PROCEDURE MANUAL for the I-STAT SYSTEM

Total Page:16

File Type:pdf, Size:1020Kb

PROCEDURE MANUAL for the I-STAT SYSTEM Procedure Manual for the i-STAT® System This Procedure Manual is intended to be a template for the Procedure Manual required by CLIA and laboratory accreditation bodies. This Procedure Manual should be customized for site-specific policies and procedures. The Procedure Manual is provided on disk for this purpose. This Procedure Manual is not intended to replace the System Manual. ART: 714446-00C REV. DATE 07/12/04 ART: 714446-00C REV. DATE 07/12/04 PROCEDURE MANUAL FOR THE i-STAT SYSTEM Contents System Overview ..............................................................................................................................................................1 Analyzers Analysis Time Cartridges Glucose Test Strips Central Data Station or Data Manager Supplies and Storage Requirements............................................................................................................................1-2 Cartridges Glucose Test Strips Controls Blood Specimens............................................................................................................................................................2-5 Blood Collection Equipment Blood Volume Suitable Specimens Specimen Labeling Specimen Collection and Handling Criteria for Specimen Rejection Precautions Procedure for Analysis................................................................................................................................................6-10 Preparation for Use Procedure for Cartridge Testing Procedure for Glucose Test Strip Testing Alternative Procedure Results ........................................................................................................................................................................11-18 Calculations Displayed Results Suppressed Results Printing and Transmitting Results Reference Ranges and Reportable Ranges Critical Results Interferences Quality Control..........................................................................................................................................................19-23 Daily Procedures Monthly Procedures Periodic Procedures Calibration......................................................................................................................................................................23 Clinical Significance .................................................................................................................................................24-26 Principles of Measurement.......................................................................................................................................27-28 ART: 714446-00C REV. DATE 07/12/04 PROCEDURE MANUAL FOR THE i-STAT SYSTEM References .......................................................................................................................................................................28 Logs ................................................................................................................................................i-vii ART: 714446-00C REV. DATE 07/12/04 PROCEDURE MANUAL FOR THE i-STAT SYSTEM SYSTEM OVERVIEW The i-STAT® System incorporates comprehensive components needed to perform blood analysis at the point of care. The System consists of the following primary components: Analyzers Analyzers can be the i-STAT Portable Clinical Analyzer, the i-STAT1 Analyzer, or the Blood Analysis Module, which is used in conjunction with the Philips Medical Systems (formerly Agilent Technologies) CMS and 24/26 Patient Monitor. When a sample-filled i-STAT cartridge is inserted into an analyzer for analysis, the analyzer automatically controls all functions of the testing cycle including fluid movement within the cartridge, calibration and continuous quality monitoring. A MediSense® Precision PCx™ or PCx™ Plus Glucose Test Strip is scanned and inserted into the i-STAT1 Analyzer and a drop of whole blood is applied to the target area of the test strip. Analysis Time ACT cartridge: to detection of end point - up to 1000 seconds (16.7 min.) PT/INR cartridge: to detection of end point – up to 300 seconds (5 min.) cTnI cartridge: 600 seconds (10 min.) Other cartridges: typically 130 to 200 seconds MediSense Precision PCx or PCx Plus Glucose Test