Interstellar Probe Reliability Engineering Discussion

Total Page:16

File Type:pdf, Size:1020Kb

Interstellar Probe Reliability Engineering Discussion NASA Task Order NNN06AA01C Interstellar Probe Reliability Engineering Discussion Glen H. Fountain, Clayton A. Smith, Sally Whitley, Steve Jaskulek The Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA. Acknowledgement: Almost 200 professional scientists and engineers world-wide actively working in support for Interstellar Exploration 17 November 2020 1 Reliability Engineering Topics NASA Task Order NNN06AA01C § Challenge of 50 years § Interplanetary mission duration experience § Overall framework to assess mission reliability § Robustness of Science Requirements and Instrument Suite § Reliability of spacecraft bus § Physics of failure methods 17 November 2020 2 Longevity Study Goal and Relevance to Other Long Duration Missions NASA Task Order NNN06AA01C § The Space Mission Life Time Study is part of the Interstellar Probe (ISP) initiative to study the environment well beyond the Heliosphere § An aspirational goal is to operate for 50 years or longer § The study has two principal goals: § Identify the processes for both the flight system, the supporting ground infrastructure, and mission staffing to assure a successful outcome when mission success requires 50 plus years of successful operation § Provide information about current and past missions with supporting analysis that will provide stakeholders with the confidence necessary to support such a mission § Interstellar Probe can provide a path and the basis for community support for other proposed missions § Many missions under study for the upcoming National Academy Decadal Survey may require mission durations exceeding 20 years § Electronic parts industry is dominated by short life-span consumer products § Historical record will need to be augmented with analysis and testing to provide confidence for decades long missions § Real trade space exists for space-based infrastructure of longevity vs tech refresh § Failure free / robust designs can support human missions of long duration where sparing up-mass and volume represent significant constraints 17 November 2020 3 Reliability Study Goals NASA Task Order NNN06AA01C § Longevity and reliability analyses are part of the Interstellar Probe (ISP) initiative to study the environment well beyond the Heliosphere with an aspirational goal is to operate for 50 years or longer § Reliability assessment questions § What does the historical record tell us about long duration missions? § What are the major technical challenges in building a long lasting spacecraft? § What is the analytical framework for providing sufficient confidence to decision-makers and the science community? § Assess the reliability of a baseline design § Identify risk drivers and mitigations § Quantify the uncertainty of such a system 17 November 2020 4 Building to Last NASA Task Order NNN06AA01C § Can we make systems that last long times without maintaining them? Oxford Bell (The Clarendon Dry Pile) Setup in 1840 is still ringing. The frequency of its oscillation is about 2Hz; so far the bells have been rung on the order of 10 billion times. Voyager 1 & 2 spacecraft – Launched in 1977 and still operational. Source: University of Oxford Department of Physics webpage § These systems were not designed to last this long § Survivors bias – caution on taking these examples as proof 17 November 2020 5 Literature Review NASA Task Order NNN06AA01C § Identified 50+ papers relating to spacecraft lifetimes § Examples of missions discussed: § Matsumoto, S.K., “Voyager Interstellar Mission a Very Old Spacecraft on a Very Long Mission” (2016). § Top level overview of operating configurations, FSW modifications, transitions of Ground Sys., etc. § Brown, N., N. Cohen, M. Cavanaugh and G. Richardson, “Spacecraft Lifetime Study (2018). § Analysis of 283 spacecraft launched between 1980 – 2010, satellite life has increased and exceeds design life, study does not properly take into account spacecraft that are designed for lifetimes greater than 8 years § Weaver et al., “In-Flight Performance and Calibration of the Long Range Reconnaissance Imager (LORRI) for the New Horizons Mission” (2019). § Documents the LORRI performance from shortly after launch (2006) through early 2019, data demonstrates no change in instrument performance (> 1%) over that period. 