<<

Conformal σ-Models

Thomas Quella University of Amsterdam

Edinburgh, 20.1.2010

Based on arXiv:0809.1046 (with V. Mitev and V. Schomerus)

and arXiv:09080878 (with C. Candu, V. Mitev, H. Saleur and V. Schomerus)

[This research received funding from an Intra-European Marie-Curie Fellowship] σ-models in a nutshell

World-sheet Target space

2D surface (Pseudo-)Riemannian (w/wo boundaries or handles) (extra structure: gauge fields, ...)

embedding

strip cylinder

embedding

σ-models = (quantum) field theories

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 2/40 A simple example: The circle

The of circle theories

2 R0 R R0 /R

Radius Quantum regime Classical regime

S1 =∼ S3

Two lessons 2 There is an equivalence: R ↔ R0 /R (“T-duality”) In the quantum regime geometry starts to loose its meaning

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 3/40 A simple example: The circle

The moduli space of circle theories

2 R0 R R0 /R

Radius Quantum regime Classical regime

S1 =∼ S3

An open partition function

  2 X w P Energy(R) 1 w 2R2 Z(q, z|R) = tr z q = η(q) z q w∈Z

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 3/40 Adding curvature and ...

Appearances of superspace σ-models

String theory

Quantization of strings in flux backgrounds [Berkovits] / correspondence [Maldacena] Moduli stabilization in string phenomenology [KKLT] [...]

Disordered systems Quantum Hall systems Self avoiding random walks, polymer , ... Efetov’s supersymmetry trick

Conformal invariance String theory: Diffeomorphism + Weyl invariance Statistical physics: Critical points / 2nd order phase transitions

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 4/40 String quantization: The pure formalism

Ingredients Superspace σ-model encoding geometry and fluxes Pure : Curved ghost system

BRST procedure [Berkovits at al] [Grassi et al] [...]

Features Manifest target space supersymmetry Manifest world-sheet Action quantizable, but quantization hard in practice

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 5/40 5 3 Strings on AdS5 × S and AdS4 × CP

Spectrum accessible because of integrability Factorizable S-matrix 3 Structure fixed (up to a phase) by SU(2|2) n R -symmetry Bethe ansatz, Y-systems, ...

Open issues String scattering amplitudes? 2D Lorentz invariant formulation? Other backgrounds? → , nil-, ...

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 6/40 The standard perspective on AdS/CFT

Overview Gauge theory String theory

5 N = 4 Super Yang-Mills AdS5 × S 3 N = 6 Chern-Simons AdS4 × CP S-matrix, spectrum,... ⇐⇒ S-matrix, spectrum,... t’Hooft coupling λ, ... Radius R, ...

Problem From this perspective, both sides need to be solved separately.

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 7/40 An alternative perspective on AdS/CFT

Proposal: Two step procedure...

Weakly coupled 4D gauge theory O Feynman diagram expansion  Weakly coupled 2D theory (Topological σ-model) O “Well-established machinery”  Strongly curved 2D σ-model

[Berkovits] [Berkovits,Vafa] [Berkovits]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 8/40 Summary: String theory/gauge theory dualities ? Weak curvature Strong curvature String theory in 10D (σ-model with constraints) 1/R

λ Gauge theory Strong coupling Weak coupling ?

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 9/40 Summary: String theory/gauge theory dualities

Weak curvature Strong curvature String theory in 10D (σ-model with constraints) 1/R

g “Some dual 2D theory” Strong coupling Weak coupling

Gauge theory λ Strong coupling Weak coupling

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 9/40 The structure of this talk

Outline

1 Supercoset σ-models Occurrence in string theory and condensed matter theory Ricci flatness and conformal invariance

2 Particular examples Superspheres Projective

3 Quasi-abelian perturbation theory Exact open string spectra World-sheet duality for supersphere σ-models

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 10/40 Appearance of supercosets

String backgrounds as supercosets... 5 3 2 Minkowski AdS5 × S AdS4 × CP AdS2 × S super-Poincar´e PSU(2,2|4) OSP(6|2,2) PSU(1,1|2) Lorentz SO(1,4)×SO(5) U(3)×SO(1,3) U(1)×U(1)

[Metsaev,Tseytlin] [Berkovits,Bershadsky,Hauer,Zhukov,Zwiebach] [Arutyunov,Frolov]

Supercosets in statistical physics... IQHE Dense polymers Dense polymers 2S+1|2S S−1|S (non-conformal) S CP U(1,1|2) OSP(2S+2|2S) U(S|S) U(1|1)×U(1|1) OSP(2S+1|2S) U(1)×U(S−1|S)

[Weidenm¨uller][Zirnbauer] [Read,Saleur] [Candu,Jacobsen,Read,Saleur]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 11/40 A unifying construction

Definition of the cosets G/H : gh ∼ g

Some additional requirements for conformal invariance H ⊂ G is invariant under an automorphism Ricci flatness (“super Calabi-Yau”) ⇔ vanishing

f f = 0

Examples: Cosets of PSU(N|N), OSP(2S + 2|2S), D(2, 1; α).

