2005 Ieee International Ultrasonics Symposium and Short Courses

Total Page:16

File Type:pdf, Size:1020Kb

2005 Ieee International Ultrasonics Symposium and Short Courses PROGRAM 2005 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM AND SHORT COURSES September 19–21, 2005 Conference Centre De Doelen Rotterdam, The Netherlands A CONFERENCE OF THE IEEE ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL SOCIETY (UFFC-S) 65 TABLE OF CONTENTS Invitation from the General Chair ................................. 1 Travel Information ........................................................ 2 Local Transportation ..................................................... 2 Hotel Registration ......................................................... 2 Miscellaneous Information ............................................ 2 Accreditation................................................................. 3 Registration and Fees ................................................... 3 IEEE and UFFC-S Enrollment...................................... 4 Message Desk .............................................................. 4 Proceedings .................................................................. 4 Audio/Visual Equipment/Speaker Service Center (SSC) .......................................................... 4 UFFC CD Archive........................................................ 5 Opening Social Reception ............................................. 6 Conference Dinner Party ............................................. 6 Guest Program .............................................................. 7 Sponsors ........................................................................ 9 Exhibits ........................................................................ 10 Short Courses ............................................................. 10 Message from the Technical Program Chair .............. 20 Invited Speakers ......................................................... 21 Symposium Organizing Committee ............................. 22 Technical Program Committee ................................... 22 2005 UFFC-S Administrative Committee ................... 26 Elected Administrative Committee Members ............. 26 Standing Committee Chairs and Vice-Chairs ............. 26 Future UFFC-S Symposia ........................................... 27 Plenary Session .......................................................... 28 Technical Sessions ...................................................... 30 All Author Index ......................................................... 68 De Doelen Floor plan .................................................. 84 Condensed Symposium Program ......Inside Back Cover 66 67 September 19–21, 2005 Rotterdam, The Netherlands WELCOME FROM THE GENERAL CHAIR Ton van der Steen General Chair Welcome to Rotterdam It is indeed a pleasure to welcome you to the 2005 IEEE International Ultrasonics Symposium in Rotterdam, The Netherlands from Septem- ber 18 through September 21, 2005. The conference will be held in “De Doelen”, a conference centre at Rotterdam Central Railway Station, which is a 40-minute train ride from Schiphol, Amsterdam International Airport. It is a modern, very well equipped conference centre that is perfectly suited for conferences around 1000 delegates. Rotterdam is a multicultural city that has an interesting mixture of traditional and modern architecture. It has many museums, covering art, natural history, cultural anthropology, maritime life and many other topics with art collections ranging from Dutch masters through African sculptures to contemporary art. All museums are within easy walking distance from the conference centre. Rotterdam hosts the largest port in the world and both the river and the harbor create a special atmosphere in the city. The Pilgrim fathers started their journey from the Pilgrims’ church in the harbor of Rotterdam and Hotel New York, the cruise terminal of the Holland America Line, the main historic cruise line be- tween the USA and Europe can also be found here. Other than the museums and historic sites Rotterdam has an extensive cultural and sports program. At the Doelen the grand finale of the Gergiev festival of the Rotterdam Philharmonic Orchestra will be given the Sat- urday night before the IEEE conference. The final of the World Champi- onship Baseball will be on the same evening in the Neptunus stadium, the home of the European champion and since Feyenoord, one of the top 3 soccer teams of the Netherlands plays a home match on Sunday, we will try to arrange tickets for delegates. Please check the conference website for details. It will be the third visit to Europe for the IEEE International Ultrasonics Symposium, and we trust that the Rotterdam conference in 2005 will be as successful as the Cannes conference in 1994 and the Munich confer- ence in 2002. Hope to meet you all in Rotterdam, Best Regards, Ton van der Steen General chair 1 VENUE Conference Centre, ‘De Doelen’ Willem Burgerzaal Complex Kruisplein 30 3012 CC Rotterdam The Netherlands http://www.doelen.nl/english_info.html TRAVEL INFORMATION From Schiphol Airport (main airport) in Amsterdam, there is a direct train connection to Rotterdam Central Railway Station every half hour. The traveling time is approximately one hour. See www.ns.nl for the timetable and prices. You can buy your train ticket at the yellow machines just before the platforms. Near the platforms there is also a counter where you can buy a ticket. Tip! You can also buy your train ticket in the yellow machines while waiting for your luggage. You can pay with credit card (only MasterCard). It is advisable to travel through