EA of Hawaii-Emperor Seismic Survey

Total Page:16

File Type:pdf, Size:1020Kb

EA of Hawaii-Emperor Seismic Survey Final Environmental Assessment/Analysis of Marine Geophysical Surveys by the R/V Marcus G. Langseth in the North Pacific Ocean, 2018/2019 Prepared for Lamont-Doherty Earth Observatory 61 Route 9W, P.O. Box 1000 Palisades, NY 10964-8000 and National Science Foundation Division of Ocean Sciences 4201 Wilson Blvd., Suite 725 Arlington, VA 22230 by LGL Ltd., environmental research associates 22 Fisher St., P.O. Box 280 King City, ON L7B 1A6 22 August 2018 LGL Report FA0143-03 Table of Contents TABLE OF CONTENTS Page LIST OF FIGURES .......................................................................................................................................... iv LIST OF TABLES ............................................................................................................................................. v ABSTRACT .................................................................................................................................................... vi LIST OF ACRONYMS ................................................................................................................................... viii I PURPOSE AND NEED ................................................................................................................................... 1 1.1 Mission of NSF ................................................................................................................................ 1 1.2 Purpose of and Need for the Proposed Action ................................................................................. 1 1.3 Background of NSF-funded Marine Seismic Research ................................................................... 2 1.4 Regulatory Setting ........................................................................................................................... 2 II ALTERNATIVES INCLUDING PROPOSED ACTION ...................................................................................... 2 2.1 Proposed Action ............................................................................................................................... 2 2.1.1 Project Objectives and Context ........................................................................................... 2 2.1.2 Proposed Activities ............................................................................................................. 5 2.1.3 Monitoring and Mitigation Measures ................................................................................. 8 2.2 Alternative 1: No Action Alternative ............................................................................................. 11 2.3 Alternatives Considered but Eliminated from Further Analysis .................................................... 11 2.3.1 Alternative E1: Alternative Location ................................................................................ 12 2.3.2 Alternative E2: Use of Alternative Technologies ............................................................. 12 III AFFECTED ENVIRONMENT ..................................................................................................................... 13 3.1 Oceanography ................................................................................................................................ 14 3.2 Protected Areas .............................................................................................................................. 14 3.3 Marine Mammals ........................................................................................................................... 16 3.3.1 Mysticetes ......................................................................................................................... 16 3.3.2 Odontocetes ...................................................................................................................... 26 3.3.3 Pinnipeds ........................................................................................................................... 40 3.4 Sea Turtles ..................................................................................................................................... 43 3.4.1 Leatherback Turtle (Dermochelys coriacea) .................................................................... 43 3.4.2 Loggerhead Turtle (Caretta caretta) ................................................................................ 44 3.4.3 Hawksbill Turtle (Eretmochelys imbricata) ..................................................................... 45 3.4.4 Olive Ridley Turtle (Lepidochelys olivacea) .................................................................... 46 3.4.5 Green Turtle (Chelonia mydas) ........................................................................................ 47 3.5 Seabirds .......................................................................................................................................... 48 3.5.1 Newell’s Shearwater ......................................................................................................... 48 3.5.2 Hawaiian Petrel ................................................................................................................. 49 3.5.3 Short-tailed Albatross ....................................................................................................... 49 3.5.4 Band-rumped Storm-Petrel ............................................................................................... 50 3.6 Fish, Essential Fish Habitat, and Habitat Areas of Particular Concern ......................................... 