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 12/40 Properties of conformal supercoset models

The moduli space of generic supercoset theories

Radius Quantum regime Classical regime

Properties at a glance Supersymmetry G: g 7→ kg (realized geometrically)

Conformal invariance [Kagan,Young] [Babichenko]

Integrability [Pohlmeyer] [L¨uscher]... [Bena,Polchinski,Roiban] [Young]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 13/40 Properties of conformal supercoset models

The moduli space of generic supercoset theories

Radius Quantum regime Classical regime

The general open string partition function

  Cartan Energy(R) X G Z(q, z|R) = tr z q = ψΛ(q, R) χΛ (z) Λ | {z } | {z } Dynamics Symmetry

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 13/40 Sketch of conformal invariance

The β-function vanishes identically...

X β = = 0 certain G-invariants

Ingredients: Invariant form: κµν Structure constants: f µνλ

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Sketch of conformal invariance

The β-function vanishes identically...

f f = 0

Ingredients: Invariant form: κµν Structure constants: f µνλ

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Sketch of conformal invariance

The β-function vanishes identically...

f = 0

There is a unique invariant rank 3 tensor!

[Bershadsky,Zhukov,Vaintrob’99] [Babichenko’06]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Sketch of conformal invariance

The β-function vanishes identically...

∼ f f = 0

There is a unique invariant rank 3 tensor!

[Bershadsky,Zhukov,Vaintrob’99] [Babichenko’06]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Supersphere σ-models

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 15/40 The supersphere S 3|2

3|2 4|2 Realization of S as a submanifold of flat superspace R  ~x  ~ ~ 2 2 2 X = η1 with X = ~x + 2η1η2 = R η2

Symmetry super- O(4) × SP(2) −−−−−−−−−−−−→ OSP(4|2) symmetrization

Realization as a supercoset OSP(4|2) S3|2 = OSP(3|2)

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 16/40 The supersphere σ-model

Action functional Z µ 2 2 Sσ = ∂µX~ · ∂ X~ with X~ = R

The space of states for freely moving open strings

Y ai Y bj Y 2 ck ~ 2 2 X ∂t X ∂t X ··· and X = R ⇒ Products of coordinate fields and their derivatives

Large volume partition function “Single particle energies” add up → # derivatives

Partition function is pure combinatorics [Candu,Saleur] [Mitev,TQ,Schomerus]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 17/40 The large volume limit

Keeping track of quantum numbers... Symmetry

OSP(4|2) → SP(2) × SO(4) =∼ SU(2) × SU(2) × SU(2)

Classify states according to the bosonic symmetry:

~ 1 1  1  X = (~x, η1, η2): V = 0, 2 , 2 ⊕ 2 , 0, 0 | {z } | {z } bosons fermions Other quantum numbers: Energy qE Polynomial grade tn (broken by X~ 2 = R2) Use this to characterize all monomials

Y ai Y bj Y 2 ck ~ 2 2 X ∂t X ∂t X ··· with X = R

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 18/40 Constituents of the partition function

A useful dictionary Field theoretic quantity Contribution Representation

±1 1 2 Fermionic coordinates t z1 2

±1 ±1 ±1 ∓1 1 1  4 Bosonic coordinates t z2 z3 , t z2 z3 2 , 2

Derivative ∂ q

Constraint X~ 2 = R2 1 − t2 Constraint ∂nX~ 2 = 0 1 − t2qn

t ↔ polynomial grade z1, z2, z3 ↔ SU(2) quantum numbers

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 19/40 The full σ-model partition function

Summing up all contributions...

" ∞ − 1 Y 2 n Zσ(R∞) = lim q 24 (1 − t q )× t→1 n=0 ∞ n −1 n # Y (1 + z1tq )(1 + z tq ) × 1 n −1 n −1 n −1 −1 n n=0 (1 − z2z3tq )(1 − z2z3 tq )(1 − z2 z3tq )(1 − z2 z3 tq )

The problem... Organize this into representations of OSP(4|2)!

