Spatial Learning in Dragonflies

Total Page:16

File Type:pdf, Size:1020Kb

Spatial Learning in Dragonflies eScholarship International Journal of Comparative Psychology Title Spatial Learning in Dragonflies Permalink https://escholarship.org/uc/item/10v4t8cm Journal International Journal of Comparative Psychology, 19(3) ISSN 0889-3675 Authors Eason, Perri K Switzer, Paul V. Publication Date 2006-12-31 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California International Journal of Comparative Psychology, 2006, 19 , 268-281. Copyright 2006 by the International Society for Comparative Psychology Spatial Learning in Dragonflies Perri K. Eason University of Louisville, U.S.A. Paul V. Switzer Eastern Illinois University, U.S.A. Spatial learning is evident in dragonflies on a variety of spatial scales. Mature dragonflies must be able to locate a variety of features in the habitat that are critical to survival and reproduction, includ- ing sites for breeding, foraging, roosting, and thermoregulating. In many species, these sites do not coincide in space. Because individuals may repeatedly use particular sites for different activities, they must learn both the locations of these sites and routes among them. Further evidence of spatial mem- ory in dragonflies is provided by their site specificity on a finer scale. Breeding males, for example, often are faithful not only to a particular area, but to a specific territory site within that area. Males appear to become faithful to a territory site through localization, a process during which they explore the site and develop a spatial map of the location of the territory and its resources. Males also respond to their interactions with other individuals, adjusting both their choice of territories and their space use within their territories to reflect those interactions. In eastern amberwing dragonflies ( Perithemis tenera ), males are not faithful to territories on which they have lost a fight with another male; in contrast, males are more likely to be faithful to territories on which they successfully mated than to territories on which they obtained no matings. Similarly, while on territories, male amberwings adjust their position in response to negative and positive interactions. They move away from the side of the territory from which neighbors most frequently intruded, and they move toward locations from which they pursued a female. Territorial amberwings thus modify their space use at both the territory and within-territory spatial scale in response to their social environment. Their responses are consistent with the hypothesis that they learn from their positive and negative experiences and adjust their future space use accordingly. Further study of spatial learning in dragonflies would greatly enhance studies of dragonflies’ behavior and ecology, and help us understand learning in general. Although dragonflies (Order Odonata) have been the subjects of a great deal of scientific research, relatively little has been published on learning in this taxon, despite the likely importance of learning for animals that are both highly predacious and highly mobile. Work with larval dragonflies has provided clear evidence of learning in foraging behavior, with individuals learning, for example, to avoid noxious prey (Rowe, 1994), to pursue more actively those prey types that they have successfully captured (Bergelson, 1985), and to adjust their behavior to compensate for injury in detecting and capturing prey (Abbott, 1941; Caillere, 1970). Larvae can also learn to recognize predation risk through experience with chemical cues (Chivers, Wisenden, & Smith, 1996; Wisenden, Chivers, & Smith, 1997), and adult males are known to learn to recognize potential mates when fe- males have more than one color pattern (Fincke, 2004; Miller & Fincke, 1999; Van Gossum, Stoks, & De Bruyn, 2001a, 2001b; Van Gossum, Stoks, Matthysen, Valck, & De Bruyn, 1999). Given the natural history and behavior of the dragon- flies, however, spatial learning must be one of dragonflies' most critical capabili- ties, and dragonflies must be capable of spatial learning on a variety of scales. Correspondence concerning this article should be addressed to Perri K. Eason, Department of Biol- ogy, University of Louisville, Kentucky 40292, U.S.A. ([email protected]). - 269 - In this paper we will focus on spatial learning in adult dragonflies, particu- larly as it relates to finding and using sites of reproduction. We will use the term “dragonfly” when referring in general to a member of the Order Odonata or when referring to a particular species in the suborder Anisoptera. We will use the term damselfly only when referring to a specific example of a member of the suborder Zygoptera. In the sections that follow, we first describe the different spatial scales commonly relevant to dragonflies and briefly review what is known about dragon- fly learning on each of these scales. We then discuss how learning