“The Earth Moves” an Extract from Bill Bryson's
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PDF— Granite-Greenstone Belts Separated by Porcupine-Destor
C G E S NT N A ER S e B EC w o TIO ok N Vol. 8, No. 10 October 1998 es st t or INSIDE Rel e • 1999 Section Meetings ea GSA TODAY Rocky Mountain, p. 25 ses North-Central, p. 27 A Publication of the Geological Society of America • Honorary Fellows, p. 8 Lithoprobe Leads to New Perspectives on 70˚ -140˚ 70˚ Continental Evolution -40˚ Ron M. Clowes, Lithoprobe, University -120˚ of British Columbia, 6339 Stores Road, -60˚ -100˚ -80˚ Vancouver, BC V6T 1Z4, Canada, 60˚ Wopmay 60˚ [email protected] Slave SNORCLE Fred A. Cook, Department of Geology & Thelon Rae Geophysics, University of Calgary, Calgary, Nain Province AB T2N 1N4, Canada 50˚ ECSOOT John N. Ludden, Centre de Recherches Hearne Pétrographiques et Géochimiques, Taltson Vandoeuvre-les-Nancy, Cedex, France AB Trans-Hudson Orogen SC THOT LE WS Superior Province ABSTRACT Cordillera AG Lithoprobe, Canada’s national earth KSZ o MRS 40 40 science research project, was established o Grenville Province in 1984 to develop a comprehensive Wyoming Penokean GL -60˚ understanding of the evolution of the -120˚ Yavapai Province Orogen Appalachians northern North American continent. With rocks representing 4 b.y. of Earth -100˚ -80˚ history, the Canadian landmass and off- Phanerozoic Proterozoic Archean shore margins provide an exceptional 200 Ma - present 1100 Ma 3200 - 2650 Ma opportunity to gain new perspectives on continental evolution. Lithoprobe’s 470 - 275 Ma 1300 - 1000 Ma 3400 - 2600 Ma 10 study areas span the country and 1800 - 1600 Ma 3800 - 2800 Ma geological time. A pan-Lithoprobe syn- 1900 - 1800 Ma 4000 - 2500 Ma thesis will bring the project to a formal conclusion in 2003. -
Download Report 2010-12
RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force. -
When the Earth Moves Seafloor Spreading and Plate Tectonics
This article was published in 1999 and has not been updated or revised. BEYONDBEYOND DISCOVERYDISCOVERYTM THE PATH FROM RESEARCH TO HUMAN BENEFIT WHEN THE EARTH MOVES SEAFLOOR SPREADING AND PLATE TECTONICS arly on the morning of Wednesday, April 18, the fault had moved, spanning nearly 300 miles, from 1906, people in a 700-mile stretch of the West San Juan Bautista in San Benito County to the south E Coast of the United States—from Coos Bay, of San Francisco to the Upper Mattole River in Oregon, to Los Angeles, California—were wakened by Humboldt County to the north, as well as westward the ground shaking. But in San Francisco the ground some distance out to sea. The scale of this movement did more than shake. A police officer on patrol in the was unheard of. The explanation would take some six city’s produce district heard a low rumble and saw the decades to emerge, coming only with the advent of the street undulate in front of him, “as if the waves of the theory of plate tectonics. ocean were coming toward me, billowing as they came.” One of the great achievements of modern science, Although the Richter Scale of magnitude was not plate tectonics describes the surface of Earth as being devised until 1935, scientists have since estimated that divided into huge plates whose slow movements carry the the 1906 San Francisco earthquake would have had a continents on a slow drift around the globe. Where the 7.8 Richter reading. Later that morning the disaster plates come in contact with one another, they may cause of crushed and crumbled buildings was compounded by catastrophic events, such as volcanic eruptions and earth- fires that broke out all over the shattered city. -
Th E Age of the Earth
EDITORIAL TH E AGE OF THE EARTH PRINCIPAL EDITORS JAMES I. DREVER, University of Wyoming, USA ([email protected]) The “Age of the Earth” is of 200 students, “Have you had a discussion with GEORGES CALAS, IMPMC, France one of the most common someone who thinks the Earth is much younger ([email protected]) JOHN W. VALLEY, University of Wisconsin, USA titles in the geological than 4500 million years?”, and about 50% say ([email protected]) literature, and with good “yes.” I then have 50 minutes to talk about how PATRICIA M. DOVE, Virginia Tech ([email protected]) reason. The scientific rocks are dated and to compare 4500 Ma with ADVISORY BOARD 2012 and philosophical impli- earlier estimates. I explain that geochronology is JOHN BRODHOLT, University College London, UK cations are immense. based on observable data and that the hypotheses NORBERT