Glycosphingolipids Are Modulators of Disease Pathogenesis in Amyotrophic Lateral Sclerosis

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Glycosphingolipids are modulators of disease pathogenesis in amyotrophic lateral sclerosis James C. Dodgea,1, Christopher M. Treleavena, Joshua Pachecoa, Samantha Coopera,ChannaBaoa, Marissa Abrahama, Mandy Cromwella, S. Pablo Sardia, Wei-Lien Chuanga, Richard L. Sidmanb,1,2,SengH.Chenga, and Lamya S. Shihabuddina aRare Diseases Science, Genzyme, a Sanofi Company, Framingham, MA 01701; and bBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 Contributed by Richard L. Sidman, May 7, 2015 (sent for review January 12, 2015; reviewed by David V. Schaffer) Recent genetic evidence suggests that aberrant glycosphingolipid mediates the hydrolysis of Cer, are linked to forms of spinal metabolism plays an important role in several neuromuscular muscular atrophy that are not caused by the more frequent mu- diseases including hereditary spastic paraplegia, hereditary sen- tations in the survival motor neuron 1 gene (non-5q SMA) (15). sory neuropathy type 1, and non-5q spinal muscular atrophy. Here, Moreover, hereditary spastic paraplegia (HSP), a disease with cor- we investigated whether altered glycosphingolipid metabolism is ticospinal tract and in some cases, spinal cord MN degeneration, a modulator of disease course in amyotrophic lateral sclerosis (ALS). is attributed to mutations in GM2 synthase (16) and the non- Levels of ceramide, glucosylceramide, galactocerebroside, lactosyl- lysosomal glucosylceramidase, GBA2 (17). Last, patients with adult- ceramide, globotriaosylceramide, and the gangliosides GM3 and onset Tay-Sachs disease (GM2 gangliosidosis), a disease triggered GM1 were significantly elevated in spinal cords of ALS patients. by a deficiency in hexosaminidase (HEX), a lysosomal enzyme Moreover, enzyme activities (glucocerebrosidase-1, glucocerebrosi- that hydrolyzes GM2 to GM3, have been reported in some in- dase-2, hexosaminidase, galactosylceramidase, α-galactosidase, and stances to display a disease phenotype that closely mimics ALS β-galactosidase) mediating glycosphingolipid hydrolysis were also (18–20). Interestingly, HEX mRNA is up-regulated within MNs elevated up to threefold. Increased ceramide, glucosylceramide, of transgenic mice expressing the mutant human SOD1 protein G93A GM3, and hexosaminidase activity were also found in SOD1G93A (i.e., SOD1 mice), a familial model of ALS (21, 22). Collec- mice, a familial model of ALS. Inhibition of glucosylceramide syn- tively, these findings suggest that titration of GSLs is important to thesis accelerated disease course in SOD1G93A mice, whereas infu- maintaining neuromuscular system homeostasis. Similar to other sion of exogenous GM3 significantly slowed the onset of paralysis metabolic aspects thought to influence ALS disease progression and increased survival. Our results suggest that glycosphingolipids (23), GSL bioactivity in the neuromuscular system is likely exerted – SI Ap- are likely important participants in pathogenesis of ALS and merit through an inverted U-shaped dose response curve ( pendix further analysis as potential drug targets. ,Fig.S1). Healthy (or eustatic) GSL levels are achieved in the central, optimal range of the curve, whereas GSL levels that motor neuron disease | SALS | FALS | mouse models neurological disease promote features of disease (or cacostasis) are associated with either end of the curve (i.e., instances of GSL insufficiency or excess). Here, we investigated whether disrupted GSL homeostasis myotrophic lateral sclerosis (ALS) is a progressive neuro- contributes to neurodegeneration in ALS. We show that altered Adegenerative disorder characterized by selective loss of motor GSL metabolism is a manifestation of sporadic and familial ALS neurons (MNs) within the CNS. Although our understanding of the genetic basis of ALS has advanced greatly in recent years (1), Significance the adverse biological processes that converge on the neuromus- cular axis to drive both MN death and neuropathological features in additional cell types remain largely unknown. Glycosphingolipids Glycosphingolipids are a heterogeneous group of membrane (GSLs) are a heterogeneous group of membrane lipids formed lipids formed through the covalent linkage of a glycan moiety to ceramide. Genetic evidence suggests that aberrant glyco- through the covalent linkage of a glycan moiety to ceramide sphingolipid metabolism plays an important role in several neu- (Cer; see SI Appendix,Fig.S1for an overview of GSL metabolism). romuscular diseases. Here, we investigated whether alterations in Glucosylceramide (GlcCer) and galactosylceramide (GalCer) are glycosphingolipids contribute to neurodegeneration in amyo- GSLs with a single sugar residue: glucose and galactose respec- trophic lateral