might play a role in determining individuals’ location preferences at each scale level. Finally, we apply these ideas in a case study of the amberwing dragonfly, Perithemis ten- era . Spatial Learning Mature dragonflies must be able to locate a variety of features in the habi- tat that are critical to their survival and reproduction, and in most species, sites providing these features do not coincide in space. First, dragonflies in general have very specific requirements for breeding sites, which are most commonly located along streams or ponds. Males defending breeding territories, however, typically defend those territories for only part of each day (Alcock, 1987, 1989), and fe- males often visit the territories only when ready to mate and lay eggs (e.g., Hilton, 1984). Second, dragonflies need sites for foraging, preferably locations that have abundant arthropod prey. Because breeding areas typically have high densities of dragonflies, the best foraging sites for aggressive species may be at other locations, where foragers will have less interference and competition from conspecifics and where prey density may be higher (Baird & May, 2003). In many species, in fact, males feed little if at all while they are on their territories; in particular, males that spend relatively little time on their territory are less likely to forage there (Parr, 1983). Females, too, rarely forage on breeding territories, presumably due at least in part to interference by males seeking mates. Third, dragonflies typically use roosts, which are sites to which they retreat when light levels are low or when the weather conditions are unfavorable and which may be more than 1.5 km away from their breeding sites (reviewed in Corbet, 1999). Roosting may reduce preda- tion risk either through the formation of aggregations, which might reduce the risk for any one individual, or through the selection of roosting sites at which predation risk is lower than at the breeding sites. Finally, individuals in many species choose specific sites for thermoregulation, for example, by leaving a breeding site to perch in a sunnier location (Clausnitzer, 1998). Such ‘sun-flights’ are likely to be particu- larly common in the many species that breed in forested habitats, where oviposi- tion sites tend to be shaded. In most odonate species, then, adults must move among discrete locations that they use for different purposes. For all four of the types of locations mentioned above, there is evidence that individuals make more than one trip to a given site, suggesting that the animals learn the locations of the sites they use. For example, although few data are available for females, male odonates are commonly faithful to one or a few particular areas for reproduction. Substantial evidence for this is provided by numerous studies of marked individuals, which are often resighted at a - 270 - particular pond or section of a stream (e.g., Beukema, 2002; Clausnitzer, 1996, 1998; Koenig & Albano, 1987; reviewed in Corbet, 1999; Switzer, 1995). Dragon- flies appear to be less faithful to particular foraging areas than they are to breeding areas, and shifting foraging areas between days may be the norm, although too few species have been well studied to draw a firm conclusion. Nonetheless, within a given day individuals may forage in the same location for hours, and some indi- viduals return to the same foraging area over several days, suggesting again that they are capable of learning the location of a particular area (May & Baird, 2002). In addition, dragonflies appear to be able to learn the locations of foraging areas with high prey density. For example, individuals of some species regularly forage near areas containing beehives, and others appear to be able to locate swarms of flies and mosquitoes that persist over several days at the same site (Wright, 1945). In some species that have been carefully observed, individuals also appear to re- turn to the same areas for roosting (Grether & Switzer, 2000; Miller, 1989) and to the same areas for sunning (Clausnitzer, 1998). For example, Grether and Switzer (2000) found that a male rubyspot damselfly ( Hetaerina americana ) tended to re- turn to the same roosting aggregation night after night, but often shifted his roost location if he obtained a new territory in a different part of the stream. Dragonflies that have long commutes among the locations they frequent probably use both visual landmarks and a sun compass to navigate. Evidence for the latter comes from studies of long-distance migration; however, migrants also follow distinctive,
Recommended publications
  • Using Dragonflies As Common, Flexible, and Charismatic Subjects for Teaching the Scientific Process
