Does DNA Methylation Matter in FSHD?

Total Page:16

File Type:pdf, Size:1020Kb

Does DNA Methylation Matter in FSHD? G C A T T A C G G C A T genes Review Does DNA Methylation Matter in FSHD? Valentina Salsi 1, Frédérique Magdinier 2 and Rossella Tupler 3,4,5,6,* 1 Department of Life Sciences, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy; [email protected] 2 Aix Marseille Univ, INSERM, MMG, U 1251, 13005 Marseille, France; [email protected] 3 Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy 4 Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 4, 41121 Modena, Italy 5 Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01003, USA 6 Li Weibo Institute for Rare Diseases Research at the University of Massachusetts Medical School, Worcester, MA 01003, USA * Correspondence: [email protected]; Tel.: +3905-9205-5414 Received: 23 January 2020; Accepted: 25 February 2020; Published: 28 February 2020 Abstract: Facioscapulohumeral muscular dystrophy (FSHD) has been associated with the genetic and epigenetic molecular features of the CpG-rich D4Z4 repeat tandem array at 4q35. Reduced DNA methylation of D4Z4 repeats is considered part of the FSHD mechanism and has been proposed as a reliable marker in the FSHD diagnostic procedure. We considered the assessment of D4Z4 DNA methylation status conducted on distinct cohorts using different methodologies. On the basis of the reported results we conclude that the percentage of DNA methylation detected at D4Z4 does not correlate with the disease status. Overall, data suggest that in the case of FSHD1, D4Z4 hypomethylation is a consequence of the chromatin structure present in the contracted allele, rather than a proxy of its function. Besides, CpG methylation at D4Z4 DNA is reduced in patients presenting diseases unrelated to muscle progressive wasting, like Bosma Arhinia and Microphthalmia syndrome, a developmental disorder, as well as ICF syndrome. Consistent with these observations, the analysis of epigenetic reprogramming at the D4Z4 locus in human embryonic and induced pluripotent stem cells indicate that other mechanisms, independent from the repeat number, are involved in the control of the epigenetic structure at D4Z4. Keywords: FSHD1; FSHD2; D4Z4 macrosatellite; DNA methylation; epigenetics 1. Introduction Facioscapulohumeral muscular dystrophy (FSHD, OMIM#158900) is the third most common myopathy with a reported prevalence ranging between 1 in 8333 [1] and 1 in 20,000 [2]. FSHD is characterized by insidious onset and progressive wasting of a highly selective set of muscle groups, the facial, limb girdle, and foot extensor muscles, and by a great variability of clinical expression among patients and within families [3,4]. The disease appears significantly earlier in males [5–7] and this determines male patients to be in higher number and more severely affected than females [5,6,8–10]. In some families, individuals affected by FSHD can be found only in one generation [5,7,11,12]. These differences are striking in discordant monozygotic twins [13–15]. Genetically, FSHD has been considered a Mendelian disease with autosomal dominant inheritance twins [16–18]. On this basis, the FSHD genetic locus was mapped on chromosome 4q35 by genetic linkage analysis [16,18,19] and associated with rearrangements of an array of tandemly repeated 3.3 kb Genes 2020, 11, 258; doi:10.3390/genes11030258 www.mdpi.com/journal/genes Genes 2020, 11, 258 2 of 19 Genes 2020, 11, 258 2 of 18 segmentsby genetic (D4Z4) linkage [20]. FSHDanalysis is [16,18,19] the only and human associated disease with causally rearrangements linked to of copy an array number of tandemly variation of macrosatelliterepeated DNA3.3 kb elementssegments [(D4Z4)21]. The [20]. number FSHD ofis the D4Z4 only repeats human varies disease from causally 11 to linked 100 in to the copy general population,number whereas variation 10 of repeats macrosatellite or fewer DNA are usuallyelements found [21]. The in sporadic number of and D4Z4 familial repeats FSHD varies patients. from 11 As a generalto rule, 100 in alleles the general composed population, by 11–100 whereas copies 10 of repeats D4Z4 repeats or fewer constitute are usually the found