17 November 2020 6 Literature Review NASA Task Order NNN06AA01C § Unlike the often-assumed constant failure rate models, spacecraft failure rates decrease over time § MIL-HDBK-217F is a defacto standard for determining failure rates and reliability for many systems, pervasive throughout DoD and government (lots more latter) § Better modeled as a Weibull distribution Sarsfield, L. P. (1998). The Cosmos on a Shoestring: Small Spacecraft for Space and Earth Science. Santa Monica, CA, RAND Corporation. § Spacecraft last longer than required design life § Plot shows Actual Life (vertical axis) versus Design Life (horizontal axis) for all satellites § Points above the 45° upward sloping light dotted line are satellites that have exceeded their design life § Red circles denote satellites that have either died due to technical failures of components, depletion of station keeping fuel, or loss of service/mission demand Fox, G., R. Salazar, H. Habib-Agahi and G. F. Dubos (2013). A satellite mortality study to support space systems lifetime prediction. Aerospace Conference, 2013 IEEE, IEEE. 17 November 2020 7 Time Dependent Failure Models NASA Task Order NNN06AA01C § Weibull fits generated for mission types and systems § Saleh, Joseph Homer, and Jean-François Castet, ”Spacecraft reliability and multi-state failures: a statistical approach.” John Wiley & Sons, 2011. § Same behavior seen in Interplanetary spacecraft data 17 November 2020 8 Historical Record NASA Task Order NNN06AA01C § Interplanetary missions § 179 classified as interplanetary* § 71 missions after removal of launch failures, technology demonstrators, short-lived landers/impactors, etc. § Represents nearly 725 years of on-orbit experience § Large majority are still active or ended without failure § Mission failures not dominated by any one cause § Full analysis to be published at RAMS conference, January 2021 * SpacTrak database. https://www.seradata.com/products/spacetrak/ 17 November 2020 9 Examination of Mission Duration NASA Task Order NNN06AA01C § History suggests that spacecraft Design Life vs Actual Life - Interplanetary Spacecraft operational lifetimes frequently 45 Voyagers 1&2 reflect intentional mission design decisions rather than poor reliability 40 or limits in engineering capability 35 Pioneer 6 § Spacecraft tend to last much longer that Explorer 50 design life 30 Pioneer 10 § Majority of failures occurred after design life 25 Retired Pioneer 11 Failed 20 Cassini Active Actual Life [years] Design Life = Actual Life 15 New Horizons 10 5 0 0 2 4 6 8 10 12 14 16 Design Life [years] 17 November 2020 10 Examination of Mission Duration NASA Task Order NNN06AA01C § Mission Duration § Since many missions still operational or operational when retired, cannot take average of mission times § Survival analysis is reliability engineering technique to evaluate special type of random variable of positive values with censored observations, of which failure time or survival time events are the most common § A particular challenge in analyzing survival data is information censoring, i.e., the observation of survival times is often incomplete § Right censoring or truncation where the observation is terminated at a fixed time 90% Confidence limits § Spacecraft retired before a failure was observed § Spacecraft still active, no failure observed Percentage of spacecraft survived § Survival Analysis shows mission duration to be Estimated Weibull distributed Weibull distribution § Shape factor < 1 indicating an decreasing failure rate over time § Consistent with finding in literature § Mean duration ~ 53 years 17 November 2020 11 Examination of Mission Duration NASA Task Order NNN06AA01C § With a majority of data set being right censored, Bayesian analysis provides quantification of the uncertainty in the results Joint probability distribution of Weibull parameters 5th = 37 years 95th = 150 years § Caution with these results as they do not account for real physical limitations of hardware 17 November 2020 12 Reliability Modeling NASA Task Order NNN06AA01C § To augment Reliability engineering products, special attention is given to failure mechanisms § Develop an understanding for how devices and materials can fail in the presence of various radiation and thermal environments and characterize the physics of degradation processes out to 50 years § Provide inputs to testing campaign to assure the project and sponsor of viability at 50 years § Design tests to discover behavior