3D Printing in Architecture, Engineering and Construction (Concrete 3D Printing)

Total Page:16

File Type:pdf, Size:1020Kb

3D Printing in Architecture, Engineering and Construction (Concrete 3D Printing) DR/ Ahmed Saleh /Engineering Research Journal 162 (June 2019) A1- A18 3D Printing in Architecture, Engineering and Construction (Concrete 3D printing) Dr. Ahmed Saleh Abd Elfatah Assistant Professor at Faculty of Engineering, Helwan University [email protected] ABSTRACT One of the new developments in construction and architecture is 3D Printing with a concrete-like material. This technique can create the opportunity for personalization of large-scale projects for the lower and middle class since it removes the restrictions on shape, that are present in the traditional way of building. The technology also has shown potential in a wide range of disciplines, but the building industry is still behind in the development of 3D printing. The influence of 3D printing in building industry must not be underestimated as it can reduce various determining factors such as the construction process, material costs and the time span of the whole project. By studying new printable materials and optimizing shapes including the typical properties of 3D printed concrete, the potential of this promising technique can be realized in practice. This research focuses on the background of this new technique, potential applications and future of 3D Concrete Printing. KEYWORDS: 3D Concrete Printing (3DCP), Additive manufacturing, Contour Crafting (CC), Architecture, Engineering and Construction (AEC). 1. INTRODUCTION Additive manufacturing is the new method of creating products from materials such as plastic, sand, and other powdered materials. The process of Additive manufacturing has been used since the mid-1960s and there have been various improvements in terms of materials used in the process of additive manufacturing. Additive manufacturing that is commonly known as 3D printing nowadays has been very efficient in cost reduction of manufacturing and reduction of waste in the process of manufacturing. In this research, the methods and types of 3D printing and their feasibility in using concrete as a material in the process of making 3D printed concrete products are analysed. 3D printing has been one of the fastest growing technologies in the world presently. The concept of 3D printing has evolved since the 1980s, but not many researches have focused on the concrete 3D printing technologies. The advantages of using concrete as a construction material are durability and it can withstand any natural disasters such as rain, snow and wind and provide shelter to live in. Dr. Behrokh Khoshnevis, a researcher from the University of Southern California, developed a system called Contour Crafting (CC) in mid-2000s that paved the way for the present day’s 3D Concrete Printing (3DCP). This Contour crafting has been A1 DR/ Ahmed Saleh /Engineering Research Journal 162 (June 2019) A2- A18 adopted widely by various research institutes to produce massive 3D printed structures. The use of CC in building industry can reduce the amount of physical labour used for projects and reduce construction wastes as well. The efficiency of 3D printing concrete is described later in this research. 1.1. Research Aims The main aim of this research is to evaluate the feasibility of concrete for 3D printing, to emphasise the impact of this new technology for future construction and to encourage the use of concrete in 3D printing thereby reducing costs of construction and increasing the rate of productivity in construction industry. 2. Additive Manufacturing Additive Manufacturing (AM) is a process in which three-dimensional objects are made by adding layer-by-layer of material. The materials used can be plastic, metal, concrete etc. The commonly used AM technologies include the use of a computer, 3D modelling software (Computer Aided Design or CAD), machine [1] equipment and layering material . Once a CAD sketch is produced, the file is then transferred to the AM equipment and the machine reads the data from the CAD file and starts to lay down the material in layers on top of each other forming the object in three dimensions. The materials used to create these objects can be powder, liquid or sheet metal. The term Additive Manufacturing includes several technologies that can produce similar objects rapidly such as Rapid Prototyping (RP), Direct Digital Manufacturing (DDM), Layered Manufacturing (LM) and 3D [1] printing . 2.1. 3D printing 3D printing is an additive manufacturing process of making three- dimensional solid objects from a digital file. The materials used to produce the object are different types of hard plastic, metal, concrete, carbon fibre, food ingredients etc. The use of 3D printing has evolved in the recent years with the technological advancement in engineering sector [2]. 2.2. 3D printing in Architecture and Construction 3D printing architecture models have become an interesting alternative. Typically, architectural models are made of cardboard, wood or other moldable materials. Architects need models to study the aspects of their design. It is often changed to get a perfect concept of their idea in both architectural design and interior design. 