sclerosis (ALS). We show that ALS patients and tively. The successive addition of galactose and sialic acid moie- model mice display disease-related changes in spinal cord glyco- ties to GlcCer results in the synthesis of gangliosides (e.g., GM3, sphingolipids levels and in the enzymes that regulate their GM2, and GM1) (2). GSLs are especially abundant in the CNS metabolism. Importantly, we demonstrate that inhibition of and have bioactive roles in metabolism, growth factor signaling, glycosphingolipid synthesis in ALS model mice exacerbated dis- oligodendrocyte differentiation, neuroinflammation, angiogene- ease progression, whereas administration of GM3, a subtype of – — sis, and pathways of cell death (2 9) all of which are thought to glycosphingolipids, slowed it, thus implicating glycosphingolipids participate in ALS disease pathogenesis. as potentially important participants in ALS pathogenesis and Several lines of evidence suggest that aberrant changes in GSL potential targets for future drug development. homeostasis may contribute to disease pathogenesis in ALS. Ev- idence includes the detection of unique gangliosides (10), high Author contributions: J.C.D. designed research; J.C.D., C.M.T., J.P., S.C., C.B., M.A., S.P.S., titer serum auto-antibodies to GM2 and GM1 (11, 12), and ele- and W.-L.C. performed research; M.C. contributed new reagents/analytic tools; J.C.D., vated GM2 levels within the motor cortex of ALS patients (13). R.L.S., S.H.C., and L.S.S. analyzed data; and J.C.D., R.L.S., S.H.C., and L.S.S. wrote the paper. Furthermore, a number of neuromuscular diseases are associated Reviewers included: D.V.S., University of California, Berkeley. with mutations in genes that regulate the metabolism of Cer and The authors declare no conflict of interest. GSLs. For example, hereditary sensory neuropathy type I (HSNT1), Freely available online through the PNAS open access option. a disease that features dorsal root ganglion cell and MN degen- 1To whom correspondence may be addressed. Email: [email protected] or eration, is attributed to mutations in serine palmitoyltransferase [email protected]. long chain base subunit-1 (SPTLC1), the rate-limiting enzyme in 2Present address: Schepens Eye Research Institute, Department of Ophthalmology, Cer synthesis. Notably, certain mutations in SPTLC1 associated Harvard Medical School, Boston, MA 02114. with HSNT1 result in elevated levels of Cer and GlcCer (14). In This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. addition, mutations in acid ceramidase (ASHA1), an enzyme that 1073/pnas.1508767112/-/DCSupplemental. 8100–8105 | PNAS | June 30, 2015 | vol. 112 | no. 26 www.pnas.org/cgi/doi/10.1073/pnas.1508767112 Downloaded by guest on September 30, 2021 and that modulation of GSL levels in SOD1G93A mice significantly in MB SOD1G93A mice, which is very similar to what was seen affects disease course. human ALS tissue. Interestingly, similar fluctuations (i.e., an initial significant decline in SYMP and ES mice followed by a resurgence Results in MB mice relative to SYMP mice) were observed for almost all GSL Levels Are Increased in the Spinal Cords of ALS Patients. To de- GSLs downstream of GlcCer including LacCer, GL3 and GM1, termine whether GSL levels are modified in the spinal cords of with the only exception being GM3. Total levels of GM3 were ALS patients, we examined cervical spinal tissue samples collected significantly elevated at all phases of disease (SI Appendix,Fig.S3) at autopsy from six male ALS patients and six age-matched male and specific isoforms displayed progressive accumulation (Fig. 2 controls. In contrast to earlier studies that examined total GSL and SI Appendix,TableS2). Disease-related fluctuations in GalCer levels in the whole spinal cord (10), we analyzed gray matter (GM) and SPM, additional lipids derived from Cer (Fig. 1), were similar and ventral white matter (VWM) samples separately, because to several of the GSLs analyzed with levels (for major isoforms) regional variation in total ganglioside levels within segments of being significantly (P < 0.0001) depressed in SYMP and ES mice spinal cord have previously been reported (24). We also measured followed by a rebound in MB mice (Fig. 2). individual molecular isoforms of GSLs because of their distinct biological functions (25). Lipids analyzed include ceramide (Cer), Enzymes Involved in Modulating GSL Levels Are Altered in ALS Patients sphingomyelin (SPM), glucosylceramide (GlcCer), galactosylcer- and SOD1G93A Mice. Next, we asked whether GSL accumulation amide (GalCer), lactosylceramide (LacCer), globotriaosylcer- within the spinal cords of ALS patients was due to impaired en- amide(GL3),andthegangliosidesGM3andGM1(SI Appendix, zymatic action either within lysosomes or other
Recommended publications
  • The Rise and Fall of the Bovine Corpus Luteum