normal in size sporadic range and of D4Z4 alleles,familial whereas FSHD alleles patients. with 8As or fewera general D4Z4 rule, repeats alleles are composed considered by 11–100 diagnostic copies for of the D4Z4 disease repeats [22 ,23]. Theconstitute routine the DNA normal molecular size range testing,of D4Z4 alleles, based whereas on the alleles identification with 8 or offewer D4Z4 D4Z4 arrays repeats with are less than 10considered units at diagnostic 4q35, has for been the considereddisease [22,23]. highly sensitive and specific [23,24]. However, several The routine DNA molecular testing, based on the identification of D4Z4 arrays with less than 10 genotype–phenotype studies have shown that D4Z4 reduction (4–8 reduced units, RU) is also present units at 4q35, has been considered highly sensitive and specific [23,24]. However, several genotype– in 3%phenotype of the general studies population have shown [that25– 28D4Z4] and reduction in some (4–8 cases reduced is associated units, RU) is with also distinctpresent in myopathic 3% of phenotypesthe general not reminiscentpopulation [25–28] of FSHD and in [29 some,30]. cases Moreover, is associated 10% with of FSHD distinct patients myopathic carry phenotypes D4Z4 alleles of borderlinenot reminiscent size (9–10 of FSHD RU), [29,30]. which Moreover, are also found 10% of in FSHD healthy patients people carry or D4Z4 in subjects alleles of with borderline a different myopathysize (9–10 [31] RU), (Ricci which et al., are submitted). also found in Finally, healthy people 5–10% or of in FSHD subjects patients with a different carry D4Z4 myopathy arrays [31] of size within(Ricci the range et al., submitted). of the general Finally, population 5–10% of (11FSHD RU patients or more) carry on D4Z4 both arrays chromosomes of size within 4q [ the32, 33range]. These subjectsof the represent general apopulation second form (11 RU of disease,or more) FSHD2.on both chromosomes Therefore, the 4q [32,33]. number These of D4Z4 subjects RU represent at 4q35 does not pera sesecond characterize form of FSHDdisease, (Figure FSHD2.1). Therefore, the number of D4Z4 RU at 4q35 does not per se characterize FSHD (Figure 1). As a matter of fact, genotype–phenotype studies have shown a large spectrum of clinical As a matter of fact, genotype–phenotype studies have shown a large spectrum of clinical phenotypes in myopathic subjects [29–31], carrying a D4Z4 reduced allele as well as reduced penetrance phenotypes in myopathic subjects [29–31], carrying a D4Z4 reduced allele as well as reduced amongpenetrance relatives carryingamong relatives the same carrying D4Z4 the reduced same D4Z4 allele reduced [7,9,10,12 allele,25, 34[7,9,10,12,25,34,35].,35]. All this has All relevant this has eff ects on clinicalrelevant practice, effects complicatingon clinical practice, diagnosis, complicating prognosis, diagnosis, and geneticprognosis, counseling. and genetic counseling. FigureFigure 1. Molecular 1. Molecular complexity complexity in facioscapulohumeral in facioscapulohumeral muscular muscular dystrophy dystrophy (FSHD). (FSHD). D4Z4 contractions D4Z4 are associatedcontractions with are a associated permissive with 4qA a permissive genotype 4qA that genotype involves that the involves aberrant the aberrant expression expression of the ofDUX4 retrogenethe DUX4 and is retrogene responsible and foris responsible FSHD1, but for also FSHD1, occurs but also in 1.3–2% occurs ofin 1.3–2% the normal of the population. normal population. 4qA is also found4qA in cases is also presenting found in complex cases presenting phenotypes complex and asphenotypes well as in and 30–50% as well of healthyas in 30–50% relatives. of healthy Mutations in SMCHD1relatives.or MutationsDNMT3B ingenes SMCHD1 have or been DNMT3B associated genes with have FSHD2been associated and are with responsible FSHD2 forand ICFare and BAMSresponsible syndromes. for Parents ICF and of BAMS ICF patients syndromes. are Parents heterozygous of ICF patients for DNMT3B are heterozygouspathogenic for variants DNMT3B but do pathogenic variants but do not show any sign of muscular dystrophy. Other myopathic patients carry not show any sign of muscular dystrophy. Other myopathic