3D printing at a construction scale will have a wide variety of applications within the private, commercial, industrial and public sectors. Potential advantages of these technologies include faster construction, lower labor costs, increased complexity and/or accuracy, greater integration of function and less waste produced. Several different approaches have been demonstrated to date which include on-site and off-site fabrication of buildings and construction components, using industrial robots, gantry systems and tethered autonomous vehicles [3]. Demonstrations of construction 3D printing technologies to date have included fabrication of housing, construction components (cladding and structural panels and columns), bridges and civil infrastructure, artificial reefs, follies and sculptures. It A2 DR/ Ahmed Saleh /Engineering Research Journal 162 (June 2019) A3- A18 might also enable construction to be undertaken in harsh or dangerous environments not suitable for a human workforce such as in places with special conditions [4]. 2.2.1. 3D printed buildings A building consists of many parts, such as foundation, walls, windows and doors, ceiling, roof, plumbing and wiring and no company prints whole houses. In construction industry, 3D printing can be used to create construction components or to 'print' entire buildings, when we say, “to print a building,” we only mean printing walls of a building, because the printer doesn’t yet participate in other processes until now. Really, believe that 3D printing construction can heavily replace traditional construction. Now, traditional stone construction of blocks and bricks is the most threatened one. Materials used in printing buildings contain a mixture of cement and sand, so a printed house is not different from a concrete house [5]. The printer is just a way of laying down the material. The only difference is that the printer is a machine or robot, an automated system that eliminates the human factor. Therefore, concerns about the durability of printed houses are not justified. 2.2.2. 3D Printing in Interior Design Many architects and interior designers are extensively using 3D printing to create new and unique designs that give the overall ambience of a property with a truly modern and cosmopolitan look. With new design flexibilities with 3D printing, designers are now not constrained by any technical limitations for any object. They use 3D printed organic vessels made of salt polymers to indoor, while the exterior cladding is composed of polymer printed blocks (Fig. 1). They can unleash the best of their creativity and make unique designs that were not previously possible with conventional manufacturing techniques [6]. Fig. (1) Shows an interior space made of 3d printed mixture obtained by salt and glue constituting an efficient, translucent and inexpensive material https://www.archdaily.com/890494/interior-design-and-3d- printing-giving-unique-forms-to-functional-spaces In fact, 3D printing also saves a lot of time as manufacturing a single part can be done in a matter of hours against the days and weeks needed for traditional methods. They no longer need to solely depend on whatever is available in the market; these designers also have the freedom to let the clients choose the colour and size of the product while keeping the design the same [5]. With easier access to 3D printing, architects and interior designers are not in need for searching for completing their designs because material selection is slowly but surely becoming an obligatory part of the interior designing process with using 3D printing. 2.2.3. 3D printed bridges A3 DR/ Ahmed Saleh /Engineering Research Journal 162 (June 2019) A4- A18 The first pedestrian bridge printed in 3D in the world is in Spain. The 3D printer used to build the footbridge was manufactured by D-Shape. The 3D printed bridge reflects the complexities of nature’s forms. It was developed through parametric design and computational design, which allows to optimize the distribution of materials and allows to maximize the structural performance, being able to dispose the material only where it is needed, with total freedom of forms [7]. The bridge has a total length of 12 meters and a width of 1.75 meters representing a milestone for the construction sector at international level, as large-scale 3D printing technology has been applied in this project for the first time in the field of civil engineering in a public space (Fig. 2). a b c Fig. (2) (a) 3D printed bridge with the D-Shape technology. The first structure of this type in the world [7], (b) 3D-printed steel bridge in the heart of Amsterdam 3D-printed steel bridge in the heart of Amster- dam, (c) the first 3D-printed steel bridge. In 2015, Dutch 3D printing company MX3D [8]. 2.2.4. Extraterrestrial printed structures The printing of buildings has been proposed as a particularly useful technology for constructing off-Earth habitats, such as habitats on the Moon or Mars.