50 3.6.1 ESA-Listed Fish Species .................................................................................................. 50 3.6.2 Essential Fish Habitat ....................................................................................................... 51 3.6.3 Habitat Areas of Particular Concern ................................................................................. 51 3.7 Fisheries ......................................................................................................................................... 54 Final Environmental Assessment/Analysis for L-DEO North Pacific Ocean, 2018/2019 Page ii Table of Contents 3.7.1 Commercial Fisheries ....................................................................................................... 54 3.7.2 Recreational and Subsistence Fisheries ............................................................................ 55 3.7.3 Aquaculture ....................................................................................................................... 55 3.8 Recreational SCUBA Diving and Shipwrecks............................................................................... 55 IV ENVIRONMENTAL CONSEQUENCES ....................................................................................................... 55 4.1 Proposed Action ............................................................................................................................. 55 4.1.1 Direct Effects on Marine Mammals and Sea Turtles and Their Significance ................... 55 4.1.2 Direct Effects on Marine Invertebrates, Fish, Fisheries, EFH, and Their Significance ...................................................................................................................... 78 4.1.3 Direct Effects on Seabirds and Their Significance ........................................................... 84 4.1.4 Indirect Effects on Marine Mammals, Sea Turtles, Seabirds and Fish and Their Significance ...................................................................................................................... 85 4.1.5 Direct Effects on Recreational SCUBA Divers and Dive Sites and Their Significance ...................................................................................................................... 85 4.1.6 Cumulative Effects ........................................................................................................... 85 4.1.7 Unavoidable Impacts ........................................................................................................ 90 4.1.8 Coordination with Other Agencies and Processes ............................................................ 90 4.2 No Action Alternative .................................................................................................................... 91 V LIST OF PREPARERS ................................................................................................................................ 92 VI LITERATURE CITED ............................................................................................................................... 93 LIST OF APPENDICES ................................................................................................................................. 141 APPENDIX A: DETERMINATION OF MITIGATION ZONES .......................................................................... A-1 APPENDIX B: MARINE MAMMAL DENSITIES ........................................................................................... B-1 APPENDIX C: MARINE MAMMAL TAKE CALCULATIONS ......................................................................... C-1 APPENDIX D: ENSONIFIED AREAS FOR MARINE MAMMAL TAKE CALCULATIONS ................................. D-1 APPENDIX E: NMFS TAKE AUTHORIZATION METHODOLOGY ................................................................ E-1 APPENDIX F: EFH LETTER OF CONCURRENCE.........................................................................................
Recommended publications
  • Photographing the Islands of Hawaii
    Molokai Sea Cliffs - Molokai, Hawaii Photographing the Islands of Hawaii by E.J. Peiker Introduction to the Hawaiian Islands The Hawaiian Islands are an archipelago of eight primary islands and many atolls that extend for 1600 miles in the central Pacific Ocean. The larger and inhabited islands are what we commonly refer to as Hawaii, the 50 th State of the United States of America. The main islands, from east to west, are comprised of the Island of Hawaii (also known as the Big Island), Maui, Kahoolawe, Molokai, Lanai, Oahu, Kauai, and Niihau. Beyond Niihau to the west lie the atolls beginning with Kaula and extending to Kure Atoll in the west. Kure Atoll is the last place on Earth to change days and the last place on Earth to ring in the new year. The islands of Oahu, Maui, Kauai and Hawaii (Big Island) are the most visited and developed with infrastructure equivalent to much of the civilized world. Molokai and Lanai have very limited accommodation options and infrastructure and have far fewer people. All six of these islands offer an abundance of photographic possibilities. Kahoolawe and Niihau are essentially off-limits. Kahoolawe was a Navy bombing range until recent years and has lots of unexploded ordinance. It is possible to go there as part of a restoration mission but one cannot go there as a photo destination. Niihau is reserved for the very few people of 100% Hawaiian origin and cannot be visited for photography if at all. Neither have any infrastructure. Kahoolawe is photographable from a distance from the southern shores of Maui and Niihau can be seen from the southwestern part of Kauai.