patients carry SMCHD1 mutations. Grey SMCHD1 mutations. Grey dot = methyl CpG; white dot = unmethylated CpG. dot = methyl CpG; white dot = unmethylated CpG. 2. Molecular Features and the Epigenetic Model for FSHD 2. Molecular Features and the Epigenetic Model for FSHD The D4Z4 repeat is part of a family of 3.3 kb sequences frequently found in heterochromatic Theregions, D4Z4 such repeat as the is partshort ofarms a family of the ofacrocentric 3.3 kb sequences chromosomes frequently [36], and found a nearly in identical heterochromatic and regions,equally such polymorphic as the short armsD4Z4 ofarray the reside acrocentric at the sub chromosomes‐telomere of chromosome [36], and a nearly 10q [37,38]. identical and equally polymorphicD4Z4 D4Z4 is a CpG array‐rich reside (73%) at macrosatellite the sub-telomere DNA element of chromosome encompassing 10q [more37,38 than]. 16 nucleosomes D4Z4and containing is a CpG-rich multiple (73%) repeat macrosatellite sequences normally DNA element associated encompassing with heterochromatin more than [36]. 16 The nucleosomes D4Z4 and containingrepeat
Recommended publications
  • Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of Cpg Island Methylation on The
    Edinburgh Research Explorer Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome Citation for published version: Gendrel, AV, Apedaile, A, Coker, H, Termanis, A, Zvetkova, I, Godwin, J, Montana, G, Taylor, S, Giannoulatou, E, Heard, E, Stancheva, I & Brockdorff, N 2012, 'Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome', Developmental Cell, vol. 23, no. 2, pp. 265–279. https://doi.org/10.1016/j.devcel.2012.06.011 Digital Object Identifier (DOI): 10.1016/j.devcel.2012.06.011 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Developmental Cell General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Developmental Cell Article Smchd1-Dependent and -Independent Pathways Determine Developmental Dynamics of CpG Island Methylation on the Inactive X Chromosome Anne-Valerie Gendrel,1,7,8 Anwyn Apedaile,3,8 Heather Coker,1 Ausma Termanis,4 Ilona Zvetkova,3,9 Jonathan Godwin,1 Y.
    [Show full text]
  • Recognition of Cancer Mutations in Histone H3K36 by Epigenetic Writers and Readers Brianna J
    EPIGENETICS https://doi.org/10.1080/15592294.2018.1503491 REVIEW Recognition of cancer mutations in histone H3K36 by epigenetic writers and readers Brianna J. Kleina, Krzysztof Krajewski b, Susana Restrepoa, Peter W. Lewis c, Brian D. Strahlb, and Tatiana G. Kutateladzea aDepartment of Pharmacology, University of Colorado School of Medicine, Aurora, CO, USA; bDepartment of Biochemistry & Biophysics, The University of North Carolina School of Medicine, Chapel Hill, NC, USA; cWisconsin Institute for Discovery, University of Wisconsin, Madison, WI, USA ABSTRACT ARTICLE HISTORY Histone posttranslational modifications control the organization and function of chromatin. In Received 30 May 2018 particular, methylation of lysine 36 in histone H3 (H3K36me) has been shown to mediate gene Revised 1 July 2018 transcription, DNA repair, cell cycle regulation, and pre-mRNA splicing. Notably, mutations at or Accepted 12 July 2018 near this residue have been causally linked to the development of several human cancers. These KEYWORDS observations have helped to illuminate the role of histones themselves in disease and to clarify Histone; H3K36M; cancer; the mechanisms by which they acquire oncogenic properties. This perspective focuses on recent PTM; methylation advances in discovery and characterization of histone H3 mutations that impact H3K36 methyla- tion. We also highlight findings that the common cancer-related substitution of H3K36 to methionine (H3K36M) disturbs functions of not only H3K36me-writing enzymes but also H3K36me-specific readers. The latter case suggests that the oncogenic effects could also be linked to the inability of readers to engage H3K36M. Introduction from yeast to humans and has been shown to have a variety of functions that range from the control Histone proteins are main components of the of gene transcription and DNA repair, to cell cycle nucleosome, the fundamental building block of regulation and nutrient stress response [8].