CLAUER, CNRS/UdS, Université de Strasbourg, France This issue of Elements is are testable, and I encourage students to at least WILL P. GATES, SmecTech Research Consulting, devoted to measuring look through the windows of clean-labs to see Australia th GEORGE E. HARLOW, American Museum geologic time on the 100 people running mass spectrometers. The serious of Natural History, USA John Valley anniversary of a book students may read this issue of Elements and get JANUSZ JANECZEK, University of Silesia, Poland HANS KEPPLER, Bayerisches Geoinstitut, with this title (Holmes an appreciation for the depth and complexity of Germany 1913). The book is a good read—a clear historical determining age, but no fi rst-year student, and DAVID R. -
Parting Shots
PARTING SHOTS A RECORD BRIMFUL OF PROMISE Arthur Holmes is mentioned in several articles tifi c work at what we now call Imperial College, in this issue, by John Valley in his editorial, in London, and Cherry Lewis gives a detailed by Condon and Schmitz in their introductory account of his troubled work with the minerals article, and by Mattinson in his review of the industry in Mozambique and the petroleum U–Pb method. Google ‘Arthur Holmes’ and industry in Burma. His main academic career you will fi nd a lot of articles about his scien- began in 1924 when he was given the job of tifi c work, and there is a very readable biog- starting a department of geology at Durham raphy by Cherry Lewis which strikes a nice University, where 40 years later I obtained both balance between his scientifi c and personal my degrees. The student geological society in life. There is no question that he was a giant Durham is still called ‘The Arthur Holmes of 20th-century Earth science. The U–Pb age of Geological Society’. In 1943 he took up the 370 Ma that he obtained for accessory minerals Chair of Geology at Edinburgh where I’m Diagrammatic section across the “FIGURE 744: separated from a nepheline syenite from the writing now. I pass his picture every time I Andesite Line and a typical island arc Christiania region of Norway (Holmes 1911) is go up the main stairs in the Grant Institute (e.g. Japan or Kamchatka) to illustrate a speculative arrangement of convection currents which might a milestone not just for geology but for other (my fi rst picture). -
What Is the Use of the History of Geology to a Practicing Geologist? the Propaedeutical Case of Stratigraphy
What Is the Use of the History of Geology to a Practicing Geologist? The Propaedeutical Case of Stratigraphy A. M. Celâl Şengör* İstanbul Teknik Üniversitesi (İTÜ) Maden Fakültesi ve Avrasya Yerbilimleri Enstitüsü, Ayazağa 34810, Istanbul, Turkey ABSTRACT A practicing geologist can benefit from the history of geology professionally in two main ways: by learning about past mistakes so as not to repeat them and by finding out about different ways to discovery. In this article, I discuss some aspects of the history of stratigraphy and point out that the concept of a stratum has shoehorned geologists into thinking time and rock equivalent, which has led to some serious misinterpretations of geological phenomena, such as the timing of orogenic events and the charting of sea level changes. I call this the “tyranny of strata.” The very name of stratigraphy comes from strata, but what it does is simply deduce temporal relations from spatial relations of rock bodies, including fossils, by making certain assumptions about processes, that is, invoking inevitably a hypo- thetical step. What we have learned from looking at the history of geology is that empirical stratal correlation, even when well controlled by index fossils, can never yield perfect temporal correlation, and any assumption that it does is doomed to failure. Geology progresses in a direction that it may soon be possible to date every package of rock in a way to know what process is being dated and where exactly. We can correlate only processes in time hypothetically, not rock bodies empirically. This is the most important lesson a stratigrapher ought to have learned from the history of his or her subject. -
I5 Wegener's Geological Evidence for Pangea < Holmes >