    [Show full text]
  • Cenozoic Changes in Pacific Absolute Plate Motion A
    CENOZOIC CHANGES IN PACIFIC ABSOLUTE PLATE MOTION A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI`I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY AND GEOPHYSICS DECEMBER 2003 By Nile Akel Kevis Sterling Thesis Committee: Paul Wessel, Chairperson Loren Kroenke Fred Duennebier We certify that we have read this thesis and that, in our opinion, it is satisfactory in scope and quality as a thesis for the degree of Master of Science in Geology and Geophysics. THESIS COMMITTEE Chairperson ii Abstract Using the polygonal finite rotation method (PFRM) in conjunction with the hotspot- ting technique, a model of Pacific absolute plate motion (APM) from 65 Ma to the present has been created. This model is based primarily on the Hawaiian-Emperor and Louisville hotspot trails but also incorporates the Cobb, Bowie, Kodiak, Foundation, Caroline, Mar- quesas and Pitcairn hotspot trails. Using this model, distinct changes in Pacific APM have been identified at 48, 27, 23, 18, 12 and 6 Ma. These changes are reflected as kinks in the linear trends of Pacific hotspot trails. The sense of motion and timing of a number of circum-Pacific tectonic events appear to be correlated with these changes in Pacific APM. With the model and discussion presented here it is suggested that Pacific hotpots are fixed with respect to one another and with respect to the mantle. If they are moving as some paleomagnetic results suggest, they must be moving coherently in response to large-scale mantle flow. iii List of Tables 4.1 Initial hotspot locations .
    [Show full text]
  • Nihoa Manawai Holoikauaua Pearl & Hermes Atoll Kapou Papa'āpoho Lisianski Island Kamole Kauō Laysan Island Kamokuokamohoali'i Ko'anako'a Maro Reef
    175°E 180° 175°W 170°W 165°W 160°W 155°W 150°W 35°N 35°N North America Japan Map Area Photo by Dan Clark/USFWS Hawaiian Islands Photo by Na‘alehu Anthony P a c i f i c Seabird Refuge A Living Hawaiian Culture O c e a n The monument is home to over 14 million seabirds 30°N Hiryū USS Yorktown Equator representing 23 species. This includes the world's Traditional Hawaiian accounts describe largest colonies of Laysan and black-footed Papahānaumokuākea as a sacred area from which Rapa Sōryū albatross. Pictured above is the world's oldest life first emerged and to which spirits return after Nui Australia known bird in the wild – a Laysan albatross named 30°N death. Akagi Wisdom! Banded in 1956 when she was at least five Kaga years old, Wisdom may have hatched more than 36 New Zealand chicks in her lifetime. Hōlanikū Manawai Unnamed Holoikauaua Mokupāpapa Seamount Kure Atoll Pearl & Hermes Atoll 582,578 square miles, only six square miles of land Helsley Seamount Ladd Seamount Kamole Kauō ‘Ōnūnui, ‘Ōnūiki Photo by Mark Sullivan/NOAA Laysan Island Photo by NOAA/OER Endemic Sanctuary Pūhāhonu New Discoveries The monument is home to many species found Kuaihelani Gardner Pinnacles The majority of the seafloor in the Northwestern nowhere else on Earth and is a critically important Pihemanu Salmon Hawaiian Islands lies at depths below 10,000 feet nesting ground for green sea turtles and breeding Bank (3,000 meters). Using advanced technologies like ground for Hawaiian monk seals.