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 20/40 Decomposition into representations of OSP(4|2)

Since the model is symmetric under OSP(4|2) the partition function may be decomposed into characters of OSP(4|2): X Z (R ) = ψσ (q) χ (z) σ ∞ [j1,j2,j3] [j1,j2,j3] [j1,j2,j3]

All the non-trivial information is encoded in

−C[j ,j ,j ]/2 ∞ σ q 1 2 3 X m+n m (m+4j +2n+1)+ n +j − 1 ψ (q)= (−1) q 2 1 2 1 8 [j1,j2,j3] η(q)4 n,m=0  (j − n )2 (j + n +1)2   (j − n )2 (j + n +1)2  × q 2 2 − q 2 2 q 3 2 − q 3 2

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 21/40 Sketch of the large volume partition function

E

∞ many representations i Q a ∂t X X j 1

1 2

Spherical harmonics on S3|2 Q X aj 0

Weak curvature (R = ∞)

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 22/40 Sketch of the large volume partition function

E Fundamental⊗Adjoint E

Adjoint ∞ many representations 1 1

Fundamental 1 1 2 2

Trivial Spherical harmonics on S3|2 0 0

Quantum regime (R = 1) Weak curvature (R = ∞)

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 22/40 A world-sheet duality for supersphere σ-models

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 23/40 A world-sheet duality for superspheres?

geometric Supersphere σ-model

Quantum regime Large volume R Zσ(q, z|R)

R2 = 1 + g 2

2 2 g ZGN(q, z|g ) Weak coupling Strong coupling

non-geometric OSP(4|2) Gross-Neveu model (potential) [Candu,Saleur]2 [Mitev,TQ,Schomerus]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 24/40 Interpolation of an open string spectrum

In the two extreme limits the spectrum has the form...

E Fundamental⊗Adjoint E

Adjoint ∞ many representations 1 1

Fundamental 1 1 2 2

Trivial Spherical harmonics on S3|2

Quantum regime (R = 1) Weak curvature (R = ∞)

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 25/40 2 P σ 2 Goal: ZGN(q, z|g ) = Λ ψΛ(q, g ) χΛ(z)

[Candu,Saleur] [Mitev,TQ,Schomerus]

Evidence for the duality

g 2 Weak coupling Strong coupling

Lattice formulation

Free ghosts / WZW model Free theory Affine symmetry Combinatorics

[Candu,Saleur]2 [Mitev,TQ,Schomerus]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 26/40 Evidence for the duality

g 2 Weak coupling Strong coupling

Lattice formulation

Free ghosts / WZW model Free theory Affine symmetry Combinatorics

2 P σ 2 Goal: ZGN(q, z|g ) = Λ ψΛ(q, g ) χΛ(z)

[Candu,Saleur] [Mitev,TQ,Schomerus]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 26/40 OSP(4|2) Gross-Neveu model

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 27/40 The OSP(4|2) Gross-Neveu model Field content

Fundamental OSP(4|2)-multiplet (ψ1, ψ2, ψ3, ψ4, β, γ) All these fields have scaling dimension 1/2

Formulation as a Gross-Neveu model  Z  ¯ ¯   Sfree = ψ∂ψ + 2β∂γ + h.c. 2  SGN = Sfree + g Sint Z   ¯ ¯2  Sint = ψψ + βγ¯ − γβ

2 Goal: ZGN(q, z|g ) g 2 Weak coupling Strong coupling

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 28/40 An open string spectrum

Formulation as a deformed OSP(4|2) WZW model Z 2  SGN = SWZW + g Sdef with Sdef = str J¯J

Solution at g = 0 At g = 0 there is an OSP(4|2) Kac-Moody algebra symmetry Partition functions can be constructed using combinatorics

An open string partition function for g = 0

2 X WZW ZGN(g = 0) = ψΛ (q) χΛ(z) Λ | {z } | {z } energy levels OSP(4|2) content

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 29/40 An open string spectrum

Formulation as a deformed OSP(4|2) WZW model Z 2  SGN = SWZW + g Sdef with Sdef = str J¯J

Solution at g = 0 At g = 0 there is an OSP(4|2) Kac-Moody algebra symmetry Partition functions can be constructed using combinatorics

An open string partition function for all g

2 − 1 g C 2 X 2 1+g2 Λ WZW ZGN(g ) = q ψΛ (q) χΛ(z) Λ | {z } | {z } | {z } anomalous dimension energy levels OSP(4|2) content

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 29/40 A D- spectrum

A specific D-brane in the OSP(4|2) WZW model... The spectrum of a “twisted D-brane” is

2 ZGN(g = 0) = χ{0}(q, z) + χ{1/2}(q, z) | {z } | {z } vacuum fundamental

The problem (yet again...) Organize this into representations of OSP(4|2)!

