Conformal Superspace Σ-Models

Conformal Superspace Σ-Models

Conformal Superspace σ-Models Thomas Quella University of Amsterdam Edinburgh, 20.1.2010 Based on arXiv:0809.1046 (with V. Mitev and V. Schomerus) and arXiv:09080878 (with C. Candu, V. Mitev, H. Saleur and V. Schomerus) [This research received funding from an Intra-European Marie-Curie Fellowship] σ-models in a nutshell World-sheet Target space 2D surface (Pseudo-)Riemannian manifold (w/wo boundaries or handles) (extra structure: gauge fields, ...) embedding strip cylinder embedding σ-models = (quantum) field theories Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 2/40 A simple example: The circle The moduli space of circle theories 2 R0 R R0 =R Radius Quantum regime Classical regime S1 =∼ S3 Two lessons 2 There is an equivalence: R $ R0 =R (\T-duality") In the quantum regime geometry starts to loose its meaning Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 3/40 A simple example: The circle The moduli space of circle theories 2 R0 R R0 =R Radius Quantum regime Classical regime S1 =∼ S3 An open string partition function 2 X w P Energy(R) 1 w 2R2 Z(q; zjR) = tr z q = η(q) z q w2Z Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 3/40 Adding curvature and supersymmetry... Appearances of superspace σ-models String theory Quantization of strings in flux backgrounds [Berkovits] String theory / gauge theory correspondence [Maldacena] Moduli stabilization in string phenomenology [KKLT] [...] Disordered systems Quantum Hall systems Self avoiding random walks, polymer physics, ... Efetov's supersymmetry trick Conformal invariance String theory: Diffeomorphism + Weyl invariance Statistical physics: Critical points / 2nd order phase transitions Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 4/40 String quantization: The pure spinor formalism Ingredients Superspace σ-model encoding geometry and fluxes Pure spinors: Curved ghost system BRST procedure [Berkovits at al] [Grassi et al] [...] Features Manifest target space supersymmetry Manifest world-sheet conformal symmetry Action quantizable, but quantization hard in practice Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 5/40 5 3 Strings on AdS5 × S and AdS4 × CP Spectrum accessible because of integrability Factorizable S-matrix 3 Structure fixed (up to a phase) by SU(2j2) n R -symmetry Bethe ansatz, Y-systems, ... Open issues String scattering amplitudes? 2D Lorentz invariant formulation? Other backgrounds? ! Conifold, nil-manifolds, ... Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 6/40 The standard perspective on AdS/CFT Overview Gauge theory String theory 5 N = 4 Super Yang-Mills AdS5 × S 3 N = 6 Chern-Simons AdS4 × CP S-matrix, spectrum,... () S-matrix, spectrum,... t'Hooft coupling λ, ... Radius R, ... Problem From this perspective, both sides need to be solved separately. Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 7/40 An alternative perspective on AdS/CFT Proposal: Two step procedure... Weakly coupled 4D gauge theory O Feynman diagram expansion Weakly coupled 2D theory (Topological σ-model) O \Well-established machinery" Strongly curved 2D σ-model [Berkovits] [Berkovits,Vafa] [Berkovits] Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 8/40 Summary: String theory/gauge theory dualities ? Weak curvature Strong curvature String theory in 10D (σ-model with constraints) 1=R λ Gauge theory Strong coupling Weak coupling ? Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 9/40 Summary: String theory/gauge theory dualities Weak curvature Strong curvature String theory in 10D (σ-model with constraints) 1=R g \Some dual 2D theory" Strong coupling Weak coupling Gauge theory λ Strong coupling Weak coupling Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 9/40 The structure of this talk Outline 1 Supercoset σ-models Occurrence in string theory and condensed matter theory Ricci flatness and conformal invariance 2 Particular examples Superspheres Projective superspaces 3 Quasi-abelian perturbation theory Exact open string spectra World-sheet duality for supersphere σ-models Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 10/40 Appearance of supercosets String backgrounds as supercosets... 5 3 2 Minkowski AdS5 × S AdS4 × CP AdS2 × S super-Poincar´e PSU(2;2j4) OSP(6j2;2) PSU(1;1j2) Lorentz SO(1;4)×SO(5) U(3)×SO(1;3) U(1)×U(1) [Metsaev,Tseytlin] [Berkovits,Bershadsky,Hauer,Zhukov,Zwiebach] [Arutyunov,Frolov] Supercosets in statistical physics... IQHE Dense polymers Dense polymers 2S+1j2S S−1jS (non-conformal) S CP U(1;1j2) OSP(2S+2j2S) U(SjS) U(1j1)×U(1j1) OSP(2S+1j2S) U(1)×U(S−1jS) [Weidenm¨uller][Zirnbauer] [Read,Saleur] [Candu,Jacobsen,Read,Saleur] Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 11/40 A unifying construction Definition of the cosets G=H : gh ∼ g Some additional requirements for conformal invariance H ⊂ G is invariant subgroup under an automorphism Ricci flatness (\super Calabi-Yau") , vanishing Killing form f f = 0 Examples: Cosets of PSU(NjN), OSP(2S + 2j2S), D(2; 1; α). Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 12/40 Properties of conformal supercoset models The moduli space of generic supercoset theories Radius Quantum regime Classical regime Properties at a glance Supersymmetry G: g 7! kg (realized geometrically) Conformal invariance [Kagan,Young] [Babichenko] Integrability [Pohlmeyer] [L¨uscher]... [Bena,Polchinski,Roiban] [Young] Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 13/40 Properties of conformal supercoset models The moduli space of generic supercoset theories Radius Quantum regime Classical regime The general open string partition function Cartan Energy(R) X G Z(q; zjR) = tr z q = Λ(q; R) χΛ (z) Λ | {z } | {z } Dynamics Symmetry Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 13/40 Sketch of conformal invariance The β-function vanishes identically... X β = = 0 certain G-invariants Ingredients: Invariant form: κµν Structure constants: f µνλ Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Sketch of conformal invariance The β-function vanishes identically... f f = 0 Ingredients: Invariant form: κµν Structure constants: f µνλ Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Sketch of conformal invariance The β-function vanishes identically... f = 0 There is a unique invariant rank 3 tensor! [Bershadsky,Zhukov,Vaintrob'99] [Babichenko'06] Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Sketch of conformal invariance The β-function vanishes identically... ∼ f f = 0 There is a unique invariant rank 3 tensor! [Bershadsky,Zhukov,Vaintrob'99] [Babichenko'06] Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 14/40 Supersphere σ-models Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 15/40 The supersphere S 3j2 3j2 4j2 Realization of S as a submanifold of flat superspace R 0 ~x 1 ~ ~ 2 2 2 X = @η1A with X = ~x + 2η1η2 = R η2 Symmetry super- O(4) × SP(2) −−−−−−−−−−−−! OSP(4j2) symmetrization Realization as a supercoset OSP(4j2) S3j2 = OSP(3j2) Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 16/40 The supersphere σ-model Action functional Z µ 2 2 Sσ = @µX~ · @ X~ with X~ = R The space of states for freely moving open strings Y ai Y bj Y 2 ck ~ 2 2 X @t X @t X ··· and X = R ) Products of coordinate fields and their derivatives Large volume partition function \Single particle energies" add up ! # derivatives Partition function is pure combinatorics [Candu,Saleur] [Mitev,TQ,Schomerus] Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 17/40 The large volume limit Keeping track of quantum numbers... Symmetry OSP(4j2) ! SP(2) × SO(4) =∼ SU(2) × SU(2) × SU(2) Classify states according to the bosonic symmetry: ~ 1 1 1 X = (~x; η1; η2): V = 0; 2 ; 2 ⊕ 2 ; 0; 0 | {z } | {z } bosons fermions Other quantum numbers: Energy qE Polynomial grade tn (broken by X~ 2 = R2) Use this to characterize all monomials Y ai Y bj Y 2 ck ~ 2 2 X @t X @t X ··· with X = R Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 18/40 Constituents of the partition function A useful dictionary Field theoretic quantity Contribution Representation ±1 1 2 Fermionic coordinates t z1 2 ±1 ±1 ±1 ∓1 1 1 4 Bosonic coordinates t z2 z3 , t z2 z3 2 ; 2 Derivative @ q Constraint X~ 2 = R2 1 − t2 Constraint @nX~ 2 = 0 1 − t2qn t $ polynomial grade z1; z2; z3 $ SU(2) quantum numbers Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 19/40 The full σ-model partition function Summing up all contributions... " 1 − 1 Y 2 n Zσ(R1) = lim q 24 (1 − t q )× t!1 n=0 1 n −1 n # Y (1 + z1tq )(1 + z tq ) × 1 n −1 n −1 n −1 −1 n n=0 (1 − z2z3tq )(1 − z2z3 tq )(1 − z2 z3tq )(1 − z2 z3 tq ) The problem... Organize this into representations of OSP(4j2)! Thomas Quella (University of Amsterdam) Conformal Superspace σ-Models 20/40 Decomposition into representations of OSP(4j2) Since the model is symmetric under OSP(4j2) the partition function may be decomposed into characters of OSP(4j2): X Z (R ) = σ (q) χ (z) σ 1 [j1;j2;j3] [j1;j2;j3] [j1;j2;j3] All the non-trivial information is encoded in −C[j ;j ;j ]=2 1 σ q 1 2 3 X m+n m (m+4j +2n+1)+ n +j − 1 (q)= (−1) q 2 1 2 1 8 [j1;j2;j3] η(q)4 n;m=0 (j − n )2 (j + n +1)2 (j − n )2 (j + n +1)2 × q 2 2 − q 2 2 q 3 2 − q 3 2 Thomas Quella (University of Amsterdam)

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    50 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us