1 Receptive Fields and Maps in the Visual Cortex: Models of Ocular

Total Page:16

File Type:pdf, Size:1020Kb

1 Receptive Fields and Maps in the Visual Cortex: Models of Ocular Receptive Fields and Maps in the Visual Cortex Mo dels of Ocular Dominance and Orientation Columns Kenneth D Miller Published in Mo dels of Neural Networks IIIEDomanyJLvan Hemmen and K Schulten Eds SpringerVerlag NY pp Anearlier and briefer version of this article appeared in The Handbook of Neural Networks MAArbib Ed The MIT Press under the ti tle Models of Ocular Dominance and Orientation Columns Reused by permission ABSTRACT The formation of o cular dominance and orientation columns in the mammalian visual cortex is briey reviewed Correlationbased mo d els for their development are then discussed b eginning with the mo dels of Von der Malsburg For the case of semilinear mo dels mo del b ehavior is well understo o d correlations determine receptive eld structure intracor tical interactions determine pro jective eld structure and the knitting together of the two determines the cortical map This provides a ba sis for simple but powerful mo dels of o cular dominance and orientation column formation o cular dominance columns form through a correlation based comp etition b etween lefteye and righteye inputs while orientation columns can form through a comp etition between ONcenter and OFF center inputs These mo dels accountwell for receptive eld structure but are not completely adequate to account for the details of cortical map struc ture Alternative approaches to map structure including the selforganizing feature map of Kohonen are discussed Finally theories of the computa tional function of correlationbased and selforganizing rules are discussed Depts of Physiology and Otolaryngology WM Keck Center for Integra tive Neuroscience and Sloan Center for Theoretical Neurobiology Universityof California San Francisco CA ii Receptive Fields and Maps in the Visual Cortex Postscript version of this gure not available hence gure is omitted from preprint of pap er FIGURE Schematic of the mature visual system Retinal ganglion cells from the two eyes pro ject to separate layers of the lat eral geniculate nucleus LGN Neurons from these twolayers pro ject to separate patches or strip es within layer of visual cortex V Bino cular regions receiv ing input from b oth eyes are depicted at the b orders b etween the eyesp ecic patches The cortex is depicted in crosssection so that layers are ab oveand layers b elow the LGNrecipientlayer Reprinted bypermissionfrom c by the AAAS INTRODUCTION The brain is a learning machine An animals exp erience shap es the neu ral activity of its brain this activity in turn mo dies the brain so that the animal learns from its exp erience This selforganization the brains reshaping of itself through its own activity reviewed in has long fascinated neuroscientists and mo delers The classic example of activitydep endent neural development is the for mation of o cular dominance columns in the cat or monkey primary visual cortex reviewed in The cerebral cortex is the uniquely mammalian part of the brain It is thought to form the complex asso ciative represen tations that characterize mammalian and human intelligence The primary visual cortex V is the rst cortical area to receive visual information It receives signals from the lateral geniculate nucleus of the thalamus LGN which in turn receives input from the retinae of the twoeyes Fig To describ e o cular dominance columns several terms must b e dened First the receptive eld of a cortical cell refers to the area on the retinae in which appropriate light stimulation evokes a resp onse in the cell and also to the pattern of light stimulation that evokes such a resp onse Second a Kenneth D Miller iii Postscript version of this gure not available hence gure is omitted from preprint of pap er FIGURE Ocular dominance columns from cat V A horizontal cut through the layerofVisshown Terminals serving a single eyeare lab eled white Dark regions at edges are out of plane containing LGN terminals Region shown is x mm Photograph generously supplied byDr Y Hata column is dened as follows V extends many millimeters in eachoftwo horizontal dimensions Receptive eld p ositions vary continuously along these dimensions forming a retinotopic map a continuous map of the visual world In the third vertical dimension the cortex is ab out mm in depth and consists of six layers