Recommended publications
  • A Review on Polymeric Materials in Additive Manufacturing ⇑ J.M
    Materials Today: Proceedings xxx (xxxx) xxx Contents lists available at ScienceDirect Materials Today: Proceedings journal homepage: www.elsevier.com/locate/matpr A review on polymeric materials in additive manufacturing ⇑ J.M. Jafferson , Debdutta Chatterjee VIT University Chennai Campus 600127, India article info abstract Article history: Polymers are the greatest innovation of the millennium. Due to their low price, ease of manufacture, Available online xxxx resistance to water and versatility, polymers have several applications in different domestic and indus- trial sectors. Digital fabrication technology which is also referred to as 3D printing or additive Keywords: Manufacturing (AM) is used for creating physical components from a geometrical representation by Polymeric materials step-by-step addition of materials. This review paper elaborates on the use of polymers for Rapid Additive manufacturing Manufacturing. One such material used is Shape Memory Polymers that have been analyzed as Smart Automotive Materials (4D Printing Materials). Polymers such as Thermoplastics, elastomers, thermosets, and poly- Drug delivery mers with integrated fillers, bio-polymers, and polymers blended with biological materials come under Fabric industry the range of other polymeric materials used in AM. The quality evaluations that are performed are based on mechanical properties, part density and temperature stability. Polycarbonates (PC), acrylonitrile buta- diene styrene (ABS), polyether-ester ketone (PEEK), polyetherimide (ULTEM) and Nylon are usually uti- lized polymers in measures which need thermoplastics, or plastics treated by warming to a semi-fluid state and near the softening point. Properties of materials were reviewed for example, Strength param- eters of a specific list of Polymeric Materials used in 3D printing was revised, where strength tests showed that material such as Polybutylene terephthalate has a high Yield Strength and Polypropylene has a high Ultimate Tensile Strength.
    [Show full text]
  • High Speed Sintering for 3D Printing Applications
    High Speed Sintering for 3D printing applications High Speed Sintering for 3D printing applications Neil Hopkinson, Adam Ellis, Adam Strevens, Manolis Papastavrou and Torben Lange, Xaar plc Introduction High Speed Sintering (HSS) is a transformational inkjet-based 3D printing technology which is being further developed at Xaar by the original inventor, Prof. Neil Hopkinson. This 3D printing (also called Additive Manufacturing) technology involves depositing a fine layer of polymeric powder, after which inkjet printheads deposit a single IR (infrared) absorbing fluid directly onto the powder surface in the required cross-sectional pattern where sintering is desired. The entire build area is then irradiated with an infrared lamp, causing the printed fluid to absorb this energy and then melt and sinter (consolidate) the underlying powder. This process is then repeated layer by layer until the build is complete. The use of digital inkjet printing makes the process considerably faster than point based systems, for example those requiring a laser to sinter/melt material. As with all 3D printing processes there is no requirement for new moulds, plates or other design template related fixtures. High Speed Sintering is a self-supporting process; this means that solid, hollow and complex shapes with internal features are possible without the need to create and subsequently remove support structures, at much higher speeds than other additive manufacturing processes. Today there are many 3D printing technologies and several other sintering technologies available. This paper demonstrates how High Speed Sintering (HSS) fits in the 3D printing space as a fast and cost-effective route to develop and manufacture customised prototypes and products.
    [Show full text]
  • Influence of the Printing Parameters on the Stability of the Deposited Beads in Fused Filament Fabrication of Poly(Lactic) Acid
    Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: http://oatao.univ-toulouse.fr/20922 Official URL : https://doi.org/10.1016/j.addma.2018.10.012 To cite this version: Bakrani Balani, Shahriar and Chabert, France and Nassiet, Valérie and Cantarel, Arthur Influence of the printing parameters on the stability of the deposited beads in Fused Filament Fabrication of poly(lactic) acid. Vol. 25, pp. 112-121 (2019) Additive Manufacturing. Any correspondence concerning this service should be sent to the repository administrator: [email protected] Influence of printing parameters on the stability of deposited beads in fused filament fabrication of poly(lactic) acid Shahriar Bakrani Balani 1, 2, a), France Chabert 1, b), Valérie Nassiet 1, c), Arthur Cantarel 2, d), 1 LGP-ENIT-INPT, University of Toulouse, 47 Avenue d’Azereix, BP1629-65016 Tarbes Cedex, France Web Page: http://www.enit.fr/ 2 Institut Clément Ader (ICA), CNRS UMR 5312, University of Toulouse, IUT of Tarbes, UPS, France Web Page: http://www.institut-clement-ader.org/ Corresponding author: b) [email protected] a) [email protected] c) [email protected] d) [email protected] Abstract: Fused filament fabrication (FFF) is one of the various types of additive manufacturing processes. Similar to other types, FFF enables free-form fabrication and optimised structures by using polymeric filaments as the raw material. This work aims to optimise the printing conditions of the FFF process based on reliable properties, such as printing parameters and physical properties of polymers.