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 30/40 ∞ WZW 1 X n+m m (m+4j +2n+1)+j + n − 1 ψ (q) = (−1) q 2 1 1 2 8 [j1,j2,j3] η(q)4 n,m=0

(j − n )2 (j + n +1)2 (j − n )2 (j + n +1)2 × (q 2 2 − q 2 2 )(q 3 2 − q 3 2 )

Decomposition into representations of OSP(4|2)

Plugging in concrete expressions, one obtains

" 2 2 2 2 2 2 2 2 # 2 η(q) θ2(q , z2 )θ2(q , z3 ) θ3(q , z2 )θ3(q , z3 ) ZGN(g = 0) = 2 + 2 θ4(z1) η(q) η(q) X = ψWZW (q) χ (z) [j1,j2,j3] [j1,j2,j3]

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 31/40 Decomposition into representations of OSP(4|2)

Plugging in concrete expressions, one obtains

" 2 2 2 2 2 2 2 2 # 2 η(q) θ2(q , z2 )θ2(q , z3 ) θ3(q , z2 )θ3(q , z3 ) ZGN(g = 0) = 2 + 2 θ4(z1) η(q) η(q) X = ψWZW (q) χ (z) [j1,j2,j3] [j1,j2,j3]

∞ WZW 1 X n+m m (m+4j +2n+1)+j + n − 1 ψ (q) = (−1) q 2 1 1 2 8 [j1,j2,j3] η(q)4 n,m=0

(j − n )2 (j + n +1)2 (j − n )2 (j + n +1)2 × (q 2 2 − q 2 2 )(q 3 2 − q 3 2 )

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 31/40 What did we achieve now?

Affine {0} Affine {1/2}

E Fundamental⊗Adjoint

Adjoint 1

Fundamental 1 2

Trivial

WZW model (g = 0)

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 32/40 Interpolation of the spectrum

2 − 1 g C 2 X 2 1+g2 Λ WZW ZGN(g ) = q ψΛ (q) χΛ(z) Λ | {z } | {z } | {z } anomalous dimension energy levels OSP(4|2) content

E Fundamental⊗Adjoint E

Adjoint ∞ many representations 1 1

Fundamental 1 1 2 2

Trivial Spherical harmonics on S3|2

WZW model (g = 0) Strong deformation (g = ∞) Supersphere σ-model at R → ∞

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 33/40 Quasi-abelian deformations

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 34/40 Radius deformation of the free boson

Consider a deformation...

R0 R √ R = R0 1 + γ

Freely moving open strings on a circle of radius R...

w2 w2 1 X w 1 X 2R2(1+γ) Z(q, z|R) = z q 2R2 = q 0 χ (z) η(q) η(q) w w∈Z w∈Z Anomalous dimensions " # w 2 1 γ w 2 γ δγEw = 2 − 1 = − 2 = − C2(w) 2R0 1 + γ 1 + γ 2R0 1 + γ

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 35/40 Quasi-abelianness of WZW theories

The effective deformation for conformal dimensions The combinatorics of the perturbation series is determined by the current algebra

k δµν if µν Jλ(w) k δµν Jµ(z)Jν(w) = + λ ∼ (z − w)2 z − w (z − w)2

Vanishing Killing form ⇒ the perturbation is quasi-abelian (for the purposes of calculating anomalous dimensions)

[Bershadsky,Zhukov,Vaintrob] [TQ,Schomerus,Creutzig] In the OSP(4|2) WZW model a representation Λ shifts by

1 g 2C 1 1  δE (g 2) = − Λ = − 1 − C Λ 2 1 + g 2 2 R2 Λ

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 36/40 Projective Superspaces

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 37/40 Projective superspaces CPS−1|S

New features 3|4 Family contains supertwistor space CP → [Witten] Non-trivial topology ⇒ Monopoles and θ-term

Symplectic fermions as a subsector [Candu,Creutzig,Mitev,Schomerus] θ-term ⇒ twists σ-model brane spectrum can be argued to be

1   X − 2 λ(R,θ) 1−λ(R,θ) f (R,θ)CΛ ∞ ZR,θ(q, z) = q q ψΛ (q) χΛ(z) | {z } Λ | {z } | {z } twist Casimir result for R → ∞

[Candu,Mitev,TQ,Saleur,Schomerus] Currently no free field theory point is known...

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 38/40 Conclusions

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 39/40 Conclusions and Outlook

Conclusions Using supersymmetry we determined the full spectrum of anomalous dimensions for certain open string spectra in various models as a function of the moduli Our results provided strong evidence for a duality between supersphere σ-models and Gross-Neveu models

Outlook Conformal invariance ↔ Integrability Closed string spectra? Application to more stringy backgrounds...

Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 40/40