of systems, subsystem, components, and materials at End of Life § Include tests to characterize lifetime uncertainties for components and materials § Employ various acceleration methods to test at 50 years § Identify dependencies when various redundancy and/or hibernation schemes are explored § Evaluate system resilience with a view including potential failures, health monitoring, and fault management behavior 17 November 2020 13 Reliability Modeling NASA Task Order NNN06AA01C § Over-arching model ties spacecraft, instruments, and science objectives together in order to evaluate the combination of failures Does the Yes Loss of that represent a loss of mission Spacecraft Bus Fail Mission No § Event sequence diagram shows logical flow for potential end-states Are Threshold Yes (diamonds) Mission
Recommended publications
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • Deuterium – Tritium Pulse Propulsion with Hydrogen As Propellant and the Entire Space-Craft As a Gigavolt Capacitor for Ignition
    Deuterium – Tritium pulse propulsion with hydrogen as propellant and the entire space-craft as a gigavolt capacitor for ignition. By F. Winterberg University of Nevada, Reno Abstract A deuterium-tritium (DT) nuclear pulse propulsion concept for fast interplanetary transport is proposed utilizing almost all the energy for thrust and without the need for a large radiator: 1. By letting the thermonuclear micro-explosion take place in the center of a liquid hydrogen sphere with the radius of the sphere large enough to slow down and absorb the neutrons of the DT fusion reaction, heating the hydrogen to a fully ionized plasma at a temperature of ~ 105 K. 2. By using the entire spacecraft as a magnetically insulated gigavolt capacitor, igniting the DT micro-explosion with an intense GeV ion beam discharging the gigavolt capacitor, possible if the space craft has the topology of a torus. 1. Introduction The idea to use the 80% of the neutron energy released in the DT fusion reaction for nuclear micro-bomb rocket propulsion, by surrounding the micro-explosion with a thick layer of liquid hydrogen heated up to 105 K thereby becoming part of the exhaust, was first proposed by the author in 1971 [1]. Unlike the Orion pusher plate concept, the fire ball of the fully ionized hydrogen plasma can here be reflected by a magnetic mirror. The 80% of the energy released into 14MeV neutrons cannot be reflected by a magnetic mirror for thermonuclear micro-bomb propulsion. This was the reason why for the Project Daedalus interstellar probe study of the British Interplanetary Society [2], the neutron poor deuterium-helium 3 (DHe3) reaction was chosen.
    [Show full text]
  • Planetary Science with an Interstellar Probe
    EPSC Abstracts Vol. 13, EPSC-DPS2019-262-2, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Planetary science with an Interstellar Probe Kathleen Mandt, Kirby Runyon, Ralph McNutt, Pontus Brandt, Michael Paul, and Abigail Rymer Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA, ([email protected]) Abstract a) The Heliosphere as a Habitable Astrosphere: Characterize the heliosphere and the The space science community has maintained an interstellar medium to understand other ongoing interest in exploration of interstellar space for astrospheres harboring potentially habitable several decades. In 2016, Congressional language stellar-exoplanetary environments. encouraged NASA to take the enabling steps for an b) Formation and Evolution of Planetary Interstellar scientific probe. In 2018, a study was Systems: Explore the properties of Dwarf initiated targeting 1000 AU within 50 years using Planets, KBO worlds, giant planets, and the current or near-term technology. The ultimate goal of large scale structure of the circum-solar debris this study is to define a mission that would be feasible disk. to launch in the 2030’s, enabling humanity to take the c) Early Evolution of Galaxies: Uncover the first explicit step in to interstellar space scientifically, diffuse extragalactic background light. technically and programmatically. Although the d) Exoplanet Context: Explore the worlds of our primary goal of an Interstellar Probe would be to solar system as exoplanets. understand the heliosphere and the very local interstellar medium (VLISM), a probe designed to exit the solar system and explore interstellar space 1.1 Kuiper Belt Objectives provides a prime opportunity for planetary science.