    The Rise and Fall of the Bovine Corpus Luteum

    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
  • Implications in Parkinson's Disease

    Implications in Parkinson's Disease

    Journal of Clinical Medicine Review Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson’s Disease Silvia Paciotti 1,2 , Elisabetta Albi 3 , Lucilla Parnetti 1 and Tommaso Beccari 3,* 1 Laboratory of Clinical Neurochemistry, Department of Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy; [email protected] (S.P.); [email protected] (L.P.) 2 Section of Physiology and Biochemistry, Department of Experimental Medicine, University of Perugia, Sant’Andrea delle Fratte, 06132 Perugia, Italy 3 Department of Pharmaceutical Sciences, University of Perugia, Via Fabretti, 06123 Perugia, Italy; [email protected] * Correspondence: [email protected] Received: 29 January 2020; Accepted: 20 February 2020; Published: 21 February 2020 Abstract: Ceramides are a family of bioactive lipids belonging to the class of sphingolipids. Sphingolipidoses are a group of inherited genetic diseases characterized by the unmetabolized sphingolipids and the consequent reduction of ceramide pool in lysosomes. Sphingolipidoses include several disorders as Sandhoff disease, Fabry disease, Gaucher disease, metachromatic leukodystrophy, Krabbe disease, Niemann Pick disease, Farber disease, and GM2 gangliosidosis. In sphingolipidosis, lysosomal lipid storage occurs in both the central nervous system and visceral tissues, and central nervous system pathology is a common hallmark for all of them. Parkinson’s disease, the most common neurodegenerative movement disorder, is characterized by the accumulation and aggregation of misfolded α-synuclein that seem associated to some lysosomal disorders, in particular Gaucher disease. This review provides evidence into the role of ceramide metabolism in the pathophysiology of lysosomes, highlighting the more recent findings on its involvement in Parkinson’s disease. Keywords: ceramide metabolism; Parkinson’s disease; α-synuclein; GBA; GLA; HEX A-B; GALC; ASAH1; SMPD1; ARSA * Correspondence [email protected] 1.
  • Oral Ambroxol Increases Brain Glucocerebrosidase Activity in a Nonhuman Primate

    Oral Ambroxol Increases Brain Glucocerebrosidase Activity in a Nonhuman Primate

    Received: 17 November 2016 | Revised: 24 January 2017 | Accepted: 12 February 2017 DOI 10.1002/syn.21967 SHORT COMMUNICATION Oral ambroxol increases brain glucocerebrosidase activity in a nonhuman primate Anna Migdalska-Richards1 | Wai Kin D. Ko2 | Qin Li2,3 | Erwan Bezard2,3,4,5 | Anthony H. V. Schapira1 1Department of Clinical Neurosciences, Institute of Neurology, University College Abstract London, NW3 2PF, United Kingdom Mutations in the glucocerebrosidase 1 (GBA1) gene are related to both Parkinson disease (PD) and 2Motac Neuroscience, Manchester, United Gaucher disease (GD). In both cases, the condition is associated with deficiency of glucocerebrosi- Kingdom dase (GCase), the enzyme encoded by GBA1. Ambroxol is a small molecule chaperone that has 3 Institute of Laboratory Animal Sciences, been shown in mice to cross the blood-brain barrier, increase GCase activity and reduce alpha- China Academy of Medical Sciences, Beijing synuclein protein levels. In this study, we analyze the effect of ambroxol treatment on GCase City, People’s Republic of China activity in healthy nonhuman primates. We show that daily administration of ambroxol results in 4University de Bordeaux, Institut des Maladies Neurodeg en eratives, UMR 5293, increased brain GCase activity. Our work further indicates that ambroxol should be investigated as Bordeaux F-33000, France a novel therapy for both PD and neuronopathic GD in humans. 5CNRS, Institut des Maladies Neurodeg en eratives, UMR 5293, Bordeaux F-33000, France KEYWORDS Correspondence ambroxol, glucocerebrosidase,
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus

    A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus

    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
  • Investigation of Candidate Genes and Mechanisms Underlying Obesity

    Investigation of Candidate Genes and Mechanisms Underlying Obesity

    Prashanth et al. BMC Endocrine Disorders (2021) 21:80 https://doi.org/10.1186/s12902-021-00718-5 RESEARCH ARTICLE Open Access Investigation of candidate genes and mechanisms underlying obesity associated type 2 diabetes mellitus using bioinformatics analysis and screening of small drug molecules G. Prashanth1 , Basavaraj Vastrad2 , Anandkumar Tengli3 , Chanabasayya Vastrad4* and Iranna Kotturshetti5 Abstract Background: Obesity associated type 2 diabetes mellitus is a metabolic disorder ; however, the etiology of obesity associated type 2 diabetes mellitus remains largely unknown. There is an urgent need to further broaden the understanding of the molecular mechanism associated in obesity associated type 2 diabetes mellitus. Methods: To screen the differentially expressed genes (DEGs) that might play essential roles in obesity associated type 2 diabetes mellitus, the publicly available expression profiling by high throughput sequencing data (GSE143319) was downloaded and screened for DEGs. Then, Gene Ontology (GO) and REACTOME pathway enrichment analysis were performed. The protein - protein interaction network, miRNA - target genes regulatory network and TF-target gene regulatory network were constructed and analyzed for identification of hub and target genes. The hub genes were validated by receiver operating characteristic (ROC) curve analysis and RT- PCR analysis. Finally, a molecular docking study was performed on over expressed proteins to predict the target small drug molecules. Results: A total of 820 DEGs were identified between
  • Expression Profiling of KLF4

    Expression Profiling of KLF4

    Expression Profiling of KLF4 AJCR0000006 Supplemental Data Figure S1. Snapshot of enriched gene sets identified by GSEA in Klf4-null MEFs. Figure S2. Snapshot of enriched gene sets identified by GSEA in wild type MEFs. 98 Am J Cancer Res 2011;1(1):85-97 Table S1: Functional Annotation Clustering of Genes Up-Regulated in Klf4 -Null MEFs ILLUMINA_ID Gene Symbol Gene Name (Description) P -value Fold-Change Cell Cycle 8.00E-03 ILMN_1217331 Mcm6 MINICHROMOSOME MAINTENANCE DEFICIENT 6 40.36 ILMN_2723931 E2f6 E2F TRANSCRIPTION FACTOR 6 26.8 ILMN_2724570 Mapk12 MITOGEN-ACTIVATED PROTEIN KINASE 12 22.19 ILMN_1218470 Cdk2 CYCLIN-DEPENDENT KINASE 2 9.32 ILMN_1234909 Tipin TIMELESS INTERACTING PROTEIN 5.3 ILMN_1212692 Mapk13 SAPK/ERK/KINASE 4 4.96 ILMN_2666690 Cul7 CULLIN 7 2.23 ILMN_2681776 Mapk6 MITOGEN ACTIVATED PROTEIN KINASE 4 2.11 ILMN_2652909 Ddit3 DNA-DAMAGE INDUCIBLE TRANSCRIPT 3 2.07 ILMN_2742152 Gadd45a GROWTH ARREST AND DNA-DAMAGE-INDUCIBLE 45 ALPHA 1.92 ILMN_1212787 Pttg1 PITUITARY TUMOR-TRANSFORMING 1 1.8 ILMN_1216721 Cdk5 CYCLIN-DEPENDENT KINASE 5 1.78 ILMN_1227009 Gas2l1 GROWTH ARREST-SPECIFIC 2 LIKE 1 1.74 ILMN_2663009 Rassf5 RAS ASSOCIATION (RALGDS/AF-6) DOMAIN FAMILY 5 1.64 ILMN_1220454 Anapc13 ANAPHASE PROMOTING COMPLEX SUBUNIT 13 1.61 ILMN_1216213 Incenp INNER CENTROMERE PROTEIN 1.56 ILMN_1256301 Rcc2 REGULATOR OF CHROMOSOME CONDENSATION 2 1.53 Extracellular Matrix 5.80E-06 ILMN_2735184 Col18a1 PROCOLLAGEN, TYPE XVIII, ALPHA 1 51.5 ILMN_1223997 Crtap CARTILAGE ASSOCIATED PROTEIN 32.74 ILMN_2753809 Mmp3 MATRIX METALLOPEPTIDASE
  • GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies

    GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies

    International Journal of Molecular Sciences Review GM2 Gangliosidoses: Clinical Features, Pathophysiological Aspects, and Current Therapies Andrés Felipe Leal 1 , Eliana Benincore-Flórez 1, Daniela Solano-Galarza 1, Rafael Guillermo Garzón Jaramillo 1 , Olga Yaneth Echeverri-Peña 1, Diego A. Suarez 1,2, Carlos Javier Alméciga-Díaz 1,* and Angela Johana Espejo-Mojica 1,* 1 Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; [email protected] (A.F.L.); [email protected] (E.B.-F.); [email protected] (D.S.-G.); [email protected] (R.G.G.J.); [email protected] (O.Y.E.-P.); [email protected] (D.A.S.) 2 Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 110231, Colombia * Correspondence: [email protected] (C.J.A.-D.); [email protected] (A.J.E.-M.); Tel.: +57-1-3208320 (ext. 4140) (C.J.A.-D.); +57-1-3208320 (ext. 4099) (A.J.E.-M.) Received: 6 July 2020; Accepted: 7 August 2020; Published: 27 August 2020 Abstract: GM2 gangliosidoses are a group of pathologies characterized by GM2 ganglioside accumulation into the lysosome due to mutations on the genes encoding for the β-hexosaminidases subunits or the GM2 activator protein. Three GM2 gangliosidoses have been described: Tay–Sachs disease, Sandhoff disease, and the AB variant. Central nervous system dysfunction is the main characteristic of GM2 gangliosidoses patients that include neurodevelopment alterations, neuroinflammation, and neuronal apoptosis. Currently, there is not approved therapy for GM2 gangliosidoses, but different therapeutic strategies have been studied including hematopoietic stem cell transplantation, enzyme replacement therapy, substrate reduction therapy, pharmacological chaperones, and gene therapy.
  • Molecular Reprogramming in Tomato Pollen During Development And

    Molecular Reprogramming in Tomato Pollen During Development And

    Molecular reprogramming in tomato pollen during development and heat stress Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Biowissenschaften (FB15) der Goethe-Universität Frankfurt am Main von Mario Keller geboren in Frankfurt am Main (Hessen) Frankfurt am Main 2018 (D30) Vom Fachbereich Biowissenschaften (FB15) der Goethe-Universität als Dissertation angenommen. Dekan: Prof. Dr. Sven Klimpel Gutachter: Prof. Dr. Enrico Schleiff, Jun. Prof. Dr. Michaela Müller-McNicoll Datum der Disputation: 25.03.2019 Index of contents Index of contents Index of contents ....................................................................................................................................... i Index of figures ........................................................................................................................................ iii Index of tables ......................................................................................................................................... iv Index of supplemental material ................................................................................................................ v Index of supplemental figures ............................................................................................................... v Index of supplemental tables ................................................................................................................ v Abbreviations ..........................................................................................................................................
  • Genetics and Epigenetics in Parkinson´S Disease