    [Show full text]
  • Genotype, Phenotype and Cancer: Role of Low Penetrance Genes and Environment in Tumour Susceptibility
    Genotype, phenotype and cancer: Role of low penetrance genes and environment in tumour susceptibility † ASHWIN KOTNIS, RAJIV SARIN and RITA MULHERKAR* Genetic Engineering, ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai 410 208, India †Tata Memorial Hospital, Parel, Mumbai 400 012, India *Corresponding author (Fax, 91-22-27412892; Email, [email protected]) Role of heredity and lifestyle in sporadic cancers is well documented. Here we focus on the influence of low penetrance genes and habits, with emphasis on tobacco habit in causing head and neck cancers. Role of such gene-environment interaction can be well studied in individuals with multiple primary cancers. Thus such a bio- logical model may elucidate that cancer causation is not solely due to genetic determinism but also significantly relies on lifestyle of the individual. [Kotnis A, Sarin R and Mulherkar R 2005 Genotype, phenotype and cancer: Role of low penetrance genes and environment in tumour sus- ceptibility; J. Biosci. 30 93–102] 1. Introduction are chromosomal translocations which result in fusion proteins (e.g. bcr-abl fusion protein due to translocation Cancer has been a scourge on the human population for of abl gene to bcr locus in Chronic Myeloid Leukemia) many years. Although numerous advances have been made or apposition of one gene to the regulatory region of an- in prevention, diagnosis and treatment of the disease, it other gene (e.g. RET and NTRK1 in thyroid papillary carci- still continues to torment mankind. As is widely believed, noma), resulting in giving the cell a growth advantage. cancer is the result of many genetic and epigenetic changes These chromosomal translocations are common in lym- in a population of cells as well as in the surrounding phomas, leukemias and mesenchymal tumours (Futreal stroma and blood vessels.
    [Show full text]
  • VU Research Portal
    VU Research Portal Genetic architecture and behavioral analysis of attention and impulsivity Loos, M. 2012 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Loos, M. (2012). Genetic architecture and behavioral analysis of attention and impulsivity. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 28. Sep. 2021 Genetic architecture and behavioral analysis of attention and impulsivity Maarten Loos 1 About the thesis The work described in this thesis was performed at the Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Amsterdam, The Netherlands. This work was in part funded by the Dutch Neuro-Bsik Mouse Phenomics consortium. The Neuro-Bsik Mouse Phenomics consortium was supported by grant BSIK 03053 from SenterNovem (The Netherlands).
    [Show full text]
  • Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings
    G C A T T A C G G C A T genes Article Contribution of Multiple Inherited Variants to Autism Spectrum Disorder (ASD) in a Family with 3 Affected Siblings Jasleen Dhaliwal 1 , Ying Qiao 1,2, Kristina Calli 1,2, Sally Martell 1,2, Simone Race 3,4,5, Chieko Chijiwa 1,5, Armansa Glodjo 3,5, Steven Jones 1,6 , Evica Rajcan-Separovic 2,7, Stephen W. Scherer 4 and Suzanne Lewis 1,2,5,* 1 Department of Medical Genetics, University of British Columbia (UBC), Vancouver, BC V6H 3N1, Canada; [email protected] (J.D.); [email protected] (Y.Q.); [email protected] (K.C.); [email protected] (S.M.); [email protected] (C.C.); [email protected] (S.J.) 2 BC Children’s Hospital, Vancouver, BC V5Z 4H4, Canada; [email protected] 3 Department of Pediatrics, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada; [email protected] (S.R.); [email protected] (A.G.) 4 The Centre for Applied Genomics and McLaughlin Centre, Hospital for Sick Children and University of Toronto, Toronto, ON M5G 0A4, Canada; [email protected] 5 BC Children’s and Women’s Health Center, Vancouver, BC V6H 3N1, Canada 6 Michael Smith Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada 7 Department of Pathology and Laboratory Medicine, University of British Columbia (UBC), Vancouver, BC V6T 1Z7, Canada * Correspondence: [email protected] Abstract: Autism Spectrum Disorder (ASD) is the most common neurodevelopmental disorder in Citation: Dhaliwal, J.; Qiao, Y.; Calli, children and shows high heritability.