    [Show full text]
  • Unique Heliophysics Science Opportunities Along the Interstellar Probe Journey up to 1000 AU from the Sun
    EGU21-10504, updated on 02 Oct 2021 https://doi.org/10.5194/egusphere-egu21-10504 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Unique heliophysics science opportunities along the Interstellar Probe journey up to 1000 AU from the Sun Elena Provornikova1, Pontus C. Brandt1, Ralph L. McNutt, Jr.1, Robert DeMajistre1, Edmond C. Roelof1, Parisa Mostafavi1, Drew Turner1, Matthew E. Hill1, Jeffrey L. Linsky2, Seth Redfield3, Andre Galli4, Carey Lisse1, Kathleen Mandt1, Abigail Rymer1, and Kirby Runyon1 1Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 2JILA, University of Colorado and NIST, Boulder, CO, USA 3Wesleyan University, Middletown, CT, USA 4University of Bern, Bern, 3012, Switzerland The Interstellar Probe is a space mission to discover physical interactions shaping globally the boundary of our Sun`s heliosphere and its dynamics and for the first time directly sample the properties of the local interstellar medium (LISM). Interstellar Probe will go through the boundary of the heliosphere to the LISM enabling for the first time to explore the boundary with a dedicated instrumentation, to take the image of the global heliosphere by looking back and explore in-situ the unknown LISM. The pragmatic concept study of such mission with a lifetime 50 years that can be implemented by 2030 was funded by NASA and has been led by the Johns Hopkins University Applied Physics Laboratory (APL). The study brought together a diverse community of more than 400 scientists and engineers spanning a wide range of science disciplines across the world. Compelling science questions for the Interstellar Probe mission have been with us for many decades.
    [Show full text]
  • Interstellar Probe to Explore the Sun's Influences Propagating Beyond The
    Interstellar Probe to Explore the Sun’s Influences Propagating Beyond the Heliosphere Parisa Mostafavi�, G. P. Zank�, D. J. McComas�, L. Burgala4, J. Richardson5, G. Webb2, E. Provornikova1, P. Brandt1 1. Johns Hopkins University Applied Physics Lab, 2. University of Alabama in Huntsville, 3. Princeton University, 4. NASA Goddard Space Flight Center, 5. Massachusetts Institute of Technology Introduction The heliosphere is controlled by the motion of the Sun through the interstellar space. Although humankind has explored the region of space about the Earth quite extensively, the distant heliosphere beyond the planets remains almost entirely unexplored with only the two Voyager spacecraft, New Horizons, and the early Pioneer 10 and 11 spacecraft returning the in-situ observations of this most distant region. Moreover, remote observations of energetic neutral atoms (ENAs) from the Interstellar Boundary Explorer (IBEX) at 1 au and Cassini/INCA at 10 au revealed interesting structure related to the interstellar medium. Voyager 1 and 2 crossed the heliopause in 2012 and 2018, respectively, and are both continue to make in-situ measurements of the very local interstellar medium (VLISM; the nearby region of the LISM affected by physical processes associated with the heliosphere) for the first time. Voyager 1 and 2 have identified and partially answered many interesting questions about the outer heliosphere and the VLISM while raising numerous new questions, many of which have profound implications for the detailed structure and properties of the heliosphere and our place in the galaxy. One particularly interesting topic is the influence of the large-scale disturbances and small-scale turbulences generated by the dynamical Sun on the VLISM.