Schiphol, however it is also possible to travel to Rotterdam Airport. The center of Rotterdam can be reached in about 15 minutes by car (A13) and by public transport (bus 33, direc- tion central station, every 15 minutes). Information about public transport Information number: 0900 9292 www.ns.nl LOCAL TRANSPORTATION For public transport (underground, tram or bus) you need a card called strippenkaart (€ 6,50, 15 strippen.) Available at the post office or railway station. You can also ask at your hotel where these are sold in the neighborhood. HOTEL REGISTRATION Blocks of rooms have been reserved at various hotels in Rotterdam. For information on hotel accommodations, bookings and a hotel reservation form see www.ieee-uffc.org. Registration cut-off date is August 17, 2005. After this date, rooms and rates will be based on an availability basis only. 2 MISCELLANEOUS INFORMATION Lunch: There is no location to have lunch at the venue. At the registration desk you can obtain a list of restaurants near the venue. Coffee, tea, water: Coffee, tea and water will be served during the breaks in the: Expohal, poster sessions (ground floor) Foyer room 2, Jurriaanse Zaal, exhibits area (first floor) Foyer room 1, Willem Burger Zaal (third floor) ACCREDITATION The Dutch Society for Medical Physics (Nederlandse Vereniging voor Klinische Fysica, NVKF) has accredited the symposium with 6 Continuing Professional Development points (CPD) per half workday. Category 1: International conference. REGISTRATION DESK FOR THE SYMPOSIUM The registration desk will be located in the Expohal on the ground floor (entrance, Willem Burgerzaal Complex, Kruisplein 30). Saturday, September 17: 6:00 p.m.-9:00 p.m. Sunday, September 18: 7:00 a.m.-7:00 p.m. Monday, September 19: 7:00 a.m.-6:00 p.m. Tuesday, September 20: 7:00 a.m.-5:30 p.m. Wednesday, September 21: 7:00 a.m.-1:00 p.m. REGISTRATION AND FEES All Symposium participants and guests must register and are required to wear name badges. The Symposium fee includes admittance to all technical sessions, and a copy of the CD-ROM of the Symposium Proceedings will be mailed to all participants (except for one-day and guest registrants). Details of evening and social events are provided in the Social Program section. A printed version of the Proceedings will no longer be available from the Symposium. However, it can be ordered directly from IEEE after the Symposium. Registration fee includes CD proceedings Before Aug. 1 After Aug. 1 IEEE Member $425 $525 Non-IEEE Member $525 $625 Student/Retiree $60 $60 Life Members $0 $0 One-Day Registration (without Proceedings) $300 $300 Additional CD Proceedings $75 $75 UFFC CD Archive (available only to UFFC members) $60 $60 3 IEEE AND UFFC-S ENROLLMENT If you wish to join the IEEE when registering for the Symposium, you may register at the member rate and receive one year of free membership in the Ultrasonics, Ferroelectrics, and Frequency Control Society (UFFC-S). If you are a current IEEE member and wish to become a first-time member of the UFFC-S, free membership is offered at the time of registration. You will receive the UFFC-S Transactions and all UFFC-S Newsletters published in 2005. IEEE/UFFC-S enrollment forms will be available at the IEEE exhibit booth in Foyer Room 2. MESSAGE DESK Messages may be left at the Symposium Registration desk. Phone number registration desk (during opening hours): +31 (0)10 217 18 21 Fax number registration desk: +31 (0)10 217 18 22 PROCEEDINGS The Symposium Proceedings (CD format) will be available around No- vember 15. A copy will be mailed to all paid registrants except guests and one-day registrants. A printed version of the Proceedings will no longer be available from the Symposium. However, it can be ordered directly from IEEE after the Symposium. Please note that only those papers presented at the Symposium will be included in the Proceedings. AUDIOVISUAL EQUIPMENT/SPEAKER SERVICE CENTER (SSC) All rooms will have a lap-top computer and a projector. Presentations should be in
Recommended publications
  • Kavli-Maart 2014 V2.Indd
    KAVLI NEWSLETTER No.09 Kavli Institute of Nanoscience Delft March 2014 IN THIS ISSUE: How we became a Kavli Institute • 10 years of Kavli Delft • Kavli Colloquium Hongkun Park Introduction new faculty: Marileen Dogterom and Greg Bokinsky FROM THE DIRECTOR Philanthropist Fred A full newsletter again this month! First, our frontpage news that our benefactor Fred Kavli passed away. Kavli passed away I very well remember when I met him for the fi rst time, in 2003: Fred was a soft spoken and kind man, with a strong determination to use his busi- ness-generated fortune to advance science for the benefi t of humanity by supporting scientists and their work. Throughout the years I inter- acted with him a number of times, where this fi rst impression was re- confi rmed time and again. Now he has passed away. We will miss him, and continue the nanoscien- ce at Delft that he has supported so generously. Also, this month, we celebrate our 10-year birthday as a Kavli Insti- tute. For this occasion, Hans Mooij recalls the history of the start of our institute - a very interesting story in- deed, read it on page 6-7. Finally, this newsletter features our Kavli Colloquium speaker Hongkun Park, introductory self-interviews by Marileen Dogterom and Greg On 21 November 2013, the Kavli Foundation announced that its Bokinsky, wonderful columns, and more. founder Fred Kavli has passed away peacefully in his home in Santa Enjoy! Barbara at the age of 86. As philanthropist, physicist, entrepreneur, • Cees Dekker business leader and innovator, Fred Kavli established The Kavli Foun- dation to advance science for the benefi t of humanity.