Receptive eld p ositions do not signicantly vary through this depth Such organization in which cortical prop erties are invariant through the vertical depth of cortex but vary horizontallyis called columnar organization and is a basic feature of cerebral cortex Third ocular dominance must b e dened Cells in the LGN are monoc ular resp onding exclusively to stimulation of a single eye Fig LGN cells pro ject to layer of V where they terminate in alternating strip es or patches of terminals representing a single eye Figs Most or in some sp ecies all layer V cells are mono cular Cells in other layers of V resp ond best to the eye that dominates layer resp onses at that horizontal lo cation Thus V cells can be characterized by their ocular dominance or eye preference The strip es or patches of cortex that are dominated throughout the cortical depth by a single eye are known as ocular dominancecolumns The segregated pattern of termination of the LGN inputs to V arises early in development Initially LGN inputs pro ject to layer of V in an overlapping manner without apparent distinction byeye represented The terminal arb ors of individual LGN inputs extend horizontally in layer iv Receptive Fields and Maps in the Visual Cortex for distances as large as mm for comparison a typical spacing b etween cortical cells is p erhaps m Subsequently b eginning either prenatally or shortly after birth dep ending on the sp ecies the inputs representing each eye b ecome horizontally conned to the alternating approximately mm wide o cular dominance patches This segregation results from an activitydep endent comp etition b etween the geniculate terminals serving the twoeyes see discussion in The signal indicating that dierent terminals represent the same eye app ears to be the correlations in their neural activities These correlations exist due b oth to sp ontaneous activity which is lo cally correlated within each retina and to visuallyinduced activity which correlates the activities of retinotopically nearby neurons within each eyeandtoa lesser extent b etween the eyes The segregation pro cess is comp etitive If one eye is caused to have less activity than the other during a critical p erio d in which the columns are forming the more active eye takes over most of the cortical territory but the eye with reduced activity suers no loss of pro jection strength in retinotopic regions in whichitlacks comp etition from the other eye In summary o cular dominance column formation is a simple system in which correlated patterns of neural activity sculpt the patterns of neural connectivity Orientation columns are another striking feature of visual cortical orga nization Most V cells are orientation selective resp onding selectively to lightdark edges over a narrow range of orientations The preferred orienta tion of cortical cells varies regularly and p erio dically across the horizontal dimension of cortex and is invariantinthevertical dimension The matura tion of orientation selectivity is activitydep endent eg However it has not yet b een p ossible to test whether the initial developmentofori entation selectivity is activitydep endent This is b ecause some orien tation selectivity already exists at the earliest developmental times at which vi sual cortical resp onses can be recorded and it has not b een p ossible to blo ck visual system activity immediately b efore this time Nonetheless it has long b een a p opular notion that the initial development of orientation selectivity like that of o cular dominance may o ccur through a pro cess of activitydep endent synaptic comp etition The inputs from LGN to V serving eacheye are of twotyp es ONcenter and OFFcenter Both kinds of cells have circularly symmetric orientation insensitive receptive elds and resp ond to contrast rather than uniform luminance ONcenter cells resp ond to light against a dark background or to light onset OFFcenter cells resp ond to dark against a lightbackground or to light oset In the cat the orientationselectiveVcellsinlayer are simple cel ls cells with receptive elds consisting of alternating oriented subregions that receive exclusively ONcenter or exclusively OFFcenter input Fig As shall b e discussed one theory for the developmentof orientation selectivityis that like o cular dominance it develops through a comp etition b etween two input p opulations in this case a comp etition Kenneth D Miller v FIGURE Two examples of simple cell receptive