    [Show full text]
  • Enabling a Near-Term Interstellar Probe with the NASA's Space
    Enabling a Near-Term Interstellar Probe with the NASA’s Space Launch System Robert Stough SLS Utilization Manager 0667 SLS LIFT CAPABILITIES Payload to LEO 95 t (209k lbs) 95 t (209k lbs) 105 t (231k lbs) 105 t (231k lbs) 130 t (287k lbs) 130 t (287k lbs) Payload to TLI/Moon > 26 t (57k lbs) > 26 t (57k lbs) 34–37 t (74k–81k lbs) 37–40 t (81k–88k lbs) > 45 t (99k lbs) > 45 t (99k lbs) Payload Volume N/A** 9,030 ft3 (256m3) 10,100 ft3 (286m3)** 18,970 ft3 (537 m3) 10,100 ft3 (286m3)** 34,910 ft3 (988 m3) Low Earth Orbit (LEO) *EUS – SLS Exploration Upper Stage represents a typical 200 km circular orbit at 28.5 degrees inclination Trans-Lunar Injection (TLI) is a propulsive maneuver used to set a EUS* spacecraft on a trajectory that will cause it to arrive at the Moon. A spacecraft Core performs TLI to begin a lunar transfer from a low circular parking orbit around Earth. The numbers depicted x2 Booster here indicate the mass capability at the Trans- Lunar Injection point. ** Not including Orion/Service Module volume SLS Block 1 SLS Block 1 SLS Block 1B Crew SLS Block 1B Cargo SLS Block 2 Crew SLS Block 2 Cargo Crew Cargo Maximum Thrust 8.8M lbs 8.8M lbs 8.8M lbs 8.8M-9.8M lbs 11.9M lbs 11.9M lbs 0667 SPACE LAUNCH SYSTEM: MORE VOLUME CONCEPTUAL 5m Fairing Science Orion with 8.4m with Missions Science Fairing Science Missions with Large Payload Aperture Telescope 250m3 400m3 400m3 1,200m3 0667 SLS 3RD/4TH STAGES INCREASE C3 PERFORMANCE Spacecraft 4th Stage 3rd Stage SLS EUS & Adapter Note: assumes SLS B1B EUS with addition of a 3rd and/or
    [Show full text]
  • Using the Interstellar Probe to Decipher Exoplanet Signatures of Our Planets from the Very Local Interstellar Medium Pontus C
    - 1 - Using the Interstellar Probe to Decipher Exoplanet Signatures of Our Planets from the Very Local Interstellar Medium Pontus C. Brandt, Ralph McNutt, Michael Paul, Carey Lisse, Kathleen Mandt, Abigail Rymer The Heliophysics Decadal Survey Call for a future launch of the Interstellar Probe that in addition to it primary targets would offer valuable opportunities for exoplanetary research. Two seminal discoveries of the late 20th century fundamentally changed our perception of our home in space: the discovery in 1992 of Kuiper Belt Objects (KBOs), beginning with 15760 Albion [1], and the discovery in 1995 of planets beyond the solar system (“exoplanets”) orbiting main sequence stars, beginning with 51 Pegasi b [2]. Following those discoveries, additional thousands of both types pf objects have been identified. The New Horizons flyby of the Pluto system in 2014 [3] afforded us the first close up examination of a “free” KBO (allowing for the fact that Neptune’s large moon Triton, observed from Voyager 2 in 1989 [4], may be a “captured” one) and a second one with the smaller KBO 2014 MU69 planned for the first day of 2019. Exoplanets, by their nature at stellar distances, are not closely accessible with robotic spacecraft, and the ongoing renaissance in our understanding of planetary systems is, therefore limited to remote, astronomical observations. The “Interstellar Probe” into the nearby very local interstellar medium [5] (VLISM; within 0.01 parsec = 2,063 AU from the Sun [6]) has been a mission of significant interest to the heliophysics community for some time [7, 8]. The most recent Heliophysics Decadal Survey calls for the future launch of the first dedicated Interstellar Probe (§10.5.2.7) [9], which would mark a historic milestone on NASA’s journey to the stars and would offer science discoveries of different proportions that will naturally bridge planetary, helio- and astrophysical disciplines by putting our solar system and heliosphere in the context of the increasing number of other exoplanetary systems and astrospheres detected.
    [Show full text]
  • 6 Dec 2019 Is Interstellar Travel to an Exoplanet Possible?