    [Show full text]
  • Development of High Temperature Diffusion Barriers and a Transient
    Development of high temperature diffusion barriers and a transient liquid-phase wafer bonding for thermoelectric MEMS energy harvester Dissertation to achieve the academic degree of Doctor of Engineering (Dr.-Ing.) at the Technical Faculty Christian-Albrechts-University of Kiel authored by Nando Budhiman Kiel, October 2015 iii Date of defense: 02.02.2016 First Reviewer: Prof. Dr. Bernhard Wagner Second Reviewer: Prof. Dr. Lorenz Kienle Abstract In microsystem technology, a thermoelectric generator (TEG) can be fabricated in micro-scale structures (µTEG) using a surface silicon micromachining. In order to convert heat up to 600 ◦C into electrical power, a poly-SiGe semiconductor could be a suitable thermoelectric material. However, to the best of the author’s knowledge, a development of a µTEG for these high temper- ature applications has not been published so far because, for such high temperature applications, the reliability and the stability of incorporating materials, e.g., an electrical interconnection be- tween poly-SiGe structures, can be challenging. The interconnection can be fabricated using a wafer bonding technique, where p-poly-SiGe legs on a wafer are bonded with n-poly-SiGe legs on the other wafer. This technique requires a bond solder, the components of which are deposited on a plating base. In respect to high temperature applications, the bond solder must not up to 600 ◦C heat melt and must remain conductive, and the plating base must have a high thermal stability, i.e., prevents diffusion (diffusion barrier) into the semiconductor layer and must also remain conductive. For this purpose, TiW-based and Ta-based diffusion barriers, which serve as the plating bases, and a Nickel-Tin Transient Liquid-Phase (Ni-Sn TLP) wafer bonding are developed.
    [Show full text]
  • Diffusion Study of Electrodeposited Copper-Nickel Multilayer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ethesis@nitr Diffusion study of Electrodeposited Copper-Nickel Multilayer A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology (Dual Degree) In Metallurgical and Materials Engineering Submitted By Chinmaya Prasad Dakua Roll No: 710MM1170 Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela 2015 Diffusion study of Electrodeposited Copper-Nickel Multilayer A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology (Dual Degree) In Metallurgical and Materials Engineering Submitted By Chinmaya Prasad Dakua Roll No: 710MM1170 Under the guidance of Prof. Dr. A. Basu Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela 2015 National Institute of Technology Rourkela CERTIFICATE This is to certify that the thesis entitled, “Diffusion study of Electrodeposited Copper-Nickel Multilayer”, submitted by Chinmaya Prasad Dakua in partial fulfillment of the requirements for the award of Master of Technology Degree in Metallurgical and Materials Engineering at the National Institute of Technology, Rourkela is an authentic work carried out by him under our supervision and guidance. To the best of our knowledge, the matter embodied in the thesis has not been submitted to any other University/ Institute for the award of any degree or diploma. Prof. Dr. Anindya Basu Department of Metallurgical and Materials Engineering National Institute of Technology Date: Rourkela – 769008 i ACKNOWLEDGEMENT With deep regards and profound respect, I avail this opportunity to express my deep sense of gratitude and indebtedness to Dr.