Strip: 20 seconds Cartridges A single-use disposable cartridge contains microfabricated sensors, a calibrant solution, fluidics system, and a waste chamber. Sensors for analysis of pH, PCO2, PO2, sodium, potassium, chloride, ionized calcium, glucose, lactate, creatinine, urea nitrogen (BUN) and hematocrit are available in a variety of panel configurations. Cartridges are also available for Celite-ACT, Kaolin-ACT, PT/INR, and Troponin I/cTnI (Table 1). A whole blood sample of approximately 1 to 3 drops is dispensed into the cartridge sample well, and the sample well is sealed before inserting it into the analyzer. Glucose Test Strips The i-STAT1 Analyzer is capable of using the Abbott MediSense Precision PCx or PCx Plus Blood Glucose Test Strips. Central Data Station or Data Manager A dedicated desktop computer with the i-STAT Central Data Station program provides the primary information management capabilities for the i-STAT System. IR Links for Portable Clinical Analyzers, Downloaders and Downloader/Rechargers for the i-STAT1 Analyzers and a Philips installed server for Blood Analysis Modules allow for transmission of patient records from a widely distributed network of analyzers to the Central Data Station program. Data can be stored, organized, edited, and transferred to a laboratory information system or other computer system. Cartridge usage and efficiency reports can be generated for management of the system. SUPPLIES and STORAGE REQUIREMENTS Cartridges Cartridges are sealed in individual pouches or portion packs. Store the main supply of cartridges at a temperature between 2 to 8°C (35 to 46°F). Do not allow cartridges to freeze. (Freezing will cause higher than expected ionized calcium results). Cartridges may be stored at room temperature (18 to 30°C or 64 to 86°F) for 14 days. Cartridges should not be returned to the refrigerator once they have been at room temperature, and should not be exposed to temperatures above 30°C (86°F). If the pouch has been punctured, the cartridge should not be used. Write the date on the cartridge box or individual cartridge pouches to indicate the two-week room temperature expiration date. Cartridges should remain in pouches until time of use. Do not use after the labeled expiration date. 1 ART: 714446-00C REV. DATE 07/12/04 PROCEDURE MANUAL FOR THE i-STAT SYSTEM Glucose Test Strips Test strips are sealed in individual foil packets. Store the strips at a temperature between 4 and 30°C (39 and 86°F). When stored properly, the unopened test strips remain stable until the expiration date printed on the barcode label. Do not freeze and keep out of direct sunlight. Controls i-STAT Controls for blood gases, electrolytes, and chemistries Store at 2 to 8°C (35° to 46°F). Controls may be stored at room temperature (18 to 30°C or 64 to 86°F) for five days. Do not use after expiration date on the box and ampules. i-STAT Controls for ACT and PT/INR Store at 2 to 8°C (35° to 46°F). Do not use after expiration date on the box and vials. Controls should be used immediately after reconstitution. i-STAT Controls for Cardiac Markers Store at -18°C (-1°F) in a non-defrosting freezer. After thawing, the opened or unopened 1.0 mL vial is stable for 4 hours when capped and stored at 2 to 8°C (35° to 46°F). Do not refreeze Hematronix Meter Trax™ Whole Blood Reference Controls for hematocrit Store upright at 2 to 8°C (35° to 46°F). Do not allow to freeze. Ensure control is completely mixed before using. Once opened, bottles may be used for up to 31 days provided they have been resealed and refrigerated immediately after each use. Write the date of opening on the bottle label. Do not use after expiration date on box and vials. Electronic Simulator Store at room temperature and protect contact pads from contamination by replacing the plastic cap and placing the Electronic Simulator in its protective case after use. MediSense Precision Glucose Control Solutions for test strips Store the controls at temperatures between 4 and 30°C (39 and 86°F). Do not freeze. Each bottle of control solution is stable for 90 days after opening. Write the date of opening on the bottle label. Always make sure the cap is returned to the correct bottle and tightly closed immediately after use. BLOOD SPECIMENS Blood Collection Equipment Cartridges for Blood Gas/Electrolytes/Chemistries/Hematocrit Skin puncture: lancet and capillary collection tube (plain, lithium