    [Show full text]
  • 3D Printing System for Ceramic Materials: Design and Testing of an Experimental Rig
    3D printing system for ceramic materials: design and testing of an experimental rig Armand Yahnn Fabrice Chefdor Thesis to obtain the Master of Science Degree in Mechanical Engineering Supervisors : Prof. Marco Alexandre de Oliveira Leite Prof. António Manuel Relógio Ribeiro Examination Committee Chairperson : Prof. Luís Filipe Galrão dos Reis Supervisor : Prof. Marco Alexandre de Oliveira Leite Member of the Committee : Prof. Bruno Alexandre Rodrigues Simões Soares July 2018 Acknowledgements Primarily, I would like to express my gratitude to my supervisors from the Mechanical Engineering Department, Professor Marco Alexandre De Oliveira Leite and Professor António Manuel Relógio Ribeiro, as well as Professor Ana Paula Valagão Amadeu do Serro from the chemical department. They all did an outstanding job by granting me support, knowledge and valuable insight into this interesting subject. I would also like to thank my former colleagues from iMakr who introduced me to the capacities of additive manufacturing and took the time to provide me useful knowledge for this following topic. I would likewise thank my colleagues from the chemical department and the Lab2Prod for their guidance and generous help with diverse tasks regarding my work. Finally, I gratefully acknowledge all the people who allow the Erasmus exchange program to exist, and thus helped me to stay at Técnico for this semester. On the other hand, I do not wish to thank my Erasmus friends who often found a way to take my concentration away from this subject. II Abstract In the context of a constantly growing additive manufacturing market, many processes are acquiring important statuses in the medical field.
    [Show full text]
  • JRC Horizon Scanning on Dual-Use Civil and Military Research
    JRC horizon scanning on dual-use civil and military research G. Bordin, M. Hristova and E. Luque-Perez 2020 EUR 30301 EN This publication is a Science for Policy report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. For information on the methodology and quality underlying the data used in this publication for which the source is neither Eurostat nor other Commission services, users should contact the referenced source. The designations employed and the presentation of material on the maps do not imply the expression of any opinion whatsoever on the part of the European Union concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Contact information Name: Guy Bordin, Mayya Hristova and Encarnación Luque-Perez Address: Rue du Champ de Mars 21, 1049 Brussels, Belgium Email: [email protected]; [email protected]; [email protected] EU Science Hub https://ec.europa.eu/jrc JRC120638 EUR 30301 EN PDF ISBN 978-92-76-20775-7 ISSN 1831-9424 doi:10.2760/47988 Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of the European Commission is implemented by the Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p.
    [Show full text]
  • Developments in 3D Printing a Sector by Sector Overview
    3D Printing Quarterly Report—Q42018 3D PRINTING–A FAST MOVING MARKET Developments in 3D Printing A Sector by Sector Overview Overview This report explores developments in 3D printing across several sectors and categories for the quarterly period of October 10, 2018 to January 10, 2019. For more information, Table of Contents please contact: Overview ................................... 1 Miscellaneous Partnerships ..... 11 Clothing & Wearables ............... 23 Mark E. Avsec (216) 363-4151 General ..................................... 2 Patents & Copyright ................ 12 Food ....................................... 24 [email protected] Materials .................................. 4 Auto & Transportation ............... 12 Education ................................ 26 Printing Techniques & Aviation & Aerospace .............. 15 Environmental Efforts ............... 27 Capabilities ............................. 8 Health & Life Sciences ............ 16 Arts & Entertainment ................ 28 www.beneschlaw.com M&A and Investments ............... 9 Manufacturing & Construction... 21 3D PRINTING–A FAST MOVING MARKET 3D Printing Quarterly Report—Q4 A Sector by Sector Overview General Mass manufacturing set to be next step in 3D printing, experts say There is a sense mass production is the next big thing in 3D printing and Christoph Schell, President 3D Printing & Digital Manufacturing at HP, lent credence to that when he said 2019 will be the year additive manufacturing moves from prototyping into full production in the automotive industry. HP aims to play a prominent role in this evolution with its Multi Jet Fusion and Metal Jet 3D printing technologies, both of which are designed for large batch production. Startups like Evolve Additive and Origin are using their own technologies for 3D printing large runs of plastic parts. Most companies working toward mass metal manufacturing, including HP, have developed binder jet platforms for mass printing parts. Boston-based Digital Alloys has a novel approach to fusing metal parts called Joule Printing.