    [Show full text]
  • Cross Seamount South Point
    PFRP PI Meeting 2008 David Itano1, Kim Holland2 and Kevin Weng3 1 Pelagic Fisheries Research Program, University of Hawaii at Manoa 2 Hawaii Institute of Marine Biology, University of Hawaii, 3 University of Hawaii at Manoa, School of Earth Science Technology Hawaii Tuna Tagging Project (1995- 2001) (archipelagic scale, conventional dart tags for Movementbigeyeof bigeye and yellowfin and yellowfin tuna) within the Hawaii EEZ and between major fishing grounds. (exchange rates) Interaction à direct gear interaction / concurrent interaction à sequential or growth interactions à spatially segregated interaction Exploitation rates and differential vulnerability (local fishing mortality) of tuna around seamounts and FADs Aggregation effects - retention rates of bigeye and yellowfin tuna around seamounts, FADs and local HTTP: objectives and outcomes 17,986 bigeye and yellowfin tagged @ 53:47 ratio à 12.6% overall recapture rate Bulk transfer model developed to describe tag loss by all means … between offshore FADs/seamount, inshore areas and offshore LL fishery à Estimated transfer (movement) rates à Estimated size and species-specific M and F rates Calculated residence times and exploitation rates Provided a closer definition of fisheries and exploitation patterns 150 E 160 E 170 E 180 170 W 160 W 150 W 140 W 40 N USA JAPAN 30 N MEXICO Minami Tori HAWAII Shima Wake 20 N CNMI (US) Johnston (US) Guam Marshall Islands 10 N Federated States of Micronesia Palmyra Palau (US) Howland & Indonesia Nauru Kiribati Baker Jarvis 0 Papua New Guinea (US) Line Phoenix Islands Islands (Kiribati) (Kiribati) Tuvalu Solomon Islands 10 S WF SamoaAmerican Fiji Samoa Cook Islands Australia Vanuatu French Polynesia New Niue 20 S Caledonia Tonga Pitcairn (U.K.) New Zealand 180 170W 160W 150W 140W Yellowfin in red Bigeye in blue 30N 20N Johnston 10N Palmyra Line Islands 160 W 155 W Necker NOAA B-1 Nihoa Main Hawaiian Islands Kauai Niihau Oahu Kaula Kaena Pt.
    [Show full text]
  • Effects of Pelagic Longline Fishing on Seamount Ecosystems Based on Interviews with Pacific Island Fishers
    Effects of Pelagic Longline Fishing on Seamount Ecosystems Based on Interviews with Pacific Island Fishers This publication was prepared by IUCN as a part of the Oceanic Fisheries Management Project, funded by the Global Environment Facility, through the United Nations Development Program. The Project aims to achieve global environmental benefits by enhanced conservation and management of transboundary oceanic fishery resources in the Pacific Islands region and the protection of the biodiversity of the Western Tropical Pacific Warm Pool Large Marine Ecosystem. It is executed by the Pacific Islands Forum Fisheries Agency in conjunction with the Secretariat of the Pacific Community and IUCN. Website: http://www.ffa.int/gef/. The designation of geographical entities in this document, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or contributory organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN or contributory organizations, nor does citing of trade names or commercial processes constitute endorsement. Published by: IUCN Oceania Regional Office, Suva, FIJI Copyright: © 2010 International Union for the Conservation of Nature and Natural Resources, Oceania Regional Office. Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holders provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holders. Cover photos: Interviewing fishermen in Tonga, courtesy of Telmo Morato.