heparin, or balanced heparin for electrolytes and blood gases) Venipuncture: lithium or sodium heparin collection tubes and disposable transfer device (e.g., 1cc syringe and a 16 to 20 gauge needle). Arterial puncture: Plain syringe or blood gas syringe with heparin and labeled for the assays performed or with the least amount of heparin to prevent clotting (10 U heparin/mL of blood) Cartridges for ACT Skin puncture: not recommended Venipuncture and arterial puncture: plain plastic syringe without anticoagulant Glucose Test Strips Skin puncture: lancet and capillary collection tube with lithium heparin, sodium heparin, or EDTA or direct application of sample to test strip Venipuncture and arterial puncture: collection tube or syringe with lithium heparin, sodium heparin, or EDTA 2 ART: 714446-00C REV. DATE 07/12/04 PROCEDURE MANUAL
Recommended publications
  • United States Patent Office Patented Apr
    2,881,193 United States Patent Office Patented Apr. 7, 1959 2 propionic acid, glutamic acid, aspartic acid and the like. 2,881,193 Particularly satisfactory results are obtained in the PURIFICATION OF N-HIGHER FATTY ACED purification of N-higher fatty acyl sarcosine compounds AMDES OF LOWER MONOAMINOCAR such as salts of N-lauroyl sarcosine, N-myristoyl sarcosine BOXYFLIC ACDS and N-palmitoyl sarcosine, e.g., sodium, potassium salts thereof. Morton Batlan Epstein, Linden, N.J., assignor to Colgate While the present invention is broadly applicable to Palmolive Company, Jersey City, N.J., a corporation mixtures of the amide and higher fatty acid material of Delaware as indicated, it is effective particularly with the reaction No Drawing. Application May 9, 1955 product produced in the following manner and results Serial No. 507,177 in an amide material substantially free from soap and the like. Thus, the amide may be formed by condensing 6 Claims. (C. 260-404) a higher fatty acyl halide with a salt of said amino car boxylic acid, which has a primary or secondary amino The present invention relates to a novel process for 5 group, in an aqueous alkaline medium. purifying N-higher. acyl amide compounds. More This condensation reaction may be performed under specifically the invention is of a method for removing various suitable conditions. The reaction may be con impurities of the fatty acid or soap type from compounds ducted by mixing suitable proportions of the reactants which are N-higher fatty amides of lower monoamino in an aqueous medium. In general, the reaction is effected carboxylic acids or salts thereof.
    [Show full text]
  • The Impact of D-Cycloserine and Sarcosine on in Vivo Frontal Neural
    Yao et al. BMC Psychiatry (2019) 19:314 https://doi.org/10.1186/s12888-019-2306-1 RESEARCH ARTICLE Open Access The impact of D-cycloserine and sarcosine on in vivo frontal neural activity in a schizophrenia-like model Lulu Yao1, Zongliang Wang1, Di Deng1, Rongzhen Yan1, Jun Ju1 and Qiang Zhou1,2* Abstract Background: N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie the pathogenesis of schizophrenia. Specifically, reduced function of NMDARs leads to altered balance between excitation and inhibition which further drives neural network malfunctions. Clinical studies suggested that NMDAR modulators (glycine, D-serine, D-cycloserine and glycine transporter inhibitors) may be beneficial in treating schizophrenia patients. Preclinical evidence also suggested that these NMDAR modulators may enhance synaptic NMDAR function and synaptic plasticity in brain slices. However, an important issue that has not been addressed is whether these NMDAR modulators modulate neural activity/spiking in vivo. Methods: By using in vivo calcium imaging and single unit recording, we tested the effect of D-cycloserine, sarcosine (glycine transporter 1 inhibitor) and glycine, on schizophrenia-like model mice. Results: In vivo neural activity is significantly higher in the schizophrenia-like model mice, compared to control mice. D-cycloserine and sarcosine showed no significant effect on neural activity in the schizophrenia-like model mice. Glycine induced a large reduction in movement in home cage and reduced in vivo brain activity in control mice which prevented further analysis of its effect in schizophrenia-like model mice. Conclusions: We conclude that there is no significant impact of the tested NMDAR modulators on neural spiking in the schizophrenia-like model mice.