elds RFs Regions of the visual eld from which a simple cell receives ONcenter white or OFFcenter dark input are shown Note Ocular dominance columns Fig represent an alternation across cortex in the typ e of input left or righteye received by dierent cortical cells while a simple cell RF this gure represents an alternation across visual space in the typ e of input ON or OFFcenter received bya single cortical cell between the ONcenter and the OFFcenter inputs CORRELATIONBASED MODELS To understand o cular dominance and orientation column formation two pro cesses must b e understo o d the developmentofreceptive eld struc ture under what conditions do receptive elds b ecome mono cular drivable only by a single eye or orientation selective the developmentof periodic cortical maps of
Recommended publications
  • A Detailed Model of the Primary Visual Pathway in The
    The Journal of Neuroscience, July 1991, 7 7(7): 1959-l 979 A Detailed Model of the Primary Visual Pathway in the Cat: Comparison of Afferent Excitatory and lntracortical Inhibitory Connection Schemes for Orientation Selectivity Florentin WMg6tter” and Christof Koch Computation and Neural Systems Program, California Institute of Technology, Pasadena, California 91125 In order to arrive at a quantitative understanding of the dy- two inhibitory schemes, local and circular inhibition (a weak namics of cortical neuronal networks, we simulated a de- form of cross-orientation inhibition), is in good agreement tailed model of the primary visual pathway of the adult cat. with observed receptive field properties. The specificity re- This computer model comprises a 5”~ 5” patch of the visual quired to establish these connections during development field at a retinal eccentricity of 4.5” and includes 2048 ON- is low. We propose that orientation selectivity is caused by and OFF-center retinal B-ganglion cells, 8 192 geniculate at least three different mechanisms (“eclectic” model): a X-cells, and 4096 simple cells in layer IV in area 17. The weak afferent geniculate bias, broadly tuned cross-orien- neurons are implemented as improved integrate-and-fire tation inhibition, and some iso-orientation inhibition. units. Cortical receptive fields are determined by the pattern The most surprising finding is that an isotropic connection of afferent convergence and by inhibitory intracortical con- scheme, circular inhibition, in which a cell inhibits all of its nections. Orientation columns are implemented continuously postsynaptic target cells at a distance of approximately 500 with a realistic receptive field scatter and jitter in the pre- pm, enhances orientation tuning and leads to a significant ferred orientations.
    [Show full text]
  • Torsten Wiesel (1924– ) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Torsten Wiesel (1924– ) [1] By: Lienhard, Dina A. Keywords: vision [2] Torsten Nils Wiesel studied visual information processing and development in the US during the twentieth century. He performed multiple experiments on cats in which he sewed one of their eyes shut and monitored the response of the cat’s visual system after opening the sutured eye. For his work on visual processing, Wiesel received the Nobel Prize in Physiology or Medicine [3] in 1981 along with David Hubel and Roger Sperry. Wiesel determined the critical period during which the visual system of a mammal [4] develops and studied how impairment at that stage of development can cause permanent damage to the neural pathways of the eye, allowing later researchers and surgeons to study the treatment of congenital vision disorders. Wiesel was born on 3 June 1924 in Uppsala, Sweden, to Anna-Lisa Bentzer Wiesel and Fritz Wiesel as their fifth and youngest child. Wiesel’s mother stayed at home and raised their children. His father was the head of and chief psychiatrist at a mental institution, Beckomberga Hospital in Stockholm, Sweden, where the family lived. Wiesel described himself as lazy and playful during his childhood. He went to Whitlockska Samskolan, a coeducational private school in Stockholm, Sweden. At that time, Wiesel was interested in sports and became the president of his high school’s athletic association, which he described as his only achievement from his younger years. In 1941, at the age of seventeen, Wiesel enrolled at Karolinska Institutet (Royal Caroline Institute) in Solna, Sweden, where he pursued a medical degree and later pursued his own research.
