineering, ETH Zurich, Zu¨ rich, Switzerland; 4Institute for Systems Genetics, New York University School of Medicine, New York, United States; 5CNRS, UMR 6290, Institut Ge´ne´tique et De´veloppement, University of Rennes, Rennes, France Abstract The organization and biophysical properties of the cytosol implicitly govern molecular interactions within cells.
    [Show full text]
  • 1 Effects of a Ketone-Caffeine Supplement on Cycling And
    Effects of A Ketone-Caffeine Supplement On Cycling and Cognitive Performance in Chronic Keto-Adapted Participants THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Madison Lee Bowling Graduate Program in Kinesiology The Ohio State University 2018 Thesis Committee Dr. Jeff Volek Dr. William Kraemer Dr. Carl Maresh 1 Copyrighted by Madison Lee Bowling 2018 2 Abstract As research begins to broaden our understanding of the effects of low carbohydrate, high fat ketogenic diets to different populations, it is crucial to utilize evidence associated with the metabolic and physiological adaptation of chronic implementation. Specific populations are finding that nutritional ketosis may prove advantageous to athletic or cognitive performance. Nutritional ketosis may be identified by an elevated plasma ketone concentration within the blood range 0.5 to 5 mmol/L that results from a chronic implementation of a ketogenic diet. Recently, science shows that ketones contribute to a vast range of therapeutic and performance benefits associated with nutritional ketosis, as a result, exogenous ketone supplements have become commercially available which have proven to induce acute nutritional ketosis without restriction of carbohydrate intake. We previously showed that a supplement containing ketone salts and caffeine significantly increased performance in a non-keto adapted population. To date, there are no reports of whether ketone supplements have an ergogenic effect in an already keto-adapted population. The primary purpose of this study was to determine the performance and metabolic effects of a supplement containing ketone salts and caffeine in a group of people habituated to a ketogenic diet.
    [Show full text]
  • Nutrient Limitation Inactivates Mrc1-To-Cds1 Checkpoint Signalling in Schizosaccharomyces Pombe
    cells Article Nutrient Limitation Inactivates Mrc1-to-Cds1 Checkpoint Signalling in Schizosaccharomyces pombe Jessica Fletcher 1,2 ID , Liam Griffiths 1 and Thomas Caspari 1,3,* ID 1 School of Medical Sciences, Bangor University, Bangor LL57 2UW, UK; j.f.fl[email protected] (J.F.); lbgriffi[email protected] (L.G.) 2 Medical School, Swansea University, Swansea SA2 8PP, UK 3 Postgraduate Doctoral Studies, Paracelsus Medical University, 5020 Salzburg, Austria * Correspondence: [email protected]; Tel.: +43-662-2420-80245 Received: 11 February 2018; Accepted: 21 February 2018; Published: 23 February 2018 Abstract: The S. pombe checkpoint kinase, Cds1, protects the integrity of stalled DNA replication forks after its phosphorylation at threonine-11 by Rad3 (ATR). Modified Cds1 associates through its N-terminal forkhead-associated domain (FHA)-domain with Mrc1 (Claspin) at stalled forks. We report here that nutrient starvation results in post-translational changes to Cds1 and the loss of Mrc1. A drop in glucose after a down-shift from 3% to 0.1–0.3%, or when cells enter the stationary phase, triggers a sharp decline in Mrc1 and the accumulation of insoluble Cds1. Before this transition, Cds1 is transiently activated and phosphorylated by Rad3 when glucose levels fall. Because this coincides with the phosphorylation of histone 2AX at S129 by Rad3, an event that occurs towards the end of every unperturbed S phase, we suggest that a glucose limitation promotes the exit from the S phase. Since nitrogen starvation also depletes Mrc1 while Cds1 is post-translationally modified, we suggest that nutrient limitation is the general signal that promotes exit from S phase before it inactivates the Mrc1–Cds1 signalling component.
    [Show full text]
  • Limitation of Phosphate Assimilation Maintains Cytoplasmic
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284430; this version posted September 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Limitation of phosphate assimilation maintains cytoplasmic 2 magnesium homeostasis 3 4 Roberto E. Bruna1,2, Christopher G. Kendra1,2, Eduardo A. Groisman3,4, Mauricio 5 H. Pontes1,2* 6 7 1 Department of Pathology and Laboratory Medicine, and 2 Department of Microbiology 8 and Immunology, Penn State College of Medicine, 500 University Drive, P.O. Box 9 17033, Hershey, PA, 17033, USA 10 3 Department of Microbial Pathogenesis, Yale School of Medicine, 295 Congress 11 Avenue, New Haven, CT 06536, USA 12 4 Yale Microbial Sciences Institute, P.O. Box 27389, West Haven, CT, 06516, USA 13 14 *Address correspondence to Mauricio H. Pontes, 15 [email protected] 16 17 Classification 18 Biology, Microbiology 19 20 Keywords 21 Phosphate, ATP, Magnesium, MgtC, Salmonella 22 23 24 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.05.284430; this version posted September 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 25 Author Contributions 26 R.E.B., C.G.K., E.A.G. and M.H.P.