    [Show full text]
  • Incorporation of Sarcosine Into the Actinomycins Synthesized by Streptomyces Antibioticus
    82 Biochem. J. (1964) 90, 82 Incorporation of Sarcosine into the Actinomycins Synthesized by Streptomyces antibioticus By 0. CIFERRI, A. ALBERTINI AND G. CASSANI Department of Genetics, University of Pavia, Italy (Received 3 April 1963) Sarcosine is an amino acid apparently not Micro-organism. Streptomyces antibioticus (no. 1692 of widely distributed in Nature. As a free amino acid, the Culture Collection of the Botanical Institute of this sarcosine has been demonstrated in the radial University) was maintained on slants ofEmerson's medium caeca of the starfish Astropecten aurantiacus (Emerson, Whiffen, Bohonas & DeBoer, 1946). A suspen- sion of spores from such slants was used to inoculate the (Kossel & Edlbacher, 1915), in the muscles of vegetative medium: soya-bean flour 20 g., glucose 10 g., Elasmobranchii (Tarr, 1958) and in the reindeer tap water 1000 ml. (adjusted to pH 7-4 with N-NaOH). The moss, Cladonia itlvatica (Linko, Alfthan, Miettinen culture was incubated at 280 for 48 hr. on an alternating & Virtanen, 1953). Sarcosine has been found shaker. The cells were recovered by centrifuging in the bound in peptides in the antibiotics of the actino- cold, washed twice with the fermentation medium (see mycin (Dalgliesh, Johnson, Todd & Vining, 1950) below) and suspended in the same solution to give a cell and etamycin (Sheehan, Zachau & Lawson, 1957) concentration twice that of the vegetative-medium suspen- groups. The reported presence of sarcosine in the sion. A portion (5 ml.) of this suspension was used to hydrolysate of groundnut protein (Haworth, inoculate 100 ml. of the synthetic galactose-glutamic acid ('fermentation') medium (Katz & Goss, 1960).
    [Show full text]
  • 230 Subpart K—Indirect Discharge Point Sources
    § 414.110 40 CFR Ch. I (7±1±00 Edition) [52 FR 42568, Nov. 5, 1987, as amended at 58 PSES and PSNS 1 FR 36893, July 9, 1993] Maximum Effluent characteristics Maximum for any for any monthly Subpart KÐIndirect Discharge one day average Point Sources Acenaphthene ................................... 47 19 Anthracene ........................................ 47 19 SOURCE: 58 FR 36893, July 9, 1993, unless Benzene ............................................ 134 57 otherwise noted. Bis(2-ethylhexyl) phthalate ................ 258 95 Carbon Tetrachloride ......................... 380 142 § 414.110 Applicability; description of Chlorobenzene .................................. 380 142 Chloroethane ..................................... 295 110 the subcategory of indirect dis- Chloroform ......................................... 325 111 charge point sources. Di-n-butyl phthalate ........................... 43 20 1,2-Dichlorobenzene .......................... 794 196 The provisions of this subpart are ap- 1,3-Dichlorobenzene .......................... 380 142 plicable to the process wastewater dis- 1,4-Dichlorobenzene .......................... 380 142 charges resulting from the manufac- 1,1-Dichloroethane ............................ 59 22 ture of the OCPSF products and prod- 1,2-Dichloroethane ............................ 574 180 1,1-Dichloroethylene .......................... 60 22 uct groups defined by § 414.11 from any 1,2-trans-Dichloroethylene ................. 66 25 indirect discharge point source. 1,2-Dichloropropane .........................
    [Show full text]
  • A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor
    nal atio Me sl d n ic a in r e T Yang, et al., Transl Med (Sunnyvale) 2014, 4:2 Translational Medicine DOI: 10.4172/2161-1025.1000127 ISSN: 2161-1025 Research Article Open Access A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor, Sarcosine, in High-Functioning Children with Autistic Disorder Pinchen Yang1, Hsien-Yuan Lane2, Cheng-Fang Yen1, Chen-Lin Chang 3,4* 1Department of Psychiatry, College of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 2Institute of Clinical Medical Science & Departments of Psychiatry, China Medical University and Hospital, Taichung, Taiwan 3Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 4Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan *Corresponding author: Chen-Lin Chang, 100, Shin Chuan 1 st Rd, Kaohsiung 807, Taiwan, Graduate Institute of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital & Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Tel:+886-9-36360220; Fax: +886-7-3134761; E-mail: [email protected] Rec date: Apr 01, 2014; Acc date: Apr 17, 2014; Pub date: Apr 22, 2014 Copyright: © 2014 Yang P et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This open-label trial examined the efficacy and safety of a glycine transporter I inhibitor, sarcosine, in the 24-week treatment of high-functioning children with autistic disorder.