    [Show full text]
  • Universal Transition from Unstructured to Structured Neural Maps
    Universal transition from unstructured to structured PNAS PLUS neural maps Marvin Weiganda,b,1, Fabio Sartoria,b,c, and Hermann Cuntza,b,d,1 aErnst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, Frankfurt/Main D-60528, Germany; bFrankfurt Institute for Advanced Studies, Frankfurt/Main D-60438, Germany; cMax Planck Institute for Brain Research, Frankfurt/Main D-60438, Germany; and dFaculty of Biological Sciences, Goethe University, Frankfurt/Main D-60438, Germany Edited by Terrence J. Sejnowski, Salk Institute for Biological Studies, La Jolla, CA, and approved April 5, 2017 (received for review September 28, 2016) Neurons sharing similar features are often selectively connected contradictory to experimental observations (24, 25). Structured with a higher probability and should be located in close vicinity to maps in the visual cortex have been described in primates, carni- save wiring. Selective connectivity has, therefore, been proposed vores, and ungulates but are reported to be absent in rodents, to be the cause for spatial organization in cortical maps. In- which instead exhibit unstructured, seemingly random arrange- terestingly, orientation preference (OP) maps in the visual cortex ments commonly referred to as salt-and-pepper configurations are found in carnivores, ungulates, and primates but are not found (26–28). Phase transitions between an unstructured and a struc- in rodents, indicating fundamental differences in selective connec- tured map have been described in a variety of models as a function tivity that seem unexpected for closely related species. Here, we of various model parameters (12, 13). Still, the biological correlate investigate this finding by using multidimensional scaling to of the phase transition and therefore, the reason for the existence of predict the locations of neurons based on minimizing wiring costs structured and unstructured neural maps in closely related species for any given connectivity.
    [Show full text]
  • Multiple Periods of Functional Ocular Dominance Plasticity in Mouse Visual Cortex
    ARTICLES Multiple periods of functional ocular dominance plasticity in mouse visual cortex Yoshiaki Tagawa1,2,3, Patrick O Kanold1,3, Marta Majdan1 & Carla J Shatz1 The precise period when experience shapes neural circuits in the mouse visual system is unknown. We used Arc induction to monitor the functional pattern of ipsilateral eye representation in cortex during normal development and after visual deprivation. After monocular deprivation during the critical period, Arc induction reflects ocular dominance (OD) shifts within the binocular zone. Arc induction also reports faithfully expected OD shifts in cat. Shifts towards the open eye and weakening of the deprived eye were seen in layer 4 after the critical period ends and also before it begins. These shifts include an unexpected spatial expansion of Arc induction into the monocular zone. However, this plasticity is not present in adult layer 6. Thus, functionally assessed OD can be altered in cortex by ocular imbalances substantially earlier and far later than expected. http://www.nature.com/natureneuroscience Sensory experience can modify structural and functional connectiv- been studied extensively. Here, a functional technique based on in situ ity in cortex1,2. Many previous studies of highly binocular animals hybridization for the immediate early gene Arc16 is used to investigate have led to the current consensus that visual experience is required for pathways representing the ipsilateral eye in developing and adult mouse maintenance of precise connections in the developing visual cortex and visual cortex and after visual deprivation. We find multiple periods of that competition-based mechanisms underlie ocular dominance (OD) susceptibility to visual deprivation in mouse visual cortex.
    [Show full text]
  • Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex
    The Journal of Neuroscience, September 26, 2007 • 27(39):10391–10403 • 10391 Behavioral/Systems/Cognitive Complete Pattern of Ocular Dominance Columns in Human Primary Visual Cortex Daniel L. Adams, Lawrence C. Sincich, and Jonathan C. Horton Beckman Vision Center, Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143-0730 The occipital lobes were obtained after death from six adult subjects with monocular visual loss. Flat-mounts were processed for cytochrome oxidase (CO) to reveal metabolic activity in the primary (V1) and secondary (V2) visual cortices. Mean V1 surface area was 2643 mm 2 (range, 1986–3477 mm 2). Ocular dominance columns were present in all cases, having a mean width of 863 ␮m. There were 78–126 column pairs along the V1 perimeter. Human column patterns were highly variable, but in at least one person they resembled a scaled-up version of macaque columns. CO patches in the upper layers were centered on ocular dominance columns in layer 4C, with one exception. In this individual, the columns in a local area resembled those present in the squirrel monkey, and no evidence was found for column/patch alignment. In every subject, the blind spot of the contralateral eye was conspicuous as an oval region without ocular dominancecolumns.Itprovidedapreciselandmarkfordelineatingthecentral15°ofthevisualfield.Ameanof53.1%ofstriatecortexwas devoted to the representation of the central 15°. This fraction was less than the proportion of striate cortex allocated to the representation of the central 15° in the macaque. Within the central 15°, each eye occupied an equal territory. Beyond this eccentricity, the contralateral eye predominated, occupying 63% of the cortex.