    [Show full text]
  • Myopia in African Americans Is Significantly Linked to Chromosome 7P15.2-14.2
    Genetics Myopia in African Americans Is Significantly Linked to Chromosome 7p15.2-14.2 Claire L. Simpson,1,2,* Anthony M. Musolf,2,* Roberto Y. Cordero,1 Jennifer B. Cordero,1 Laura Portas,2 Federico Murgia,2 Deyana D. Lewis,2 Candace D. Middlebrooks,2 Elise B. Ciner,3 Joan E. Bailey-Wilson,1,† and Dwight Stambolian4,† 1Department of Genetics, Genomics and Informatics and Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, Tennessee, United States 2Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Baltimore, Maryland, United States 3The Pennsylvania College of Optometry at Salus University, Elkins Park, Pennsylvania, United States 4Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, United States Correspondence: Joan E. PURPOSE. The purpose of this study was to perform genetic linkage analysis and associ- Bailey-Wilson, NIH/NHGRI, 333 ation analysis on exome genotyping from highly aggregated African American families Cassell Drive, Suite 1200, Baltimore, with nonpathogenic myopia. African Americans are a particularly understudied popula- MD 21131, USA; tion with respect to myopia. [email protected]. METHODS. One hundred six African American families from the Philadelphia area with a CLS and AMM contributed equally to family history of myopia were genotyped using an Illumina ExomePlus array and merged this work and should be considered co-first authors. with previous microsatellite data. Myopia was initially measured in mean spherical equiv- JEB-W and DS contributed equally alent (MSE) and converted to a binary phenotype where individuals were identified as to this work and should be affected, unaffected, or unknown.
    [Show full text]
  • A Curated Gene List for Reporting Results of Newborn Genomic Sequencing
    © American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE A curated gene list for reporting results of newborn genomic sequencing Ozge Ceyhan-Birsoy, PhD1,2,3, Kalotina Machini, PhD1,2,3, Matthew S. Lebo, PhD1,2,3, Tim W. Yu, MD3,4,5, Pankaj B. Agrawal, MD, MMSC3,4,6, Richard B. Parad, MD, MPH3,7, Ingrid A. Holm, MD, MPH3,4, Amy McGuire, PhD8, Robert C. Green, MD, MPH3,9,10, Alan H. Beggs, PhD3,4, Heidi L. Rehm, PhD1,2,3,10; for the BabySeq Project Purpose: Genomic sequencing (GS) for newborns may enable detec- of newborn GS (nGS), and used our curated list for the first 15 new- tion of conditions for which early knowledge can improve health out- borns sequenced in this project. comes. One of the major challenges hindering its broader application Results: Here, we present our curated list for 1,514 gene–disease is the time it takes to assess the clinical relevance of detected variants associations. Overall, 954 genes met our criteria for return in nGS. and the genes they impact so that disease risk is reported appropri- This reference list eliminated manual assessment for 41% of rare vari- ately. ants identified in 15 newborns. Methods: To facilitate rapid interpretation of GS results in new- Conclusion: Our list provides a resource that can assist in guiding borns, we curated a catalog of genes with putative pediatric relevance the interpretive scope of clinical GS for newborns and potentially for their validity based on the ClinGen clinical validity classification other populations. framework criteria, age of onset, penetrance, and mode of inheri- tance through systematic evaluation of published evidence.