    Physics Education Publication Date Is interstellar travel to an exoplanet possible? Tanmay Singal1 and Ashok K. Singal2 1Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China. [email protected] 2Astronomy and Astrophysis Division, Physical Research Laboratory Navrangpura, Ahmedabad 380 009, India. [email protected] Submitted on xx-xxx-xxxx Abstract undertake such a voyage, with hopefully a positive outcome? What could be a possible scenario for such an adventure in a near In this article, we examine the possibility of or even distant future? And what could be interstellar travel to reach some exoplanet the reality of UFOs – Unidentified Flying orbiting around a star, beyond our Solar Objects – that get reported in the media system. Such travels have been in the realm from time to time? of science fiction for long. However, in the last 50 years or so, this question has gained further impetus in the mind of a man on the 1 Introduction street, after the interplanetary travel has become a reality. Of course the distances to In the last three decades many thousands of be covered to reach even some of the near- exoplanets, planets that orbit around stars est stars outside the Solar system could be beyond our Solar system, have been dis- arXiv:1308.4869v2 [physics.pop-ph] 6 Dec 2019 hundreds of thousands of time larger than covered. Many of them are in the habit- those encountered within the interplanetary able zone, possibly with some forms of life space. Consequently, the time and energy evolved on a fraction of them, and hope- requirements for such a travel could be fully, the existence of intelligent life on some immensely prohibitive.
    [Show full text]
  • (ISP): Pre-Perihelion Trajectories and Application of Holograpp-Y G.L Matloff Pace Unive~~Ity, New York, New York
    Ni5A/CR-2002-211730 The Interstellar Probe (ISP): Pre-Perihelion Trajectories and Application of Holograpp-y G.L Matloff Pace Unive~~ity, New York, New York G. Vulpetti Telespazio Company, Rome, Itc;.ly C. Bangs Art ReSource Transfer, !nc., New York, New York ~ R.Haggerty Pace University, New York, NeVI York Prepared for Marshall Space Flight Center Under Contract H-29712D June 2002 The NASA STI Program Office.-.in Profile Sillcc its founding. NASA has b~cn lb.licatcd LO • CUNFERE:\"CE PUBLICATIO:-.l". Collected the ;]u"aneemcnL of aCTonaUliL-s and ~pace parers from scientific and ll..ochnical conferences. .;eicllee. The NASA Scientitic and Technical symposia. st.":lIIinars_ or OTher meeting, sponsored Information (ST!) Program Oftice plays a key or cosponsored by NASA. pan: in helping t\ASA maintain thi~ important role. • SPECIAl. PlIRLlCATION. Scientific .. tcchnical. or hi"lOrical information from I'\ASA progmm'. Thc NASA STI Program Office is operated by projects, :lnd mission. often concerned \vith Lan£ley Re~';lrch Center. lhe lead center f<lr subjccI~ having substantial public interest. :"ASA's scientitic and technical information_ The NASl\ STI Program omcc provides access to the • TECHNICAL TRANSLATIOK NASA STI Database. the brgest collection of· English-Ianguag:c translations of foreign scientific ~leronautical and space ~ciencc STl in the world. Tho:: and technical material pertinent to NASA's Progr.l.in Oftice is also :-JASA'~ i:lstitutional mission. mechanism forai~scminating the results or its rcsearch\md dc\'dopment a;livitics. ~n1\:sc rcsulL:-. Specialized ~ervices that complcment1hc STI arc published by NASA in th~ NASA STr Report Program Office's diverse orfcrings include creating Series_ which includes the following report lypes: custom theS<lllri.
    [Show full text]
  • SOLAR SYSTEM Voyager 2 Enters Interstellar Space
    SOLAR SYSTEM Voyager 2 enters interstellar space After 41 years of travel, the Voyager 2 spacecraft joins its twin in interstellar space. A suite of papers report Voyager 2’s experience of its transition through the heliosheath and heliopause to what lies beyond. As the solar wind continuously blows away from the Sun at supersonic speeds, it creates a cavity in interstellar space filled with solar material; the heliosphere. Because the solar and interstellar plasmas have different compositions, densities, temperatures, and are braided by magnetic fields of different origin, they cannot interact freely and must be separated by a discontinuous boundary. This outer edge of the heliosphere is called the heliopause and marks the start of interstellar space, or rather, the start of the interstellar medium. The Voyager 1 spacecraft, launched in 1977 shortly after its partner Voyager 2, made the transition through the heliopause 7 years ago; now Voyager 2 has also completed this astonishing feat and data from several of its instruments taken during the crossing are reported in a series of papers in this issue1–5. The plasmatic influence of the Sun extends beyond the heliopause; the heliosphere, as an obstacle to interstellar inflow, can perturb the very local interstellar medium, perhaps even forming an interstellar bow shock, or wave, upstream of the heliopause. Of course, the gravitational influence of the Sun also extends well beyond the heliopause — at least as far as the Oort cloud — but, for the purposes of heliophysics, the heliopause represents the outer-most solar structure. A complete and detailed understanding of the large-scale processes that shape the heliospheric structure, through its interaction with the interstellar medium, is not only important for heliophysics, but is also of interest to the astrophysics community; similar processes, most likely, also shape the structure of astrophysical jets, pulsar wind nebulae, jets, and other stellar wind collisions.