WEGENER AND CONTINENTAL DRIFT 493 i5 Wegener’s geological evidence for Pangea < Holmes > The term Pangea (or Pangaea) comes from the Greek ‘pan’=all, entire + ‘gaea’=land, Earth. The name is frequently stated to have been coined by Alfred Wegener (1914) in Die Entstehung der Kontinente und Ozeane (The Origin of the Continents and Oceans), but it has not been found in the 1st edition of that book.—Georoots.1 The first use of the word [Pangea] comes in a 1924 translation of Wagener’s book, by the man named Skerl.—Winchester.2 And in fact the word is used in Wegener’s book but not as a proper noun (and so it cannot be found in the book’s index) in the sentence ‘Schon die Pangäa [the pangæa] der Karbonzeit hatte so einen Vorderrand (Amerika) ...’ once in the 1920 edition, p. 120, and again so once in the 1922 edition, p. 131. Pangea is first used as a proper noun by J. W. Evans in his introduction to the 1924 book.—HR. The geological evidence that Wegener marshaled to support his reconstruction of a primordial continent (Pangea) was vast in scope. A deduction would be that fossils of closely related land animals and plants should be now separated by wide oceans if Pangea had existed. Wegener, at first, was not able to give examples and this could be construed to negate the once existence of Pangea. But later, Wegener did find some examples and Arthur Holmes favorably observed: “Negative evidence may be destroyed at any moment by fresh discoveries, whereas genuine positive evidence can never be explained away.” 3 However, landbridges could be evoked to explain the fossil data. -
The Historical Background
01 orestes part 1 10/24/01 3:40 PM Page 1 Part I The Historical Background The idea that continents move was first seriously considered in the early 20th century, but it took scientists 40 years to decide that it was true. Part I describes the historical background to this question: how scientists first pondered the question of crustal mobility, why they rejected the idea the first time around, and how they ultimately came back to it with new evidence, new ideas, and a global model of how it works. 01 orestes part 1 10/24/01 3:40 PM Page 2 01 orestes part 1 10/24/01 3:40 PM Page 3 Chapter 1 From Continental Drift to Plate Tectonics Naomi Oreskes Since the 16th century, cartographers have noticed the jigsaw-puzzle fit of the continental edges.1 Since the 19th century, geol- ogists have known that some fossil plants and animals are extraordinar- ily similar across the globe, and some sequences of rock formations in distant continents are also strikingly alike. At the turn of the 20th cen- tury, Austrian geologist Eduard Suess proposed the theory of Gond- wanaland to account for these similarities: that a giant supercontinent had once covered much or all of Earth’s surface before breaking apart to form continents and ocean basins. A few years later, German meteo- rologist Alfred Wegener suggested an alternative explanation: conti- nental drift. The paleontological patterns and jigsaw-puzzle fit could be explained if the continents had migrated across the earth’s surface, sometimes joining together, sometimes breaking apart. -
GSA TODAY North-Central, P
Vol. 9, No. 10 October 1999 INSIDE • 1999 Honorary Fellows, p. 16 • Awards Nominations, p. 18, 20 • 2000 Section Meetings GSA TODAY North-Central, p. 27 A Publication of the Geological Society of America Rocky Mountain, p. 28 Cordilleran, p. 30 Refining Rodinia: Geologic Evidence for the Australia–Western U.S. connection in the Proterozoic Karl E. Karlstrom, [email protected], Stephen S. Harlan*, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131 Michael L. Williams, Department of Geosciences, University of Massachusetts, Amherst, MA, 01003-5820, [email protected] James McLelland, Department of Geology, Colgate University, Hamilton, NY 13346, [email protected] John W. Geissman, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131, [email protected] Karl-Inge Åhäll, Earth Sciences Centre, Göteborg University, Box 460, SE-405 30 Göteborg, Sweden, [email protected] ABSTRACT BALTICA Prior to the Grenvillian continent- continent collision at about 1.0 Ga, the southern margin of Laurentia was a long-lived convergent margin that SWEAT TRANSSCANDINAVIAN extended from Greenland to southern W. GOTHIAM California. The truncation of these 1.8–1.0 Ga orogenic belts in southwest- ern and northeastern Laurentia suggests KETILIDEAN that they once extended farther. We propose that Australia contains the con- tinuation of these belts to the southwest LABRADORIAN and that Baltica was the continuation to the northeast. The combined orogenic LAURENTIA system was comparable in -
Hans Suess Papers