    [Show full text]
  • Screening for Genes That Accelerate the Epigenetic Aging Clock in Humans Reveals a Role for the H3K36 Methyltransferase NSD1 Daniel E
    Martin-Herranz et al. Genome Biology (2019) 20:146 https://doi.org/10.1186/s13059-019-1753-9 RESEARCH Open Access Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1 Daniel E. Martin-Herranz1,2* , Erfan Aref-Eshghi3,4, Marc Jan Bonder1,5, Thomas M. Stubbs2, Sanaa Choufani6, Rosanna Weksberg6, Oliver Stegle1,5,7, Bekim Sadikovic3,4, Wolf Reik8,9,10*† and Janet M. Thornton1*† Abstract Background: Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery. Results: Using the Horvath epigenetic clock, we perform an unbiased screen for epigenetic age acceleration in the blood of these patients. We demonstrate that loss-of-function mutations in the H3K36 histone methyltransferase NSD1, which cause Sotos syndrome, substantially accelerate epigenetic aging. Furthermore, we show that the normal aging process and Sotos syndrome share methylation changes and the genomic context in which they occur. Finally, we found that the Horvath clock CpG sites are characterized by a higher Shannon methylation entropy when compared with the rest of the genome, which is dramatically decreased in Sotos syndrome patients. Conclusions: These results suggest that the H3K36 methylation machinery is a key component of the epigenetic maintenance system in humans, which controls the rate of epigenetic aging, and this role seems to be conserved in model organisms.
    [Show full text]
  • Genetic Risk Assessment and BRCA Mutation Testing for Breast and Ovarian Cancer Susceptibility: Evidence Synthesis
    Evidence Synthesis Number 37 Genetic Risk Assessment and BRCA Mutation Testing for Breast and Ovarian Cancer Susceptibility: Evidence Synthesis Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-02-0024 Task Order No. 2 Technical Support of the U.S. Preventive Services Task Force Prepared by: Oregon Evidence-based Practice Center Portland, Oregon Investigators Heidi D. Nelson, MD, MPH Laurie Hoyt Huffman, MS Rongwei Fu, PhD Emily L. Harris, PhD, MPH Miranda Walker, BA Christina Bougatsos, BS September 2005 This report may be used, in whole or in part, as the basis of the development of clinical practice guidelines and other quality enhancement tools, or a basis for reimbursement and coverage policies. AHRQ or U.S. Department of Health and Human Services endorsement of such derivative products may not be stated or implied. AHRQ is the lead Federal agency charged with supporting research designed to improve the quality of health care, reduce its cost, address patient safety and medical errors, and broaden access to essential services. AHRQ sponsors and conducts research that provides evidence-based information on health care outcomes; quality; and cost, use, and access. The information helps health care decisionmakers—patients and clinicians, health system leaders, and policymakers—make more informed decisions and improve the quality of health care services. Preface The Agency for Healthcare Research and Quality (AHRQ) sponsors the development of Systematic Evidence Reviews (SERs) and Evidence Syntheses through its Evidence-based Practice Program. With guidance from the U.S.