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences 1-1-2007 Using dragonflies sa common, flexible, and charismatic subjects for teaching the scientific process Paul Switzer Eastern Illinois University, [email protected] Follow this and additional works at: https://thekeep.eiu.edu/bio_fac Part of the Behavior and Ethology Commons, Entomology Commons, and the Terrestrial and Aquatic Ecology Commons Recommended Citation Switzer, P.V. (2007). Using dragonflies as common, flexible, and charismatic subjects for teaching the scientific process. The American Biology Teacher 69(3): 158-162. This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. as Common, Flexible & Charismatic Subjects Using forDragonflies Teaching the Scientific Process P AUL V. S WI T ZER See this article with its beautiful images in full color online at: http://www.nabt.org/sites/S1/File/pdf/069-03-0158.pdf. iology laboratories are usually designed around eat other invertebrates in the jar . Adults are a bit more wary, convenientB and available subjects . For example, for animal yet if students avoid sudden movements or approaches, laboratories Daphnia magna, Drosophila melanogaster, frogs, they can get within inches of many common species . rats, and mice are common animals that are relatively easy Capture requires no more exotic equipment than either to obtain, relatively cheap, and consequently lend them- aerial (for adults) or aquatic (for larvae) nets, and adults can selves well to laboratory experimentation .
    [Show full text]
  • Spatial Learning in Dragonflies Perri K
    Eastern Illinois University The Keep Faculty Research & Creative Activity Biological Sciences January 2006 Spatial learning in dragonflies Perri K. Eason Paul Switzer Eastern Illinois University, [email protected] Follow this and additional works at: http://thekeep.eiu.edu/bio_fac Part of the Behavior and Ethology Commons, Entomology Commons, and the Evolution Commons Recommended Citation Eason, Perri K. and Switzer, Paul, "Spatial learning in dragonflies" (2006). Faculty Research & Creative Activity. 239. http://thekeep.eiu.edu/bio_fac/239 This Article is brought to you for free and open access by the Biological Sciences at The Keep. It has been accepted for inclusion in Faculty Research & Creative Activity by an authorized administrator of The Keep. For more information, please contact [email protected]. International Journal of Comparative Psychology, 2006, 19, 268-281. Copyright 2006 by the International Society for Comparative Psychology Spatial Learning in Dragonflies Perri K. Eason University of Louisville, U.S.A. Paul V. Switzer Eastern Illinois University, U.S.A. Spatial learning is evident in dragonflies on a variety of spatial scales. Mature dragonflies must be able to locate a variety of features in the habitat that are critical to survival and reproduction, includ- ing sites for breeding, foraging, roosting, and thermoregulating. In many species, these sites do not coincide in space. Because individuals may repeatedly use particular sites for different activities, they must learn both the locations of these sites and routes among them. Further evidence of spatial mem- ory in dragonflies is provided by their site specificity on a finer scale. Breeding males, for example, often are faithful not only to a particular area, but to a specific territory site within that area.
    [Show full text]
  • Happy 75Th Birthday, Nick
    ISSN 1061-8503 TheA News Journalrgia of the Dragonfly Society of the Americas Volume 19 12 December 2007 Number 4 Happy 75th Birthday, Nick Published by the Dragonfly Society of the Americas The Dragonfly Society Of The Americas Business address: c/o John Abbott, Section of Integrative Biology, C0930, University of Texas, Austin TX, USA 78712 Executive Council 2007 – 2009 President/Editor in Chief J. Abbott Austin, Texas President Elect B. Mauffray Gainesville, Florida Immediate Past President S. Krotzer Centreville, Alabama Vice President, United States M. May New Brunswick, New Jersey Vice President, Canada C. Jones Lakefield, Ontario Vice President, Latin America R. Novelo G. Jalapa, Veracruz Secretary S. Valley Albany, Oregon Treasurer J. Daigle Tallahassee, Florida Regular Member/Associate Editor J. Johnson Vancouver, Washington Regular Member N. von Ellenrieder Salta, Argentina Regular Member S. Hummel Lake View, Iowa Associate Editor (BAO Editor) K. Tennessen Wautoma, Wisconsin Journals Published By The Society ARGIA, the quarterly news journal of the DSA, is devoted to non-technical papers and news items relating to nearly every aspect of the study of Odonata and the people who are interested in them. The editor especially welcomes reports of studies in progress, news of forthcoming meetings, commentaries on species, habitat conservation, noteworthy occurrences, personal news items, accounts of meetings and collecting trips, and reviews of technical and non-technical publications. Membership in DSA includes a subscription to Argia. Bulletin Of American Odonatology is devoted to studies of Odonata of the New World. This journal considers a wide range of topics for publication, including faunal synopses, behavioral studies, ecological studies, etc.