    [Show full text]
  • Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets
    Ashdin Publishing Journal of Drug and Alcohol Research ASHDIN Vol. 3 (2014), Article ID 235840, 8 pages publishing doi:10.4303/jdar/235840 Review Article Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets Silvia L. Cruz,1 Mar´ıa Teresa Rivera-Garc´ıa,1 and John J. Woodward2 1Department of Pharmacobiology, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 Mexico, DF, Mexico 2Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA Address correspondence to Silvia L. Cruz, [email protected] Received 11 December 2013; Accepted 31 December 2013 Copyright © 2014 Silvia L. Cruz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract It has long been known that individuals will engage in voluntary inhalation of volatile solvents for their rewarding effects. However, research into the neurobiology of these agents has lagged behind that of more commonly misused drugs such as psychostimu- lants, alcohol, and nicotine. This imbalance has begun to shift in recent years as the serious effects of misused inhalants, especially among children and adolescents, on brain function and behavior have become appreciated and scientifically documented. In this review, we discuss the physicochemical and pharmacological properties of toluene, a rep- resentative member of a large class of organic solvents commonly used as inhalants. This is followed by a brief summary of the clinical and preclinical evidence showing that toluene and related solvents produce significant effects on brain structures and processes involved in the rewarding aspects of drugs.
    [Show full text]
  • C4cc08387c1.Pdf
    Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2014 Supporting Information for Chem. Commun. The Formation of Biodegradable Micelles from a Therapeutic Initiator for Enzyme-Mediated Drug Delivery Mthulisi Khuphea, Algy Kazlauciunasa, Martin Huscrofta and Paul D. Thornton*a School of Chemistry, the University of Leeds, LS2 9JT, U. K. Materials Triphosgene (98%), anhydrous ethyl acetate (99.8%), anhydrous tetrahydrofuran (THF) (≥99.9%), n-hexane (98%), anhydrous N,N-dimethylformamide (DMF) (99.8%), diethyl ether (99.8%) and the amino acids used were all acquired from Sigma Aldrich, U. K. α-Pinene (98%) and phosphate buffered saline (PBS) buffer (Dulbecco ‘A’ tablets) were supplied by Thermo Fisher Scientific Laboratories. Dopamine Hydrochloride (99%) was supplied by Alfa Aesar. HPLC grade water was supplied by VWR International. Instrumentation 1H NMR spectra were recorded at 500 MHz on a Brucker Avance 500 spectrometer, in DMSO-d6 at 25 °C, and analysed using the MestreNova® Research Lab software. The melting range of the NCAs were recorded using a Griffin Edulab 12/04/082 melting point apparatus. pH measurements were done using a Thermo Scientific pH/ mV/temperature meter UY-58800-04 and studies of the dopamine release from micelles were performed on an Agilent Infinity 1260 Series HPLC equipped with a C18 column and photodiode array UV detector. Scanning electron microscopy (SEM) studies were carried out using a JEOL JSM- 6610LV microscope. Dynamic light scattering studies (DLS) were performed using Zetasizer Nano ZS series instrument equipped with a 4 mW He-Ne laser operated at a wavelength of 633 nm.