    [Show full text]
  • Effectiveness of Social Stimuli in Attracting Laysan Albatross to New Potential Nesting Sites
    EFFECTIVENESS OF SOCIAL STIMULI IN ATTRACTING LAYSAN ALBATROSS TO NEW POTENTIAL NESTING SITES RICHARD H. PODOLSKY • Universityof Michigan,School of Natural Resources,Ann Arbor,Michigan 48109 USA Al•sTRACT.--Seabirdcolonies usually grow as first-time breeders join existing groups. I testedthe hypothesisthat the presenceof conspecifics,specifically the sight and sound of establishedbreeders, was the stimulus responsiblefor first-time breeders to join existing colonies.The attractivepower of conspecificswas testedby presentingto conspecificsmodels of LaysanAlbatross (Diomedea immutabilis) in severalbehavior postures, with accompanying recordings of vocalizations. I found that Laysan Albatross landed more frequently in areas where both albatrossmodels and vocalizationswere present than in areaswith only visual stimuli or no vocal stimuli. Landing albatrossand those on the ground were found nearer to the artificial social stimuli than would be expectedfrom a random distribution. Three- dimensionalmodels were more attractivethan two-dimensionalmodels, and paired models were more attractive than single models for both three-dimensionaland two-dimensional models.Three-dimensional models in a sky-pointingposture were the mostattractive overall, whereas models in head-forward posture were the most attractive two-dimensional models. Albatrossexhibited courtshipbehavior closerto the modelsthan would be expectedfrom a random distribution. The implicationsof attraction to endangeredbird managementand restorationare discussed.Received 3 April 1989,accepted
    [Show full text]
  • MILLERBIRD Acrocephalus Familiaris Native Resident, Endemic, Endangered A.F
    MILLERBIRD Acrocephalus familiaris native resident, endemic, endangered A.f. familiaris (Laysan) Laysan subspecies extinct A.f. kingi (Nihoa) The Millerbird is an endemic resident in the Northwestern Hawaiian Islands (AOU 1998), having likely colonized the archipelago from Asia or other Pacific Island groups (Bryan 1940; Berger 1972, 1981; E 31:47). Acrocephalus warblers have widely colonized the Pacific Basin (Pratt et al. 1987, Wiles 2005, Cibois et al. 2011), and Millerbird has been found to be genetically distant from other Pacific congeners (AOU 1983, Fleischer et al. 2007), being the first to diverge from other taxa within a Polynesian clade (Cibois et al. 2011). Cassin (1858) followed by Dole (1869, 1879) reported an Acrocephalus warbler (as "Tatare otaiensis") in the marshes of Kaua'i and Hawai'i, which caused Rothschild (1900) and Bryan (1901a) to consider it a possibility on these islands, but Cassin was apparently referring to Acrocephalus caffer which is not found in Hawaii (see Tahiti Reed Warbler). No subfossil evidence exists for the occurrence of Acrocephalus in the Southeastern Hawaiian Islands (Olson and Ziegler 1995), which is curious given the genus' widespread distribution within the Pacific Basin (Bryan 1940). Two subspecies of Millerbird have been found, on Laysan and Nihoa, which are distinct and could be treated as different species (Wetmore 1924, Munro 1944, Olson and Ziegler 1995, Olson 1996b, Fleischer et al. 2007) but most regard them as subspecies (see Synonymies). See Banko (1979) for locations of 104 specimens of Millerbird, and Morin et al. (1997) for a summary of the natural history and biology of the species.
    [Show full text]
  • Albatross Or Mōlī (Phoebastria Immutabilis) Black-Footed Albatross Or Ka’Upu (Phoebastria Nigripes) Short-Tailed Albatross (Phoebastria Albatrus)
    Hawaiian Bird Conservation Action Plan Focal Species: Laysan Albatross or Mōlī (Phoebastria immutabilis) Black-footed Albatross or Ka’upu (Phoebastria nigripes) Short-tailed Albatross (Phoebastria albatrus) Synopsis: These three North Pacific albatrosses are demographically similar, share vast oceanic ranges, and face similar threats. Laysan and Black-footed Albatrosses nest primarily in the Northwestern Hawaiian Islands, while the Short-tailed Albatross nests mainly on islands near Japan but forages extensively in U.S. waters. The Short-tailed Albatross was once thought to be extinct but its population has been growing steadily since it was rediscovered in 1951 and now numbers over 3,000 birds. The Laysan is the most numerous albatross species in the world with a population over 1.5 million, but its