    Genetics and Epigenetics in Parkinson´S Disease

    Genetics and epigenetics in Parkinson´s disease. Luis Navarro Sánchez. Thesis supervisor: Jordi Pérez Tur. Unitat de Genètica Molecular, Institut de Biomedicina de València, CSIC. Doctoral studies: Biotechnology. Facultat de Ciències Biològiques, Universitat de València. Tras preguntas y más preguntas y miedo y nervios y ansiedad y más ansiedad y bloqueos y periodos depresivos y tristeza y mucha, pero mucha, mierda… acabas. Tarde y reventado, pero acabas. Y lo único que quieres es pasar página y que esto no te pase más nunca. ¿Y? Pues que te surgen más preguntas y más miedo y más nervios…. Y te das cuenta de que vives en un puto bucle científico que se está comiendo tu vida. ¿Y? No lo sé, estoy en ello. Terapia y medicación, supongo. Aunque la autodestrucción y los realities son muy apetecibles. En primer lugar, las formalidades. Gracias Jordi por dejarme que trabajara en la UGM. A estas alturas, creo que los dos nos habremos planteado muchas veces si fue una buena decisión, pero ya da igual. A continuación, el momento pasteleo, aunque si no sé dar un abrazo, no penséis que esto me va a salir fluido. Y menos aún, estando sobrio. Y que no se me enfade nadie si no he puesto su nombre o si no he escrito un parrafazo lacrimógeno y azucarado exaltando la belleza de nuestra relación. Si dejo que leas esto, significa que también eres importante para mí. Lo mejor de todo este tiempo sois, de calle, vosotros y vosotras: Bea, Carolina, Eva, Fer, LauraA, LauraG, María, Marta, Pili, Silvia, Vicente/Andreu y VicenteH.
  • Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality

    Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality

    Transcriptome Alteration in the Diabetic Heart by Rosiglitazone: Implications for Cardiovascular Mortality Kitchener D. Wilson1,3., Zongjin Li1., Roger Wagner2, Patrick Yue2, Phillip Tsao2, Gergana Nestorova4, Mei Huang1, David L. Hirschberg4, Paul G. Yock2,3, Thomas Quertermous2, Joseph C. Wu1,2* 1 Department of Radiology, Stanford University School of Medicine, Stanford, California, United States of America, 2 Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America, 3 Department of Bioengineering, Stanford University School of Medicine, Stanford, California, United States of America, 4 Human Immune Monitoring Center, Stanford University School of Medicine, Stanford, California, United States of America Abstract Background: Recently, the type 2 diabetes medication, rosiglitazone, has come under scrutiny for possibly increasing the risk of cardiac disease and death. To investigate the effects of rosiglitazone on the diabetic heart, we performed cardiac transcriptional profiling and imaging studies of a murine model of type 2 diabetes, the C57BL/KLS-leprdb/leprdb (db/db) mouse. Methods and Findings: We compared cardiac gene expression profiles from three groups: untreated db/db mice, db/db mice after rosiglitazone treatment, and non-diabetic db/+ mice. Prior to sacrifice, we also performed cardiac magnetic resonance (CMR) and echocardiography. As expected, overall the db/db gene expression signature was markedly different from control, but to our surprise was
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD

    Supplementary Table S4. FGA Co-Expressed Gene List in LUAD

    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
  • Polymorphisms in the Glucocerebrosidase Gene And

    Polymorphisms in the Glucocerebrosidase Gene And

    BMC Medical Genetics BioMed Central Technical advance Open Access Polymorphisms in the glucocerebrosidase gene and pseudogene urge caution in clinical analysis of Gaucher disease allele c.1448T>C (L444P) Justin T Brown*, Cora Lahey, Walairat Laosinchai-Wolf and Andrew G Hadd Address: Asuragen, Inc., Austin, Texas, USA Email: Justin T Brown* - [email protected]; Cora Lahey - [email protected]; Walairat Laosinchai- Wolf - [email protected]; Andrew G Hadd - [email protected] * Corresponding author Published: 03 August 2006 Received: 17 March 2006 Accepted: 03 August 2006 BMC Medical Genetics 2006, 7:69 doi:10.1186/1471-2350-7-69 This article is available from: http://www.biomedcentral.com/1471-2350/7/69 © 2006 Brown et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Gaucher disease is a potentially severe lysosomal storage disorder caused by mutations in the human glucocerebrosidase gene (GBA). We have developed a multiplexed genetic assay for eight diseases prevalent in the Ashkenazi population: Tay-Sachs, Gaucher type I, Niemann- Pick types A and B, mucolipidosis type IV, familial dysautonomia, Canavan, Bloom syndrome, and Fanconi anemia type C. This assay includes an allelic determination for GBA allele c.1448T>C (L444P). The goal of this study was to clinically evaluate this assay. Methods: Biotinylated, multiplex PCR products were directly hybridized to capture probes immobilized on fluorescently addressed microspheres. After incubation with streptavidin- conjugated fluorophore, the reactions were analyzed by Luminex IS100.