    [Show full text]
  • Organization of Ocular Dominance and Orientation Columns in the Striate Cortex of Neonatal Macaque Monkeys
    Visual Neuroscience (1995), 12, 589-603. Printed in the USA. Copyright © 1995 Cambridge University Press 0952-5238/95 $11.00 + .10 Organization of ocular dominance and orientation columns in the striate cortex of neonatal macaque monkeys GARY BLASDEL,1'2 KLAUS OBERMAYER,3-4 AND LYNNE KIORPES5 'Department of Physiology, University of Calgary, Calgary Alberta, Canada T2N-1N4 2Department of Neurobiology, Harvard Medical School, Boston 3The Salk Institute, La Jolla "The Rockefeller University, New York 'Center for Neural Science, New York University, New York (RECEIVED May 13, 1994; ACCEPTED November 30, 1994) Abstract Previous work has shown that small, stimulus-dependent changes in light absorption can be used to monitor cortical activity, and to provide detailed maps of ocular dominance and optimal stimulus orientation in the striate cortex of adult macaque monkeys (Blasdel & Salama, 1986; Ts'o et al., 1990). We now extend this approach to infant animals, in which we find many of the organizational features described previously in adults, including patch-like linear zones, singularities, and fractures (Blasdel, 19926), in animals as young as 3| weeks of age. Indeed, the similarities between infant and adult patterns are more compelling than expected. Patterns of ocular dominance and orientation, for example, show many of the correlations described previously in adults, including a tendency for orientation specificity to decrease in the centers of ocular dominance columns, and for iso-orientation contours to cross the borders of ocular dominance columns at angles of 90 deg. In spite of these similarities, there are differences, one of which entails the strength of ocular dominance signals, which appear weaker in the younger animals and which increase steadily with age.
    [Show full text]
  • An Adult-Like Pattern of Ocular Dominance Columns in Striate Cortex of Newborn Monkeys Prior to Visual Experience
    The Journal of Neuroscience, March 1, 1996, 76(5):1791-1807 An Adult-Like Pattern of Ocular Dominance Columns in Striate Cortex of Newborn Monkeys prior to Visual Experience Jonathan C. Horton and Davina I?. Hocking Beckman Vision Center, University of California, San Francisco, California 94 143-0730 In macaque monkeys, the geniculocottical afferents serving nized into the characteristic mosaic present in adults. In the each eye segregate in layer WC of striate cortex during early life upper layers, a mature pattern of CO patches (also known as into a pattern of alternating inputs called ocular dominance blobs or puffs) was visible, aligned with the ocular dominance columns. It has been disputed whether visual experience is columns in layer IVc. Every other row of patches in layers 11,111 necessary for the formation of ocular dominance columns. To was labeled by [3H]proline. In V2, a distinct system of alternat- settle this issue, fetal monkeys were delivered prematurely by ing thick-pale-thin-pale CO stripes was present. These findings Caesarean section at embryonic day 157 (El 57) 8 d before the indicate that stimulation of the retina by light is not necessary end of normal gestation. To avoid light exposure, the Caesar- for the development of columnar systems in the visual cortex. ean section and all subsequent feedings and procedures were Ocular dominance columns, patches, and V2 stripes all are well done in absolute darkness, using infrared night-vision goggles. formed before visual experience. Even the thalamic input to the Tritiated proline was injected into the right eye 1 d after delivery patches in the upper layers of striate cortex is segregated by (El58).