    [Show full text]
  • Comparison of DNA Isolation Protocols from Soybean Abstract
    Revista Mexicana de Ciencias Agrícolas volume 9 number 8 November 12 - December 31, 2018 Article Comparison of DNA isolation protocols from soybean Luis Felipe Guzmán Rodríguez§ Moisés Alberto Cortés Cruz Juan Manuel Pichardo González Ramón Ignacio Arteaga Garibay 1National Center for Genetic Resources-INIFAP. Boulevard of Biodiversity 400, Tepatitlán de Morelos, Jalisco, Mexico. ZC. 47600. Tel. 01 (800) 0882222, ext. 84823. ([email protected]; [email protected]; [email protected]). §Corresponding author: [email protected]. Abstract The low efficiency of some nucleic acid extraction protocols and the high cost of commercial products, derives in the comparison between methods. In the present work three DNA extraction methods were compared from soybean, to obtain nucleic acids of adequate concentration and quality for PCR amplification. The protocols studied included the methods with 1% and 3% CTAB solutions, with 1% sarcosine and with phenol/chloroform. The experiments were carried out in the DNA and Genomics laboratory of the National Genetic Resources Center-INIFAP. The yield, purity, integrity and functionality of the obtained nucleic acids were evaluated. In all methods, adequate DNA yield was achieved, however, the required purity of the material was only obtained with the phenol/chloroform solution. With the methods of CTAB at 1% and 3% and sarcosine, PCR inhibiting substances were observed, while, with phenol/chloroform, the values of the A260/280 ratio were in a range of 1.96 to 2.00 and the A260/230 ratio in a range of 1.75 to 2.44, with significant differences (p< 0.0001) with the rest of the methods, in addition, the DNA was of high molecular weight and the rbcL gene was amplified by PCR in all the samples.
    [Show full text]
  • A Comparison of Different Algorithms of Sarcosine in Urine
    Prostate Cancer and Prostatic Diseases (2011) 14, 166–172 & 2011 Macmillan Publishers Limited All rights reserved 1365-7852/11 www.nature.com/pcan ORIGINAL ARTICLE Efforts to resolve the contradictions in early diagnosis of prostate cancer: a comparison of different algorithms of sarcosine in urine D-L Cao1,2, D-W Ye1,2, Y Zhu1,2, H-L Zhang1,2, Y-X Wang3 and X-D Yao1,2 1Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China; 2Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China and 3Phase I clinical laboratory, Fudan University Shanghai Cancer Center, Shanghai, China Controversial data on sarcosine as a promising biomarker for prostate cancer (PCa) detection are present. The objective was to clarify these discrepancies and reevaluate the potential value of sarcosine in PCa. Sarcosine algorithms (supernatant and sediment sarcosine/creatinine, supernatant and sediment log2 (sarcosine/alanine)) in urine samples from 71 untreated patients with PCa, 39 patients with no evidence of malignancy (NEM) and 20 healthy women and men were quantified by liquid chromatography/tandem mass spectrometry. Although any sarcosine algorithms were significantly higher in PCa patients than in NEM patients (all Po0.05), comparable sarcosine values were measured in healthy women and men. Additionally, neither biopsy Gleason score nor clinical T-stage were correlated with sarcosine algorithms (all P40.05), and receiver operating characteristic curve analysis indicated that the diagnostic power of any of sarcosine algorithms was nonsignificantly higher than that of serum and urine PSA, but nonsignificantly lower than prostate cancer antigen 3 (PCA3) and the percent-free PSA (%fPSA).
    [Show full text]
  • Glycine Conversion to Sarcosine in the Aposymbiotic Weevil Sitophilus Oryzae L
    Symbiosis, 12 (1992) 261-274 261 Balaban, Philadelphia/Rehovot Glycine Conversion to Sarcosine in the Aposymbiotic Weevil Sitophilus oryzae L. B. DE LA CHAPELLE, J. GUILLAUD and P. NARDON Laboratoire de Biologie, UAINRA 227, INSA 406, 69621 Villeurbanne Cedez France Tel. (33-) 72438356, Fax (33-) 72438511 Received October 16, 1991; Accepted May 27, 1992 Abstract 14C-glycine was incorporated into the diet of an aposymbiotic strain of Sitophilus oryzae larvae and resulted in the labelling of sarcosine, a methylated amino acid uncommon in insects, in 90% of the larvae analyzed. The total sarcosine amount significantly increased as a function of the larval mean weight. If measured in larvae which received not only 14C-glycine but also unlabelled methionine, the total amount of sarcosine was significantly higher in larvae whose diet was sup• plemented by methionine compared to those with a normal diet. The early pupae showed a net significant decrease of the sarcosine level. All the results obtained confirmed those of Gasnier-Fauchet et al. (1986) and showed that sar• cosine is .synthesized by the methylation of glycine in an aposymbiotic strain of Sitophilus oryzae. Keywords: sarcosine, symbiosis, Sitophilus oryzae, methylation, glycine 1. Introduction In the destructive grain weevils Sitophilus, symbiosis was first described by Pierantoni (1927). Symbiotic bacteria were found at all stages of development (Mansour, 1930, 1934; Musgrave, 1964; Nardon, 1971). In larvae, the bacteria are harboured in a specialized organ called bacteriome. Their number is genet• ically controlled by the host (Nardon and Grenier, 1989). Viable aposymbiotic strains of Sitophilus have been obtained in our laboratory from some symbi• otic strains by keeping imagos at 35°0 and 90% relative humidity for about 0334-5114/92 /$03.50 @1992 Balaban l 262 B.