    [Show full text]
  • Dragonflies and Damselflies Havasu National Wildlife Refuge
    U.S. Fish & Wildlife Service Dragonflies and Damselflies Havasu National Wildlife Refuge Dragonfly and damselfly at Havasu National Wildlife Refuge There are twenty-five dragonfly and damselfly species listed at the 37,515 acre Havasu National Wildlife Refuge, one of more than 540 refuges throughout the United States. These National Wildlife Refuges are administered by the Department of the Interior, Fish and Wildlife Service. The Fish and Wildlife Service mission is to work with others “to conserve fish and wildlife and their habitat.” General Information Havasu National Wildlife Refuge encompasses 37,515 acres adjacent to the Colorado River. Topock Marsh, Topock Gorge, and the Havasu Wilderness constitute the three major portions of the refuge. Dragonflies, an important Male blue-ringed dancer sedula indicator of water quality, can be found © Dave Welling Photography on the refuge, primarily in Topock Marsh Libellula luctuosa Tramea onusta and Topock Gorge. Dragonflies can be Widow Skimmer Red Saddlebags viewed on the refuge year-round, with hot, sunny days providing some of the L. pulchella Pond Damsels–Dancers (Coenagrionidae) best viewing. Sixty-three dragonfly and Twelve-spotted Skimmer Argia moesta damsel species have been identified in Powdered Dancer Mohave County, Arizona. Visitors are L. saturate encouraged to contact refuge staff with a Flame Skimmer Argia sedula description or photograph, if an unlisted Blue-ringed Dancer species is observed. Pachydiplax longipennis Blue Dasher Enallagma civile Family Familiar Bluet Scientific
    [Show full text]
  • Panama, by Nick Donnelly
    ISSN 1061-8503 TheA News Journalrgia of the Dragonfly Society of the Americas Volume 23 14 October 2011 Number 3 Published by the Dragonfly Society of the Americas http://www.DragonflySocietyAmericas.org/ ARGIA Vol. 23, No. 3, 14 October 2011 In This Issue .................................................................................................................................................................1 DSA is on Facebook ....................................................................................................................................................1 Calendar of Events ......................................................................................................................................................1 2011 Annual Meeting of DSA held in Fort Collins, Colorado, by Dave Leatherman ...............................................2 Northeast Regional DSA Meeting, by Joshua Rose ...................................................................................................8 2011 Annual Oregon Aeshna Blitz Sets New Records, by Steve Gordon .................................................................10 2012 Annual DSA Meeting: Baldcypress Swamps, Sandy Ponds, Blackwater Rivers, and Clubtails, by Chris Hill ....................................................................................................................................................................12 Northeast Meetings Update, by Bryan Pfeiffer .........................................................................................................12
    [Show full text]
  • Quick ID Guide Most Common Bluet Found Near Streams