    [Show full text]
  • Carbon Nanotube Biosensors: the Critical Role of the Reference Electrode ͒ Ethan D
    APPLIED PHYSICS LETTERS 91, 093507 ͑2007͒ Carbon nanotube biosensors: The critical role of the reference electrode ͒ Ethan D. Minot,a Anne M. Janssens, and Iddo Heller Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands Hendrik A. Heering Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands and Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands Cees Dekker and Serge G. Lemay Kavli Institute of Nanoscience, Delft University of Technology, 2628 CJ Delft, The Netherlands ͑Received 30 May 2007; accepted 1 August 2007; published online 28 August 2007͒ Carbon nanotube transistors show tremendous potential for electronic detection of biomolecules in solution. However, the nature and magnitude of the sensing signal upon molecular adsorption have so far remained controversial. Here, the authors show that the choice of the reference electrode is critical and resolves much of the previous controversy. The authors eliminate artifacts related to the reference electrode by using a well-defined reference electrode to accurately control the solution potential. Upon addition of bovine serum albumin proteins, the authors measure a transistor threshold shift of −15 mV which can be unambiguously attributed to the adsorption of biomolecules in the vicinity of the nanotube. © 2007 American Institute of Physics. ͓DOI: 10.1063/1.2775090͔ Biosensors based on nanoscale field-effect transistors determining redox couple.13 Sensors for biomolecule binding have the potential to significantly impact drug discovery, dis- are generally operated in buffer solutions where the redox ease screening, biohazard screening, and fundamental species are not controlled and the background redox reac- 1 science.
    [Show full text]
  • Diffusion Effect of Intermetallic Layers on Adhesion and Mechanical
    Fundamentals of Nanotechnology Golnaz Bassiri Diffusion effect of intermetallic layers on adhesion and mechanical properties of electrical contacts Abstract Multilayer thin films are used as metallic contacts or relays in microelectrome- chanical systems (MEMS). The sublayers of this sandwich are chosen based on the application of the MEMS. The Au, Ag and Cu are commonly used as a conduction layer and Cr, Ti, Pt and etc. are usually employed as an adhesion layer or diffusion barrier. Heat treatment, oxygen treatment, and methods of fabrication have an ef- fect on the diffusion of the central layer into the conduction layer, thus effective the properties of the overall film. While heat treatment of multilayer films increases the diffusion, oxygen treatment in some cases forms a diffusion barrier. While diffusion of intermetallic layers increases the adhesion, it also results in increasing the contact resistance which is not satisfactory. This paper presents the research done on the dif- fusion effect of the intermetallic contact layers on electrical properties, such as contact resistance or resistivity and mechanical properties such as adhesion. It will introduce the importance of the analysis and identification of the optimum combination of the intermetellaic layers, and the motivation of the research in employing it to the MEMS application. Also the literature review, background, and the application of the research will be discussed. 1 Background and Introduction The microelectromechanical systems (MEMS) are employed widely as intelligent integrated electrical systems, such as DC electrical contacts and relays, hybrid circuits (high frequency), optical detectors, mirrors, and radio frequency (RF) switches [1]. Although the micro size the system have many advantages, the small size results in large surface area to volume ratio which increases the effect of the surface forces on the performance of the systems[2].
    [Show full text]
  • Nanoscale Large-Area Opto/Electronics Via Adhesion Lithography
    Introduction Nanoscale Large-Area Opto/Electronics via Adhesion Lithography By Gwenhivir Wyatt-Moon A thesis submitted for the degree of Doctor of Philosophy Imperial College London Department of Physics i ii The work presented in this thesis was carried out in the Experimental Solid State Physics Group of Imperial College London between October 2014 and November 2017 under the supervision of Professor Thomas D. Anthopoulos. The material documented herein, except where explicit references are shown, is my own work. Gwenhivir Wyatt-Moon March 2018 The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. iii Abstract As the feature size of devices in the electronics industry has hit the nanoscale, device fabrication costs have rapidly increased. Whilst commercial technologies such as photolithography are able to produce nanoscale feature size, they are costly and unsuitable for large area printable electronics. To allow for up-scaling of devices considerable research is now focused on new manufacturing processes. Alongside this, new materials such as organics, metal oxides and 2D materials have been developed, allowing for novel device applications to be realised. The ability to deposit these materials at low cost and on large area flexible substrates has been realised with solution processing techniques such as blade coating, inkjet, gravure and screen printing used to deposit materials.