trend has been hard to determine because of fluctuations in number of breeding pairs. The Black-footed Albatross is one-tenth as numerous as the Laysan and its trend also has been difficult to determine. Fisheries bycatch caused unsustainable mortality of adults in all three species but has been greatly reduced in the past 10-20 years. Climate change and sea level rise are perhaps the greatest long-term threat to Laysan and Black-footed Albatrosses because their largest colonies are on low-lying atolls. Protecting and creating colonies on higher islands and managing non-native predators and human conflicts may become keys to their survival. Laysan, Black-footed, and Short-tailed Albatrosses (left to right), Midway. Photos Eric VanderWerf Status
    [Show full text]
  • THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution
    VOLCANISM IN HAWAII Chapter 1 - .-............,. THE HAWAIIAN-EMPEROR VOLCANIC CHAIN Part I Geologic Evolution By David A. Clague and G. Brent Dalrymple ABSTRACT chain, the near-fixity of the hot spot, the chemistry and timing of The Hawaiian-Emperor volcanic chain stretches nearly the eruptions from individual volcanoes, and the detailed geom­ 6,000 km across the North Pacific Ocean and consists of at least etry of volcanism. None of the geophysical hypotheses pro­ t 07 individual volcanoes with a total volume of about 1 million posed to date are fully satisfactory. However, the existence of km3• The chain is age progressive with still-active volcanoes at the Hawaiian ewell suggests that hot spots are indeed hot. In the southeast end and 80-75-Ma volcanoes at the northwest addition, both geophysical and geochemical hypotheses suggest end. The bend between the Hawaiian and .Emperor Chains that primitive undegassed mantle material ascends beneath reflects a major change in Pacific plate motion at 43.1 ± 1.4 Ma Hawaii. Petrologic models suggest that this primitive material and probably was caused by collision of the Indian subcontinent reacts with the ocean lithosphere to produce the compositional into Eurasia and the resulting reorganization of oceanic spread­ range of Hawaiian lava. ing centers and initiation of subduction zones in the western Pacific. The volcanoes of the chain were erupted onto the floor of the Pacific Ocean without regard for the age or preexisting INTRODUCTION structure of the ocean crust. Hawaiian volcanoes erupt lava of distinct chemical com­ The Hawaiian Islands; the seamounts, hanks, and islands of positions during four major stages in their evolution and the Hawaiian Ridge; and the chain of Emperor Seamounts form an growth.
    [Show full text]
  • Pelagic Fisheries Research Program (PFRP) Over the Period 1993–2003
    Research and writing: Noreen M. Parks Editing: John Sibert Layout:May Izumi Cover Photo: Richard Herrmann ~ UH-NOAA~ Executive Summary This report highlights the accomplishments of the Pelagic Fisheries Research Program (PFRP) over the period 1993–2003. Operating from the University of Hawaii-Manoa, the program supports the scientific research needs of the Western Pacific Regional Fishery Management Council, in conjunction with the National Oceanic and Atmospheric Administration. More than 70 projects have been funded to address questions in fisheries biology, oceanography, statistics and modeling, genetics, protected species, fish- eries economics and socio-cultural issues. The PFRP has played a leading role in promoting research in support of the ecosystem approach to fisheries. Through its links with the University of Hawaii, the PFRP is able to assist in training new fisheries scientists. In its scientific collaborations and partic- ipation in multinational forums for fisheries management, the PFRP also has played an important role in fostering international cooperation for the sustainable management of pelagic fisheries throughout the central and Western Pacific. Responding to emerg- ing scientific needs for responsible fisheries stewardship, the program continues to sponsor cutting-edge, multidisciplinary research. i ii THE PACIFIC OCEAN—HEART OF THE BLUE PLANET, HOME TO THE WORLD’S RICHEST FISHERIES If you hitched a ride on a space shuttle circling the globe, during much of the voyage the Pacific Ocean would dominate your view of Earth. Our “blue planet” owes much of its liquid character to the Pacific, which covers nearly one third of the globe—an area larger than all the landmasses combined.