    [Show full text]
  • Exogenous Ketones, Ketone Esters and Ketone Salts Karen E
    ketoXid: 13684.001 September, 2020 KETOGENIC DIET RESEARCH Exogenous Ketones, Ketone Esters and Ketone Salts Karen E. E. Pendergrass 1 | Zad Rafi 2 ID ID Pendergrass, K., Rafi, Z. (2020) Exogenous Ketones, Ketone Esters and Ketone Salts. Ketogenic Diet Research. The Paleo Foundation. 1Department of Standards, Paleo Foundation, Encinitas, CA 2Department of Standards, Paleo Foundation, New York, NY Correspondence Karen E. E. Pendergrass Department of Standards, Paleo Foundation, Encinitas, CA Contact 1Email: [email protected] 1Twitter: @5WordsorlessKP 2Email: [email protected] 2Twitterl: @dailyzad Exogenous Ketones, Ketone Esters and Ketone Salts ketoXid: 13684.001 September, 2020 KETOgenic DIET RESEARCH Exogenous Ketones, Ketone Esters and Ketone Salts Karen E. E. Pendergrass 1 ID | Zad Rafi 2 ID 1Department of Standards, Paleo Foundation, Encinitas, CA Abstract 2Department of Standards, Paleo Foundation, New York, NY Ketones, which provide an alternative source of fuel when glucose stores are Correspondence low can be classified into those produced by the body (endogenous) and Karen E. E. Pendergrass those produced synthetically (exogenous). Exogenous ketones are typically Department of Standards, Paleo Foundation, Encinitas, CA used to rapidly increase ketone levels even without the restriction of carbohydrates. In addition to discussing the distinction between exogenous Contact and endogenous ketones, we review some of the evidence for claims that are 1Email: [email protected] often made about exogenous ketones. 1Twitter: @5WordsorlessKP 2Email: [email protected] 2 Twitter: @dailyzad KEYWORDS Ketones, Exogenous Ketones, Ketone Salts, Ketone Esters 1 | BACKGROUND etone bodies are water-soluble molecules adipose tissue (stored fat) via lipolysis. that provide an alternative source of energy K to various tissues within the body when the These free fatty acids are then oxidized via beta- amount of glucose is low and are responsible for a oxidation, and converted into acetyl coenzyme A person entering and staying in a state of ketosis.
    [Show full text]
  • Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature
    REVIEW published: 23 May 2019 doi: 10.3389/fpsyt.2019.00363 Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature Zsolt Kovács 1, Dominic P. D’Agostino 2,3, David Diamond 2,4, Mark S. Kindy 5,6,7, Christopher Rogers 2 and Csilla Ari 4* 1 Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary, 2 Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States, 3 Institute for Human and Machine Cognition, Ocala, FL, United States, 4 Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States, Edited by: 5 Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States, Lourdes Martorell, 6 James A. Haley VA Medical Center, Tampa, FL, United States, 7 Shriners Hospital for Children, Tampa, FL, United States Institut Pere Mata, Spain Reviewed by: Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, Hiromasa Funato, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) Toho University, Japan are becoming more prevalent. Although the exact pathological alterations are not yet clear, Yuri Zilberter, recent studies have demonstrated that widespread changes of very complex metabolic INSERM U1106 Institut de Neurosciences
    [Show full text]
  • Role of the Evolutionarily Conserved Starvation Response in Anorexia
    Molecular Psychiatry (2011) 16, 595–603 & 2011 Macmillan Publishers Limited All rights reserved 1359-4184/11 www.nature.com/mp FEATURE REVIEW Role of the evolutionarily conserved starvation response in anorexia nervosa DS Dwyer1,2, RY Horton1 and EJ Aamodt3 1Department of Psychiatry, LSU Health Sciences Center, Shreveport, LA, USA; 2Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center, Shreveport, LA, USA and 3Department of Biochemistry and Molecular Biology, LSU Health Sciences Center, Shreveport, LA, USA This review will summarize recent findings concerning the biological regulation of starvation as it relates to anorexia nervosa (AN), a serious eating disorder that mainly affects female adolescents and young adults. AN is generally viewed as a psychosomatic disorder mediated by obsessive concerns about weight, perfectionism and an overwhelming desire to be thin. By contrast, the thesis that will be developed here is that, AN is primarily a metabolic disorder caused by defective regulation of the starvation response, which leads to ambivalence towards food, decreased food consumption and characteristic psychopathology. We will trace the starvation response from yeast to man and describe the central role of insulin (and insulin-like growth factor-1 (IGF-1))/Akt/ F-box transcription factor (FOXO) signaling in this response. Akt is a serine/threonine kinase downstream of the insulin and IGF-1 receptors, whereas FOXO refers to the subfamily of Forkhead box O transcription factors, which are regulated by Akt. We will also discuss how initial bouts of caloric restriction may alter the production of neurotransmitters that regulate appetite and food-seeking behavior and thus, set in motion a vicious cycle.
    [Show full text]
  • Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows
    Review Invited Review: Ketosis Diagnosis and Monitoring in High-Producing Dairy Cows Mariana Alves Caipira Lei 1 and João Simões 2,* 1 Department of Zootechnics, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal; [email protected] 2 Department of Veterinary Sciences, School of Agricultural and Veterinary Sciences, University of Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal * Correspondence: [email protected]; Tel.: +351-259-350-666 Abstract: This work reviews the current impact and manifestation of ketosis (hyperketonemia) in dairy cattle, emphasizing the practical use of laboratory methods, field tests, and milk data to monitoring this disease. Ketosis is a major issue in high-producing cows, easily reaching a prevalence of 20% during early postpartum when the negative energy balance is well established. Its economic losses, mainly related to decreasing milk yield, fertility, and treatment costs, have been estimated up to €250 per case of ketosis/year, which can double if associated diseases are considered. A deep relationship between subclinical or clinical ketosis and negative energy balance and related production diseases can be observed mainly in the first two months postpartum. Fourier transform infrared spectrometry methods gradually take place in laboratory routine to evaluates body ketones (e.g., beta-hydroxybutyrate) and probably will accurately substitute cowside blood and milk tests at a farm in avenir. Fat to protein ratio and urea in milk are largely evaluated each month in dairy farms indicating animals at risk of hyperketonemia. At preventive levels, other than periodical evaluation of body condition score and controlling modifiable or identifying non-modifiable risk Citation: Lei, M.A.C.; Simões, J.
    [Show full text]