    [Show full text]
  • Neurotransmitter Coupling Through Gap Junctions in the Retina
    The Journal of Neuroscience, December 15, 1998, 18(24):10594–10602 Neurotransmitter Coupling through Gap Junctions in the Retina David I. Vaney, J. Charles Nelson, and David V. Pow Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, Brisbane 4072, Australia Although all bipolar cells in the retina probably use the excita- glycine-uptake inhibitor, carbenoxolone blocks the subsequent tory transmitter glutamate, approximately half of the cone bi- glycine replenishment of the bipolar cells but not the amacrine polar cells also contain elevated levels of the inhibitory trans- cells. Third, intracellular injection of rod amacrine cells with the mitter glycine. Some types of cone bipolar cells make gap-junction permeant tracer Neurobiotin secondarily labels a heterologous gap junctions with rod amacrine cells, which heterogenous population of cone bipolar cells, all of which contain elevated levels of glycine, leading to the hypothesis that show glycine immunoreactivity. Taken together, these findings the bipolar cells obtain their glycine from amacrine cells. Ex- indicate that the elevated glycine in cone bipolar cells is not perimental support for this hypothesis is now provided by three derived by high-affinity uptake or de novo synthesis but is independent lines of evidence. First, the glycine transporter obtained by neurotransmitter coupling through gap junctions GLYT1 is expressed by the glycine-containing amacrine cells with glycinergic amacrine cells. Thus transmitter content may but not by the glycine-containing bipolar cells, suggesting that be an unreliable indicator of transmitter function for neurons only the amacrine cells are functionally glycinergic. Second, the that make heterologous gap junctions.
    [Show full text]
  • Amino Acid Analysis
    Agilent Biocolumns Amino Acid Analysis "How-To" Guide Amino Acid Analysis: “How-To” Guide Accurate results with AdvanceBio end-to-end solution The Agilent AdvanceBio Amino Acid Analysis (AAA) end-to-end solution optimizes workflow efficiency by combining the advantages of the Agilent InfinityLab LC Series instrumentation and column technology with proven precolumn derivatization chemistry. It is part of the AdvanceBio family that delivers consistent, exceptional performance for the complete characterization of proteins, antibodies, conjugates, new biological entities, and biopharmaceuticals. This complete, single vendor solution (including The AdvanceBio AAA solution has evolved from proven chemicals/standards, columns, and application support) Agilent ortho-phthalaldehyde/ 9-fluorenyl-methyl provides fast, sensitive, and automated amino acid chloroformate (OPA/FMOC) reagents for amino acid analysis. It is based on the latest InfinityLab LC Series derivatization. Together with AdvanceBio AAA columns instrument and column technology. The automated and standards, these reagents provide an ideal, online derivatization in the Agilent 1290/1260 Infinity II quantitative and qualitative amino acid analysis that vialsampler eliminates tedious manual procedures and combines speed and sensitivity. When used according to delivers reproducible reaction results. AdvanceBio AAA the protocol described in this document, the AdvanceBio columns provide the speed and resolution of sub-2 μm AAA solution enables the user to separate the amino acids columns,
    [Show full text]