    [Show full text]
  • Interaction Between Ni/Ti Nanomultilayers and Bulk Ti-6Al-4V During Heat Treatment
    metals Article Interaction between Ni/Ti Nanomultilayers and Bulk Ti-6Al-4V during Heat Treatment André João Cavaleiro 1,2,*, Ana Sofia Ramos 1 , Francisco Braz Fernandes 3, Carsten Baehtz 4 and Maria Teresa Vieira 1 1 CEMMPRE, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra, Portugal; sofi[email protected] (A.S.R.); [email protected] (M.T.V.) 2 INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial–INEGI, Campus da FEUP, 400 4200-465 Porto, Portugal 3 CENIMAT/I3N, Department of Materials Science, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; [email protected] 4 Helmholtz Zentrum Dresden Rossendorf HZDR, Institute of Ion Beam Physics and Materials Research, D-01314 Dresden, Germany; [email protected] * Correspondence: [email protected]; Tel.: +351-239790700 Received: 2 October 2018; Accepted: 25 October 2018; Published: 27 October 2018 Abstract: The diffusion bonding of Ti-6Al-4V to NiTi alloys assisted by Ni/Ti reactive multilayer thin films indicates the diffusion of Ni from the filler material towards bulk Ti-6Al-4V. As a consequence, the fragile NiTi2 intermetallic phase is formed at the joint interface. In this context, the aim of this work is to investigate the occurrence of Ni diffusion from Ni/Ti nanomultilayers towards Ti-6Al-4V substrates. For this purpose, multilayer coated Ti alloys were studied in situ at increasing temperatures using synchrotron radiation. After heat treatment, scanning electron microscopy (SEM) analyses were carried out and elemental map distributions were acquired by electron probe microanalysis (EPMA).
    [Show full text]
  • Alumina As Diffusion Barrier to Intermetallic Formation in Thermal Interface Materials Made from Indium and Copper
    ALUMINA AS DIFFUSION BARRIER TO INTERMETALLIC FORMATION IN THERMAL INTERFACE MATERIALS MADE FROM INDIUM AND COPPER By IBRAHIM KHALIFA SALEH A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master of Science Department of Mechanical Engineering 2013 This thesis entitled: Alumina as diffusion barrier to intermetallic formation in thermal interface materials Made from indium and copper written by Ibrahim Khalifa Saleh has been approved for the Department of Mechanical Engineering Rishi Raj Conrad Stoldt Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. ABSTRACT Ibrahim Khalifa Saleh (M.Sc., Department of Mechanical Engineering) Alumina as diffusion barrier to intermetallic formation in thermal interface materials made from indium and copper. Thesis directed by associate Professor Rishi. Raj Indium and copper react at wide range of temperatures to form intermetallic compounds that have different physical, mechanical and thermal properties. Liquid Phase Sintered indium-copper composite long-term performance as thermal interface material is adversely affected by the evolution of the intermetallic. In this study, i) the effect of intermetallic formation and growth on the performance of Liquid Phase Sintered copper-indium composite, ii) the effectiveness of alumina as diffusion barrier between indium and copper, (iii) the thermal stability and wettability between indium and alumina, iv) indium and quartz wettability, v) indium and tungsten oxide wettability have been studied. Deleterious effect of the intermetallic formation and growth on the thermal and mechanical properties has been observed.
    [Show full text]
  • Fabrication and Characterisation of Copper Diffusion Barrier Layers for Future Interconnect
    Dublin City University School of Physical Sciences Fabrication and characterisation of copper diffusion barrier layers for future interconnect applications Conor Byrne B.Sc. Doctor of Philosophy June 2015 Supervised by Professor Greg Hughes Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of doctor of philosophy is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ____________________ (Candidate) ID No.: 58363145 Date: ________________ i Dedications and Acknowledgements Firstly I would like to thank my supervisor Greg Hughes, for his support, insight and supervision, without which this project could not have been undertaken, let alone completed. I could not have asked for a better supervisor. A big thanks to the Surface and Interfaces Research Group (SIRG) in DCU, Justin, Anthony, Paddy, Lee, Rob, Anita, Venkat, Conor, Kumar, Tom and Tony Cafolla, you lot really put the “fun” in fundamental research (some of you put the mental in too!) and to everyone else involved. I would like to thank all the staff in DCU that have supported me throughout this study, Lisa Peyton, Pat Wogan, Des Lavelle, to name but a few (I wish I could mention everyone by name). A massive thanks to my girlfriend Xaz, for putting up with me over the past seven years.