    Damselflies (Order Odonata, Suborder Zygoptera) Damsely Fly-By ID Male, © Andrew C; Female, © Greg Schechter; both via Wikimedia Commons © Andrew C via Wikimedia Commons © Carl Strang © Mark Donnelly Blue-Fronted Powdered Familiar Marsh Dancer Dancer Bluet Bluet Blue-Fronted Dancer (Argia apicalis) Powdered Dancer (Argia moesta) Familiar Bluet (Enallagma civile) Marsh Bluet (Enallagma ebrium) Small species, found in a variety of still and flowing Similar to A. apicalis. Usually found near flowing Small species, one of the most commonly observed. Almost identical to E. civile, though generally slightly habitats. water. smaller. Males: Primarily light-blue in color. Blue stripe on Males: Primarily blue-black. Abdominal segments Males: Powdery-white thorax and tip of abdomen. thorax. Abdomen has dorsal black spots on Males: Almost indistinguishable from E. civile 8-10 blue. Thorax primarily blue with thin black Thick black shoulder stripe on thorax. segments 3-5. Blue, tear-drop shaped spots behind males. Sometimes slightly more black stripes. Can take on blue-green form. each eye. Cerci are triangular in shape. coloration on abdomen, but not reliably. Females: Pale brown thorax, no distinct stripes. Differentiated by shape of cerci. Females: Brown-olive in color. Abdomen primarily Abdomen black with wide, pale top stripe. Can take Females: Similar in all aspects to males, but are black with narrow pale dorsal stripe. Abdominal multiple color forms. olive or light-brown in color. Females: Similar to E. civile females, but are segment 9 black with tan stripes on sides and top. light-green, not olive, in color. Can take multiple color forms. Stream Eastern Forktail Bluet Common Dragonfly and Damselfly Species of DuPage County © Linda Padera © Carl Strang © Carl Strang Stream Bluet (Enallagma exsulans) American Rubyspot (Hetaerina americana) Eastern Forktail (Ischnura verticalis) Ebony Jewelwing (Calopteryx maculata) Quick ID Guide Most common Bluet found near streams.
    [Show full text]
  • Pdf (Last Access at 23/November/2016)
    Biota Neotropica 17(3): e20160310, 2017 www.scielo.br/bn ISSN 1676-0611 (online edition) Inventory Odonates from Bodoquena Plateau: checklist and information about endangered species Ricardo Koroiva1*, Marciel Elio Rodrigues2, Francisco Valente-Neto1 & Fábio de Oliveira Roque1 1Universidade Federal do Mato Grosso do Sul, Instituto de Biociências, Cidade Universitária, 79070-900, Campo Grande, MS, Brazil 2 Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rod. Jorge Amado, km 16, 45662-900, Ilhéus, BA, Brazil *Corresponding author: Ricardo Koroiva, e-mail: [email protected] KOROIVA, R., RODRIGUES, M.E., VALENTE-NETO, F., ROQUE, F.O. Odonates from Bodoquena Plateau: checklist and information about endangered species. Biota Neotropica. 17(3): e20160310. http://dx.doi.org/10.1590/1676- 0611-BN-2016-0310 Abstract: Here we provide an updated checklist of the odonates from Bodoquena Plateau, Mato Grosso do Sul state, Brazil. We registered 111 species from the region. The families with the highest number of species were Libellulidae (50 species), Coenagrionidae (43 species) and Gomphidae (12 species). 35 species are registered in the IUCN Red List species, four being Data Deficient, 29 of Least Concern and two species being in the threatened category. Phyllogomphoides suspectus Belle, 1994 (Odonata: Gomphidae) was registered for the first time in the state. Keywords: Dragonfly, Damselfly, inventory, Cerrado, Brazil Libélulas da Serra da Bodoquena: lista de espécies e informações sobre espécies ameaçadas Resumo: Nós apresentamos um inventário atualizado das espécies de libélulas ocorrentes na Serra da Bodoquena, Estado de Mato Grosso do Sul, Brasil. Nós registramos 111 espécies para a região. As famílias com o maior número de espécies foram Libellulidae (50 espécies), Coenagrionidae (43 espécies) e Gomphidae (12 espécies).
