Self-Organization, Plasticity, and Low-level Visual Phenomena in a Laterally Connected Map Mo del of the Primary Visual Cortex Risto Miikkulainen, James A. Bednar, Yo onsuck Cho e, and Joseph Sirosh Department of Computer Sciences The UniversityofTexas at Austin, Austin, TX 78712 fristo,jb ednar,yscho e,
[email protected] Abstract Based on a Hebbian adaptation pro cess, the a erent and lateral connections in the RF-LISSOM mo del organize simultaneously and co op eratively, and form structures such as those observed in the primary visual cortex. The neurons in the mo del develop lo cal receptive elds that are organized into orientation, o cular dominance, and size selectivity columns. At the same time, patterned lateral connections form b etween neurons that follow the receptive eld organization. This structure is in a continuously-adapting dynamic equilibrium with the external and intrinsic input, and can account for reorganization of the adult cortex following retinal and cortical lesions. The same learning pro cesses may b e resp onsible for a number of low-level functional phenomena such as tilt aftere ects, and combined with the leaky integrator mo del of the spiking neuron, for segmentation and binding. The mo del can also b e used to verify quantitatively the hyp othesis that the visual cortex forms a sparse, redundancy-reduced enco ding of the input, which allows it to pro cess massive amounts of visual information eciently. 1 Intro duction The primary visual cortex, like many other regions of the neo cortex, is a top ographic map, organized so that adjacent neurons resp ond to adjacent regions of the visual eld.