    [Show full text]
  • Interstellar Index: Papersinterstellarindex
    Interstellar Index: papersInterstellarindex http://www.interstellarindex.com/technical-papers/ Interstellarindex The reliable web site for interstellar information designed and managed by www.I4IS.org Papers On this page we list every technical paper known to us that has been published on interstellar studies or related themes. This includes papers on: Spacecraft concepts, designs and mission architectures, robotic and manned, which may be relevant to interstellar flight; Space technologies at all readiness levels (TRL1-9), especially in propulsion; General relativity and quantum field theory as applied to proposed warp drives and wormholes in spacetime; Any other breakthrough physics concepts applicable to propulsion; Nearby mission targets, particularly exoplanets within 20 light-years; Sociology, politics, economics, philosophy and other interstellar issues in the humanities; The search for extraterrestrial intelligence (SETI) and related search and messaging issues. A few pieces of information are missing, as shown by queries {in curly brackets}. Please be patient while we fill in these gaps. * * * 2013 Baxter, S., “Project Icarus: Interstellar Spaceprobes and Encounters with Extraterrestial Intelligence”, JBIS, 66, no.1/2, pp.51-60, Jan./Feb. 2013. Benford, J., “Starship Sails Propelled by Cost-Optimized Directed Energy”, JBIS, 66, no.3/4, pp.85-95, March/April 2013. Beyster, M.A., J. Blasi, J. Sibilia, T. Zurbuchen and A. Bowman, “Sustained Innovation through Shared Capitalism and Democratic Governance”, JBIS, 66, no.3/4, pp.133-137, March/April 2013. Breeden, J.L., “Gravitational Assist via Near-Sun Chaotic Trajectories of Binary Objects”, JBIS, 66, no.5/6, pp.190-194, May/June 2013. Cohen, M.M., R.E.
    [Show full text]
  • NASA's Space Launch System Capabilities for Ultra-High C3
    Heliophysics 2050 White Papers (2021) 4057.pdf NASA’s Space Launch System Capabilities for Ultra-High C3 Missions A White Paper for the Heliophysics Survey Robert W. Stough, James B. Holt, Dr. Kimberly F. Robinson, David A. Smith, W. David Hitt, Beverly A. Perry NASA’s Marshall Space Flight Center Dr. Ralph L. McNutt Jr., Michael V. Paul Johns Hopkins University Applied Physics Laboratory 1. Executive Summary Designed to meet NASA’s requirements for human exploration of the Moon, Mars and beyond, the Space Launch System (SLS) vehicle offers enhancing and enabling capabilities for a variety of missions. Using commercially available propulsion systems as third and/or fourth stages, SLS offers C3 performance double the highest-C3 missions ever flown. This capability can be game- changing for missions into the interstellar medium or for high-energy solar observation missions. Today, SLS is making progress toward its initial launch capability and toward both future launches and future capabilities. In addition, NASA has issued contracts with prime contractors for SLS hardware for delivery well into the 2030s. 2. Overview The initial configuration of SLS, the Block 1 crew vehicle, is powered at launch by four RS-25 engines and two solid rocket boosters, with an almost 67 meter (m) tall core stage. In-space propulsion is provided by an interim cryogenic propulsion stage (ICPS). The Block 1 vehicle can be flown in a cargo configuration utilizing a commercially available 5 m fairing. The next configuration of SLS, Block 1B, upgrades the upper stage to an exploration upper stage (EUS) equipped with four RL10s.
    [Show full text]