    [Show full text]
  • Prioritizing Odonata for Conservation Action in the Northeastern USA
    APPLIED ODONATOLOGY Prioritizing Odonata for conservation action in the northeastern USA Erin L. White1,4, Pamela D. Hunt2,5, Matthew D. Schlesinger1,6, Jeffrey D. Corser1,7, and Phillip G. deMaynadier3,8 1New York Natural Heritage Program, State University of New York College of Environmental Science and Forestry, 625 Broadway 5th Floor, Albany, New York 12233-4757 USA 2Audubon Society of New Hampshire, 84 Silk Farm Road, Concord, New Hampshire 03301 USA 3Maine Department of Inland Fisheries and Wildlife, 650 State Street, Bangor, Maine 04401 USA Abstract: Odonata are valuable biological indicators of freshwater ecosystem integrity and climate change, and the northeastern USA (Virginia to Maine) is a hotspot of odonate diversity and a region of historical and grow- ing threats to freshwater ecosystems. This duality highlights the urgency of developing a comprehensive conser- vation assessment of the region’s 228 resident odonate species. We offer a prioritization framework modified from NatureServe’s method for assessing conservation status ranks by assigning a single regional vulnerability metric (R-rank) reflecting each species’ degree of relative extinction risk in the northeastern USA. We calculated the R-rank based on 3 rarity factors (range extent, area of occupancy, and habitat specificity), 1 threat factor (vulnerability of occupied habitats), and 1 trend factor (relative change in range size). We combine this R-rank with the degree of endemicity (% of the species’ USA and Canadian range that falls within the region) as a proxy for regional responsibility, thereby deriving a list of species of combined vulnerability and regional management responsibility. Overall, 18% of the region’s odonate fauna is imperiled (R1 and R2), and peatlands, low-gradient streams and seeps, high-gradient headwaters, and larger rivers that harbor a disproportionate number of these species should be considered as priority habitat types for conservation.
    [Show full text]
  • 1 Common Dragonflies and Damselflies of the Chicago Region
    WEB V ERSION Odonata of Northeastern Illinois, USA 1 Common Dragonflies and Damselflies of the Chicago Region Volunteer Stewardship Network – Chicago Wilderness Produced by: John & Jane Balaban, Jennie Kluse & Robin Foster, with assistance of Laurel Ross and support from the Gordon & Betty Moore Foundation. Photos © John & Jane Balaban; [[email protected]] North Branch Restoration Project, with additions by © Thomas Murray (27, 32) and © Vincent Hickey (30). © Environmental & Conservation Programs, The Field Museum, Chicago, IL 60605 USA. [http://www.fmnh.org/chicagoguides/]. Chicago Wilderness Guide #1 version 2 (4/2006) RESOURCES: LIBELLULIDAE - Skimmers Drangonflies of Indiana by J. R. Curry. Large, showy, frequently seen Indiana Academy of Science. 2001. ISBN: 1-883362-11-3 resting on or flying low over Beginner’s Guide to Dragonflies by Nikula and Sones vegetation. Often hunt from a perch with D. and L. Stokes. Little, Brown, and Company. 2002. ISBN: 0-316-81679-5 like Kingbirds. Also includes our Damselflies of the Northeast by E. Lam. Biodiversity smallest dragonflies (Nannothemis Books. 2004. ISBN: 0-9754015-0-5 Damselflies of the North Woods by B. DuBois. and Perithemis) and the ubiquitous Kollath-Stensaas Pub. 2005. ISBN: 0-9673793-7-7 Meadowhawks. http://bugguide.ent.iastate.edu/node/view/191/bgimage 1 Sympetrum rubicundulum / http://cirrusimage.com/dragonflies.htm Ruby Meadowhawk: male and female mating in http://wisconsinbutterflies.org/damselflies/ “wheel” position. 34-38mm 2 Sympetrum obtrusum 3 Sympetrum vicinum 4 Sympetrum semicinctum White-faced Meadowhawk: white face. 32-36mm Yellow-legged Meadowhawk: yellow legs. 30-36mm Band-winged Meadowhawk: half amber wings. 26-38mm Above species are medium-sized and common.