    [Show full text]
  • Pattern of Ocular Dominance Columns and Cytochrome Oxidase Activity in a Macaque Monkey with Naturally Occurring Anisometropic Amblyopia
    Visual Neuwscience (1997), 14, 681-689. Printed in the USA. Copyright © 1997 Cambridge University Press 0952-5238/97 $11.00 + .10 Pattern of ocular dominance columns and cytochrome oxidase activity in a macaque monkey with naturally occurring anisometropic amblyopia JONATHAN C. HORTON,1 DAVINA R. HOCKING,1 AND LYNNE KIORPES2 'Beckman Vision Center, University of California at San Francisco, San Francisco 2Center for Neural Science, New York University, New York (RECEIVED August 21, 1996; ACCEPTED November 11, 1996) Abstract Unilateral eyelid suture, a model for amblyopia induced by congenital cataract, produces shrinkage of the deprived eye's ocular dominance columns in the striate cortex. Loss of geniculocortical projections are thought to account for the poor vision in the amblyopic eye. It is uncertain whether ocular dominance columns become shrunken in other forms of amblyopia. We examined the striate cortex in a pigtailed macaque with natural anisometropia discovered at age 5 months. Amblyopia in the left eye was documented at 1 year by behavioral testing. At age 6 years, the left eye was injected with [3H]proline and the striate cortex was processed for autoradiography and cytochrome oxidase (CO). The ocular dominance columns in layer IVc labelled with [3H]proIine were normal. CO staining showed a novel pattern of thin dark bands in layer IV. These bands occupied the core zones at the center of the ocular dominance columns. Their appearance resulted from relative loss of CO activity along the borders of the ocular dominance columns, regions specialized for binocular processing. These findings indicate that not all forms of amblyopia are accompanied by shrinkage of ocular dominance columns.
    [Show full text]
  • Cortical Columns
    In: Encyclopedia of Cognitive Science, Macmillan Publishers Ltd., 2002. URL: http://cns.georgetown.edu/~miguel/papers/ecs02.html Cortical Columns Geoffrey J. Goodhill Miguel A.´ Carreira-Perpin˜an´ Dept. of Neuroscience, Georgetown University Medical Center, Washington, DC fmiguel,[email protected] April 8, 2002 Definition In many regions of the cortex, neuronal response properties remain relatively constant as one moves perpendic- ular to the surface of the cortex, while they vary in a direction parallel to the cortex. Such columnar organization is particularly evident in the visual system, in the form of ocular dominance and orientation columns. Introduction The most prominent feature of the architecture of the cortex is its horizontal organization into layers. Each layer contains different cell types, and forms different types of connections with other neurons. However, a strong vertical organization is often also apparent: neurons stacked on top of each other through the depth of the cortex tend to be connected and have similar response properties despite residing in different layers. This type of vertical structure is called a cortical column, and has been hypothesized to represent a basic functional unit for sensory processing or motor output. Columnar organization has been most extensively studied in the somatosensory and visual systems. Discovery of columnar organization Cortical columns were first discovered electrophysiologically by Mountcastle (1957). When he moved an elec- trode obliquely to the surface of somatosensory cortex, he encountered neurons which responded to different sensory submodalities (e.g. deep vs light touch). However, when the electrode was moved perpendicular to the cortical surface, all neurons had similar response properties.