    [Show full text]
  • A Study on 3D Printing and Its Effects on the Future of Transportation
    CAIT-UTC-NC19 A Study on 3D Printing and its Effects on the Future of Transportation September 2018 Submitted by: Omar Jumaah, Doctoral Candidate Department of Mechanical and Aerospace Engineering Rutgers, The State University of New Jersey 98 Brett Road Piscataway, NJ 08854-8058 [email protected] External Project Manager Patrick Szary, PhD Associate Director, CAIT Central Administration Rutgers, The State University of New Jersey 100 Brett Road Piscataway, NJ 08854-8058 [email protected] In cooperation with Rutgers, The State University of New Jersey & State of Department of Transportation & U.S. Department of Transportation Federal Highway Administration i Disclaimer Statement The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the information presented herein. This document is disseminated under the sponsorship of the Department of Transportation, University Transportation Centers Program, in the interest of information exchange. The U.S. Government assumes no liability for the contents or use thereof. The Center for Advanced Infrastructure and Transportation (CAIT) is a National UTC Consortium led by Rutgers, The State University. Members of the consortium are the University of Delaware, Utah State University, Columbia University, New Jersey Institute of Technology, Princeton University, University of Texas at El Paso, Virginia Polytechnic Institute, and University of South Florida. The Center is funded by the U.S. Department of Transportation. ii CAIT-UTC-NC19 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. CAIT-UTC-NC19 4. Title and Subtitle 5. Report Date A Study on 3D Printing and its Effects on the Future of Transportation September 2018 6.
    [Show full text]
  • A Review of 3D Printing in Construction and Its Impact on the Labor Market
    sustainability Review A Review of 3D Printing in Construction and its Impact on the Labor Market Md. Aslam Hossain 1,* , Altynay Zhumabekova 1, Suvash Chandra Paul 2 and Jong Ryeol Kim 1,* 1 Department of Civil and Environmental Engineering, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; [email protected] 2 Department of Civil Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh; [email protected] * Correspondence: [email protected] (M.A.H.); [email protected] (J.R.K.); Tel.: +7-7172-709123 (M.A.H.); +7-7172-70-9136 (J.R.K.) Received: 7 September 2020; Accepted: 25 September 2020; Published: 15 October 2020 Abstract: Construction industry is very labor-intensive and one of the major sources of employment in the world. The industry is experiencing low productivity with minimum technological innovations for decades. In recent times, various automation technologies including 3D printing have received increasing interests in construction. 3D printing in construction is found to be very promising to automate the construction processes and have the potential of saving laborious work, material waste, construction time, risky operation for humans, etc. There has been a comprehensive body of research conducted to understand the recent advances, future prospects and challenges of large-scale adoption of 3D printing in construction projects. Being one the labor-intensive industries, this study also investigates the possible impact on the labor market with increasing adoption of 3D printing in construction. It is found that 3D printing can reduce significant number of labors which can solve the labor shortage problem, especially for the countries where construction is heavily dependent on immigrant workers.
    [Show full text]
  • Beginner's Guide to 3D Printing
    2015 BEGINNER’S GUIDE TO 3D PRINTING VERSION 0.1 THINK3D TEAM Welcome to think3D’s Beginner’s Guide to 3D Printing. This document is for people who are completely new to 3D printing technology or who are looking at gaining additional information on 3D printing technology. It is very imperative that 3D printing technology is going to change the world. Experts claim 3D printing is a much bigger revolution than internet. We at think3D, completely agree to those viewpoints. In this document, we shall be providing data to illustrate the true revolutionary nature of 3D printing. This document is structured into 6 chapters, (a) Introduction of 3D printing (b) History of 3D printing (c) 3D Printing Technology (d) 3D Printing Processes (e) 3D Printing Materials (f) 3D Printing Applications (g) 3D Printing Glossary. “3D printing” is an umbrella term for a host of processes and technologies that offer a full spectrum of capabilities for the production of parts and products in different materials. One thing common in all these processes is the manner in which production is carried out – layer by layer in an additive process. That is why “3D Printing” is also called additive manufacturing in contrast to traditional methods of production that are primarily subtractive in nature, also called as “subtractive manufacturing” or molding/casting processes. Applications of 3D printing are emerging almost by the day, and, as this technology continues to penetrate more widely and deeply across industrial, maker and consumer sectors, this is only set to increase. Most reputable commentators on this technology sector agree that, as of today, we are only just beginning to see the true potential of 3D printing.