    [Show full text]
  • A Preliminary Investigation of the Arthropod Fauna of Quitobaquito Springs Area, Organ Pipe Cactus National Monument, Arizona
    COOPERATIVE NATIONAL PARK RESOURCES STUDIES UNIT UNIVERSITY OF ARIZONA 125 Biological Sciences (East) Bldg. 43 Tucson, Arizona 85721 R. Roy Johnson, Unit Leader National Park Senior Research Scientist TECHNICAL REPORT NO. 23 A PRELIMINARY INVESTIGATION OF THE ARTHROPOD FAUNA OF QUITOBAQUITO SPRINGS AREA, ORGAN PIPE CACTUS NATIONAL MONUMENT, ARIZONA KENNETH J. KINGSLEY, RICHARD A. BAILOWITZ, and ROBERT L. SMITH July 1987 NATIONAL PARK SERVICE/UNIVERSITY OF ARIZONA National Park Service Project Funds CONTRIBUTION NUMBER CPSU/UA 057/01 TABLE OF CONTENTS Introduction......................................................................................................................................1 Methods............................................................................................................................................1 Results ............................................................................................................................................2 Discussion......................................................................................................................................20 Literature Cited ..............................................................................................................................22 Acknowledgements........................................................................................................................23 LIST OF TABLES Table 1. Insects Collected at Quitobaquito Springs ...................................................................3
    [Show full text]
  • A Revision of the Genus Diastatops and a Study of the Leg Structures of Related Genera Basil Elwood Montgomery Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1936 A revision of the genus Diastatops and a study of the leg structures of related genera Basil Elwood Montgomery Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Entomology Commons, and the Genetics Commons Recommended Citation Montgomery, Basil Elwood, "A revision of the genus Diastatops and a study of the leg structures of related genera " (1936). Retrospective Theses and Dissertations. 13727. https://lib.dr.iastate.edu/rtd/13727 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.
    [Show full text]
  • East Fort Madison – Manhattan 22” Pipeline Inspections Sites 2015-065 and 2015-066 in Kankakee River
    East Fort Madison – Manhattan 22” Pipeline Inspections Sites 2015-065 and 2015-066 in Kankakee River Illinois Department of Natural Resources CONSERVATION PLAN (Revised 3/15/ 17) (Application for an Incidental Take Authorization) Per 520ILCS 10/5.5 and 17 Ill. Adm. Code 1080 150-day minimum required for public review, biological and legal analysis, and permitting Project Applicant: BP US Pipelines & Logistics, 8230 Whitcomb St., Merrillville, IN 46410 Project Name: East Fort Madison – Manhattan 22” Pipeline Inspections Sites 2015-065 and 2015- 066 in Kankakee River County: Will County, Illinois Amount of Impact Area: 20,365ft2 (0.47 acres) below OHWM of Kankakee River Excavation within existing ROW – approximately 0.07 acres Staging – approximately 0.46 acres Access – approximately 0.99 acres 1. A description of the impact likely to result from the proposed taking of the species that would be covered by the authorization, including but not limited to: A. Identification of the area to be affected by the proposed action, includes a legal description and a detailed description including: street address, map(s), and GIS shapefile. Include an indication of ownership or control of affected property. Attach photos of the project area. BP U.S. Pipelines & Logistics (BP) must perform a physical inspection and possible repair of two (2) segments of their No. 1 System, 0.56m (22in) East Fort Madison – Manhattan pipeline within the Kankakee River in Will County, IL (Figure 2.0a). They are referenced as Sites 2015-065 and 2015-066 (“west” and “east” sites, respectively, Figure 2.0b). The project is located within a reach of the Kankakee River located in Will County, Illinois, in Section 22, Township 33N, R9E.
    [Show full text]