    [Show full text]
  • The Nature and Significance of Behavioural Genetic Information
    Postprint This is a pre-copyedited, author-produced PDF of an article accepted for publication in Theoretical Medicine and Bioethics following peer review. The definitive publisher-authenticated version [Newson, A.J. (2004) “The nature and significance of behavioural genetic information.” Theoretical Medicine and Bioethics, 25: 89–111.] is available online at http://link.springer.com/article/10.1023/B:META.0000033764.50604.85 The nature and significance of behavioural genetic information Ainsley Newson BSc (Hons) PhD, 2004 Abstract In light of the human genome project, establishing the genetic aetiology of complex human diseases has become a research priority within Western medicine. However, in addition to the identification of disease genes, numerous research projects are also being undertaken to identify genes contributing to the development of human behavioural characteristics, such as cognitive ability and criminal tendency. The permissibility of this research is obviously controversial: will society benefit from this research, or will it adversely affect our conceptions of ourselves and each other? When assessing the permissibility of this research, it is important to consider the nature and deterministic significance of behavioural genetic information. Whilst to date there has been much discussion and debate about the properties of genetic information per se and genetic determinism, this has not been applied to behavioural genetic research and its ethical implications. Therefore, this paper elucidates how behavioural genetic information can be distinguished from different from other types of genetic and non-genetic information and also synthesises the determinative significance of genetic factors for the development of human behavioural traits. Undertaking this analysis enables the ethical issues raised by this research to be debated in an appropriate context and indicates that separate policy considerations are warranted.
    [Show full text]
  • Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders
    Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2021 © 2021 Andrew H. Chiang All Rights Reserved Abstract Mechanisms Underlying Phenotypic Heterogeneity in Simplex Autism Spectrum Disorders Andrew H. Chiang Autism spectrum disorders (ASD) are a group of related neurodevelopmental diseases displaying significant genetic and phenotypic heterogeneity. Despite recent progress in ASD genetics, the nature of phenotypic heterogeneity across probands is not well understood. Notably, likely gene- disrupting (LGD) de novo mutations affecting the same gene often result in substantially different ASD phenotypes. We find that truncating mutations in a gene can result in a range of relatively mild decreases (15-30%) in gene expression due to nonsense-mediated decay (NMD), and show that more severe autism phenotypes are associated with greater decreases in expression. We also find that each gene with recurrent ASD mutations can be described by a parameter, phenotype dosage sensitivity (PDS), which characteriZes the relationship between changes in a gene’s dosage and changes in a given phenotype. Using simple linear models, we show that changes in gene dosage account for a substantial fraction of phenotypic variability in ASD. We further observe that LGD mutations affecting the same exon frequently lead to strikingly similar phenotypes in unrelated ASD probands. These patterns are observed for two independent proband cohorts and multiple important ASD-associated phenotypes. The observed phenotypic similarities are likely mediated by similar changes in gene dosage and similar perturbations to the relative expression of splicing isoforms.
    [Show full text]
  • Chromatin Dynamics During DNA Replication Raz Bar-Ziv*, Yoav Voichek* and Naama Barkai†
    Downloaded from genome.cshlp.org on October 5, 2021 - Published by Cold Spring Harbor Laboratory Press Chromatin Dynamics during DNA Replication Raz Bar-Ziv*, Yoav Voichek* and Naama Barkai† Affiliations: Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel. *these authors contributed equally to the manuscript †Correspondence to: [email protected] Keywords: Chromatin; Replication; Summary: Chromatin is composed of DNA and histones, which provide a unified platform for regulating DNA-related processes, mostly through their post translational modification. During DNA replication, histone arrangement is perturbed, to first allow progression of DNA polymerase and then during repackaging of the replicated DNA. To study how DNA replication influences the pattern of histone modification, we followed the cell-cycle dynamics of ten histone marks in budding yeast. We find that histones deposited on newly replicated DNA are modified at different rates; while some marks appear immediately upon replication (e.g. H4K16ac, H3K4me1), others increase with transcription-dependent delays (e.g. H3K4me3, H3K36me3). Notably, H3K9ac was deposited as a wave preceding the replication fork by ~5-6 kb. This replication-guided H3K9ac was fully dependent on the acetyltransferase Rtt109, while expression-guided H3K9ac was deposited by Gcn5. Further, topoisomerase depletion intensified H3K9ac in front of the replication fork, and in sites where RNA polymerase II was trapped, suggesting supercoiling stresses trigger H3K9 acetylation. Our results assign complementary roles for DNA replication and gene expression in defining the pattern of histone modification. Introduction: In eukaryotic cells, DNA is wrapped around histone octamers to form nucleosomes, the basic building blocks of the chromatin structure.
    [Show full text]