    [Show full text]
  • Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400 to 2100°C
    C. BRENT BARGERON, RICHARD C. BENSON, ROBB W. NEWMAN, A. NORMAN JETTE, and TERRY E. PHILLIPS OXIDATION MECHANISMS OF HAFNIUM CARBIDE AND HAFNIUM DIBORIDE IN THE TEMPERATURE RANGE 1400 TO 2100°C Two ultra-high-temperature materials, hafnium carbide and hafnium diboride, were oxidized in the temperature range 1400 to 2100°C. The two materials oxidized in distinctly different ways. The carbide formed a three-layer system consisting of a layer of residual carbide, a layer of reduced (partially oxidized) hafnium oxide containing carbon, and a layer of fully oxidized hafnium dioxide. The diboride oxidized into only two layers. For the diboride system, the outer layer, mainly hafnium dioxide, contained several intriguing physical structures. INTRODUCTION Materials that can provide protection at temperatures aspects of research that has been performed over the past above l700°C in an oxidative environment are needed for four or five years.2-5 important applications. To be usefully employed as a turbine blade coating, for example, a substance would EXPERIMENTAL METHODS need to withstand many excursions from normal ambient The experimental arrangement for the oxidation pro­ conditions into the high-temperature regime and back cess has been described in detail previously.2-4 An induc­ again without cracking, spalling, or ablating. Other ap­ tion furnace consisting of two concentric zirconia tubes plications, such as a combustion chamber liner, might with a graphite susceptor between them was used to heat require only one high-temperature exposure. Not only do the specimen. (A susceptor is the heating element in an the chemical properties need to be considered, but the induction furnace.) The specimen temperature was mea­ physical, microscopic structure of a candidate material sured with an optical pyrometer through a sapphire win­ can also determine how well it will function under ex­ dow.
    [Show full text]
  • Effect of a Ti Diffusion Barrier on the Cobalt Silicide Formation
    Effect of a Ti diffusion barrier on the cobalt silicide formation: solid solution, segregation and reactive diffusion Hannes Zschiesche, Claude Alfonso, Ahmed Charaï, Dominique Mangelinck To cite this version: Hannes Zschiesche, Claude Alfonso, Ahmed Charaï, Dominique Mangelinck. Effect of a Ti diffu- sion barrier on the cobalt silicide formation: solid solution, segregation and reactive diffusion. Acta Materialia, Elsevier, 2021, 204, pp.116504. 10.1016/j.actamat.2020.116504. hal-03060141 HAL Id: hal-03060141 https://hal.archives-ouvertes.fr/hal-03060141 Submitted on 13 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Effect of a Ti diffusion barrier on the cobalt silicide 1 formation: solid solution, segregation and reactive diffusion 2 3 Hannes Zschieschea,b,∗, Claude Alfonsoa, Ahmed Chara¨ıa, Dominique Mangelincka 4 5 aCNRS, IM2NP, Aix-Marseille Universit´e,Service 142, Facult´ede Saint-J´er^ome,13397 6 Marseille Cedex 20, France. 7 bMcMaster University, Department of Materials Science and Engineering, 1280 Main Street 8 West Hamilton, ON L8S 4L8, Canada. 9 10 11 12 13 14 Abstract 15 16 Diffusion barriers play an important role in numerous phase formation processes.
    [Show full text]
  • Nanofabricated Structures and Microfluidic Devices for Bacteria: from Techniques to Biology Cite This: DOI: 10.1039/C5cs00514k Fabai Wu and Cees Dekker*
    Chem Soc Rev View Article Online TUTORIAL REVIEW View Journal Nanofabricated structures and microfluidic devices for bacteria: from techniques to biology Cite this: DOI: 10.1039/c5cs00514k Fabai Wu and Cees Dekker* Nanofabricated structures and microfluidic technologies are increasingly being used to study bacteria because of their precise spatial and temporal control. They have facilitated studying many long-standing questions regarding growth, chemotaxis and cell-fate switching, and opened up new areas such as probing the effect of boundary geometries on the subcellular structure and social behavior of bacteria. Received 30th June 2015 We review the use of nano/microfabricated structures that spatially separate bacteria for quantitative DOI: 10.1039/c5cs00514k analyses and that provide topological constraints on their growth and chemical communications. These approaches are becoming modular and broadly applicable, and show a strong potential for dissecting www.rsc.org/chemsocrev the complex life of bacteria at various scales and engineering synthetic microbial societies. Key learning points (1) Microfabricated structures can spatially isolate and separate bacteria for single-cell analyses, for drug discovery by cultivating natural species on chips, and for lineage tracking that reveals the rules governing cell growth, cell-fate decisions, and antibiotic resistance. (2) Microfluidic devices that separate bacteria with semipermeable materials allow dissecting the effect of chemical communication between bacteria that exchange metabolic
    [Show full text]