    [Show full text]
  • Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development
    materials Article Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development Izabela Rojek 1 , Dariusz Mikołajewski 1 , Marek Macko 2 , Zbigniew Szczepa ´nski 2 and Ewa Dostatni 3,* 1 Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; [email protected] (I.R.); [email protected] (D.M.) 2 Department of Mechatronic Systems, Faculty of Mechatronics, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; [email protected] (M.M.); [email protected] (Z.S.) 3 Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Pozna´n,Poland * Correspondence: [email protected] Abstract: Technological and material issues in 3D printing technologies should take into account sustainable development, use of materials, energy, emitted particles, and waste. The aim of this paper is to investigate whether the sustainability of 3D printing processes can be supported by computational intelligence (CI) and artificial intelligence (AI) based solutions. We present a new AI-based software to evaluate the amount of pollution generated by 3D printing systems. We input the values: printing technology, material, print weight, etc., and the expected results (risk assessment) and determine if and what precautions should be taken. The study uses a self-learning program that will improve as more data are entered. This program does not replace but complements previously used 3D printing metrics and software. Citation: Rojek, I.; Mikołajewski, D.; Keywords: optimization; 3D printing; sustainable development; neural networks Macko, M.; Szczepa´nski,Z.; Dostatni, E. Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development.
    [Show full text]
  • Strategic Latency: Red, White, and Blue Managing the National and International Security Consequences of Disruptive Technologies Zachary S
    Strategic Latency: Red, White, and Blue Managing the National and International Security Consequences of Disruptive Technologies Zachary S. Davis and Michael Nacht, editors Center for Global Security Research Lawrence Livermore National Laboratory February 2018 Disclaimer: This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes. LLNL-BOOK-746803 Strategic Latency: Red, White, and Blue: Managing the National and International Security Consequences of Disruptive Technologies Zachary S. Davis and Michael Nacht, editors Center for Global Security Research Lawrence Livermore National Laboratory February
    [Show full text]
  • Open Source Multi-Head 3D Printer for Polymer-Metal Composite Component Manufacturing
    technologies Article Open Source Multi-Head 3D Printer for Polymer-Metal Composite Component Manufacturing John J. Laureto 1 and Joshua M. Pearce 1,2,* 1 Department of Materials Science and Engineering, Michigan Technological University, 601 M&M Building, 1400 Townsend Drive, Houghton, MI 49931-1295, USA; [email protected] 2 Department of Electrical & Computer Engineering, Michigan Technological University, 121 EERC Building, 1400 Townsend Drive, Houghton, MI 49931-1295, USA * Correspondence: [email protected]; Tel.: +01-906-487-1466 Academic Editors: Salvatore Brischetto, Paolo Maggiore and Carlo Giovanni Ferro Received: 1 March 2017; Accepted: 18 April 2017; Published: 15 June 2017 Abstract: As low-cost desktop 3D printing is now dominated by free and open source self-replicating rapid prototype (RepRap) derivatives, there is an intense interest in extending the scope of potential applications to manufacturing. This study describes a manufacturing technology that enables a constrained set of polymer-metal composite components. This paper provides (1) free and open source hardware and (2) software for printing systems that achieves metal wire embedment into a polymer matrix 3D-printed part via a novel weaving and wrapping method using (3) OpenSCAD and parametric coding for customized g-code commands. Composite parts are evaluated from the technical viability of manufacturing and quality. The results show that utilizing a multi-polymer head system for multi-component manufacturing reduces manufacturing time and reduces the embodied energy of manufacturing. Finally, it is concluded that an open source software and hardware tool chain can provide low-cost industrial manufacturing of complex metal-polymer composite-based products. Keywords: open source; 3D printing; RepRap; composite; manufacturing 1.
    [Show full text]