http://oac.cdlib.org/findaid/ark:/13030/tf7c6008jd No online items Hans Suess Papers Finding aid prepared by Special Collections & Archives Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla, California, 92093-0175 858-534-2533 [email protected] Copyright 2005 Hans Suess Papers MSS 0199 1 Descriptive Summary Title: Hans Suess Papers Identifier/Call Number: MSS 0199 Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla, California, 92093-0175 Languages: English Physical Description: 29.0 Linear feet (69 archives boxes, 1 card file box and 5 oversize folders) Date (inclusive): 1875 - 1991 (bulk 1955-1991) Abstract: Papers of Hans Suess, an Austrian-born geochemist who pioneered radiocarbon dating techniques and was a founding faculty member of the University of California, San Diego. His papers span the years 1875-1991 and contain grant proposals, conference materials, subject files, photographs, and writings by Suess and others. The collection also contains correspondence with prominent scientists and UC San Diego faculty. Many of the correspondence files and the writings by Suess are in German. Creator: Suess, Hans Eduard, 1909- Acquisition Information Acquired 1991, 1994. Preferred Citation Hans Suess Papers, MSS 0199. Special Collections & Archives, UC San Diego. Biography Hans Eduard Suess was born in Vienna, Austria, in 1909. He was the son of Franz E. Suess, former professor of geology at the University of Vienna, and Olga Frenzl Suess. His grandfather was Eduard Suess, who wrote The Face of the Earth, an early work in geochemistry. Suess studied chemistry and physics at the University of Vienna where he received a Ph.D. -
150341A0.Pdf
No. 38:>3, SEPTEMBER 19, 1942 NATURE 341 The coefficients given by the first approximation, German language, and partly because they covered with their standard errors, were a 22 = 4 · 8± 1 · 3 ; the geological globe in a well-balanced conspectus aa 1 =6·2±2·3; a 32 =2·0±0·6, none of the others supported by a background of documented facts. being as great as their standard errors. For a second He was particularly attracted to Britain, where his solution he included a 00 and also a 20 (the main ellip father was born, and visited the Highlands more ticity term) and solved for the five coefficients by than once to compare their architecture with that of least squares. The result was : a 22 = 4 ·0 ± 1 ·4 ; a 32 = the Caledonian masses he knew so thoroughly near l ·3 ±0·7; a 31 =4·2 ±2·4; a00=2·5 ±1 ·9; a 20 = -6·1 ± the Danube. He contributed papers in English on 5 ·O ; and the co3:ncient b33 then had the value of the thorny problems of the structures of the Scottish 0·46 ±0·26. The coefficient a 22 indicates that the Highlands, and they provide a welcome variety in a 'ellipticity of the equator' is genuine, but that the rather mystic literature. uncertainty is greater than that given by Heiskanen. Though somewhat crippled in'later years, Suess was Compensated inequalities that would account for surprisingly active, and in pursuit of his science he the harmonics au, a 32, a 31 and baa would be of ampli would walk long days amidst the woods of the tudes 5·2, l ·9, l ·9, 2·2 km. -
The Welsh Triangle 35 Charles J Hall
A BRAND NEW MAGAZINE ON UFOLOGY & ALTERNATIVE THINKING TOP 10 UFOLOGY MOMENTS Lazar, Arnold & Rendlesham ISSUE #1 NOV/DEC 2017 NICK POPE THE From civil servant to the WELSH MoD’s UFO investigator TO THE STARS TRIANGLE Rockstar Tom Delonge Celebrating the 40th is shaping our future Anniversary of the Pembrokeshire sightings DYATLOV PASS SNOW WHITE The mystery deaths of Does the beloved princess nine Russian hikers in 1959 have Egyptian origins? THE PIRI REIS MAP ENIGMA Could this medieval map really show an ice-free Antarctica? MICHAEL CREMO Why human origins may go back further than we thought S-4 DIGITAL PRESS Plus more great interviews and features inside! EDITOR’S LETTER WELCOME! “Something inside me has always been there… - then I was awake, and I need help.” he above quote was featured feeling your IQ drop in front of the in the trailer for the upcoming television and smartphone watching TStar Wars: The Last Jedi, mind numbing talk shows and the which finds our hero Rey searching endless plague of vacuous ‘reality’ for guidance in helping her make celebrities. And that’s what the sense of her recent ‘awakening’. title itself refers to, the dark hidden The line stuck in our minds as we corners of the subconscious that were compiling this very first issue recognises there is a vast amount of Shadows Of Your Mind magazine, of information hidden just out of and it seemed pretty apt as interest view. Our hope is that Shadows… in what were previously fringe topics will act as the catalyst that fires up is on the rise.