    [Show full text]
  • RECORDS of the HAWAII BIOLOGICAL SURVEY for 1994 Part 2: Notes1
    1 RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 1994 Part 2: Notes1 This is the second of two parts to the Records of the Hawaii Biological Survey for 1994 and contains the notes on Hawaiian species of plants and animals including new state and island records, range extensions, and other information. Larger, more comprehensive treatments and papers describing new taxa are treated in the first part of this volume [Bishop Museum Occasional Papers 41]. New Hawaiian Plant Records. I BARBARA M. HAWLEY & B. LEILANI PYLE (Herbarium Pacificum, Department of Natural Sciences, Bishop Museum, P.O. Box 19000A, Honolulu, Hawaii 96817, USA) Amaranthaceae Achyranthes mutica A. Gray Significance. Considered extinct and previously known from only 2 collections: sup- posedly from Hawaii Island 1779, D. Nelson s.n.; and from Kauai between 1851 and 1855, J. Remy 208 (Wagner et al., 1990, Manual of the Flowering Plants of Hawai‘i, p. 181). Material examined. HAWAII: South Kohala, Keawewai Gulch, 975 m, gulch with pasture and relict Koaie, 10 Nov 1991, T.K. Pratt s.n.; W of Kilohana fork, 1000 m, on sides of dry gulch ca. 20 plants seen above and below falls, 350 °N aspect, 16 Dec 1992, K.R. Wood & S. Perlman 2177 (BISH). Caryophyllaceae Silene lanceolata A. Gray Significance. New island record for Oahu. Distribution in Wagner et al. (1990: 523, loc. cit.) limited to Kauai, Molokai, Hawaii, and Lanai. Several plants were later noted by Steve Perlman and Ken Wood from Makua, Oahu in 1993. Material examined. OAHU: Waianae Range, Ohikilolo Ridge at ca. 700 m elevation, off ridge crest, growing on a vertical rock face, facing northward and generally shaded most of the day but in an open, exposed face, only 1 plant noted, 25 Sep 1992, J.
    [Show full text]
  • Notes on the Birds Peculiar to Laysan Island, Hawaiian Group
    3S4 V'lS,•ER,Birds of La),san Island. FL AukOct. NOTES ON THE BIRDS PECULIAR TO LAYSAN ISLAND, HAWAIIAN GROUP. 1 BY WALTER K. FISHER. •ølates x_,r_,r-x WE DOnot naturally associateland birds with tiny coral atolls in tropicalseas. It is thereforea strangefact that sucha diminu- tive island as Laysan, and one so remote from continentalshores, should harbor no less than five peculiar species: the Laysan Finch (]klespiza cantans) and Honey-eater (I-Iima•ione freethi), both • drepanidid' birds, the Miller Bird (.4crocefihalusfamiliaris), the LaysanRail (?orzanulapalmeri),and lastly the LaysanTeal (•tnas laysanensis).I usethe term ' land birds' loosely,in con- tradistinctionto sea-fowl,multitudes of which breed here through- out the year. The presenceof these speciesis all the more remarkablebecause none appear on neighboringislands, more or less distant, someof which are very similar to Laysan in structure and flora. Reachingout towardJapan from the main Hawaiian group is a long chainof volcanicrocks, atolls,sand-bars• and sunkenreefs, all insignificantin size and widely separated. The last islet is fully two thousandmiles from Honolulu and about half-way to Yokohama. Beginningat the east,the more importantmembers of this chain are: Bird Island and Necker (tall volcanicrocks), French Frigate Shoals, Gardner Rock, Laysan, Lisiansky, Mid- way, Cure, and Motell. Laysanis eighthundred miles northwest- by-westfrom Honolulu,and is perhapsbest knownas beingthe home of countless albatrosses. We sightedthe island early one morning in May, lying low on the horizon,with a great cloud of sea-birdshovering over it. On all sides the air was lively with terns, albatrosses,and boobies, •These notes were made during a visit of the Fish Commissionsteamer ' Albatross' to Laysan, May 17 to 23, 19o2, and are abridged from a more extendedreport on the avifauna of the i•land• to appearin the Bulletin of the U.S.
    [Show full text]