    [Show full text]
  • Subplate Neuron Ablation Alters Neurotrophin Expression and Ocular Dominance Column Formation
    Subplate neuron ablation alters neurotrophin expression and ocular dominance column formation E. S. Lein*†, E. M. Finney*†‡, P. S. McQuillen*, and C. J. Shatz*§ *Howard Hughes Medical Institute͞Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 Contributed by Carla J. Shatz, September 13, 1999 Ocular dominance column formation in visual cortex depends on a ratio of 9:1 kainic acid͞microspheres) were coinjected for both the presence of subplate neurons and the endogenous visualization of the injection sites and to limit spread of the expression of neurotrophins. Here we show that deletion of kainic acid (14, 15). Each animal received two injections, spaced subplate neurons, which supply glutamatergic inputs to visual approximately 1 mm apart anteroposteriorly, producing a zone cortex, leads to a paradoxical increase in brain-derived neurotro- of ablation up to several millimeters in extent (see refs. 14, 15 for phic factor mRNA in the same region of visual cortex in which complete details). Control animals were either identically in- ocular dominance columns are absent. Subplate neuron ablation jected with saline plus microspheres (9:1; n ϭ three animals) into also increases glutamic acid decarboxylase-67 levels, indicating an the visual subplate or were unmanipulated (n ϭ 2). In three alteration in cortical inhibition. These observations imply a role for additional control animals, 0.5-␮l injections of kainic acid plus this special class of neurons in modulating activity-dependent microspheres were injected into layer 4 of visual cortex rather competition by regulating levels of neurotrophins and excitability than into the subplate. within a developing cortical circuit.
    [Show full text]
  • Development and Plasticity of Cortical Areas and Networks
    REVIEWS DEVELOPMENT AND PLASTICITY OF CORTICAL AREAS AND NETWORKS Mriganka Sur and Catherine A. Leamey The development of cortical layers, areas and networks is mediated by a combination of factors that are present in the cortex and are influenced by thalamic input. Electrical activity of thalamocortical afferents has a progressive role in shaping cortex. For early thalamic innervation and patterning, the presence of activity might be sufficient; for features that develop later, such as intracortical networks that mediate emergent responses of cortex, the spatiotemporal pattern of activity often has an instructive role. Experiments that route projections from the retina to the auditory pathway alter the pattern of activity in auditory thalamocortical afferents at a very early stage and reveal the progressive influence of activity on cortical development. Thus, cortical features such as layers and thalamocortical innervation are unaffected, whereas features that develop later, such as intracortical connections, are affected significantly. Surprisingly, the behavioural role of ‘rewired’ cortex is also influenced profoundly, indicating the importance of patterned activity for this key aspect of cortical function. The mammalian neocortex, a folded sheet that in ronment, and the environment always needs a scaffold humans contains over 10 billion neurons, is the seat of on which to act. our highest sensory, motor and cognitive abilities. Much discussion has focused on whether there is Understanding how it develops and how it changes is detailed specification of cortical areas by genes and central to our understanding of brain function and is molecules that are expressed early in the ventricular crucial to the development of treatments for neuro- zone in a manner that recapitulates cortical parcellation logical disease.
    [Show full text]
  • Michael Paul Stryker
    BK-SFN-NEUROSCIENCE_V11-200147-Stryker.indd 372 6/19/20 2:19 PM Michael Paul Stryker BORN: Savannah, Georgia June 16, 1947 EDUCATION: Deep Springs College, Deep Springs, CA (1964–1966) University of Michigan, Ann Arbor, MI, BA (1968) Massachusetts Institute of Technology, Cambridge, MA, PhD (1975) Harvard Medical School, Boston, MA, Postdoctoral (1975–1978) APPOINTMENTS: Assistant Professor of Physiology, University of California, San Francisco (1978–1983) Associate Professor of Physiology, UCSF (1983–1987) Professor of Physiology, UCSF (1987–present) Visiting Professor of Human Anatomy, University of Oxford, England (1987–1988) Co-Director, Neuroscience Graduate Program, UCSF (1988–1994) Chairman, Department of Physiology, UCSF (1994–2005) Director, Markey Program in Biological Sciences, UCSF (1994–1996) William Francis Ganong Endowed Chair of Physiology, UCSF (1995–present) HONORS AND AWARDS (SELECTED): W. Alden Spencer Award, Columbia University (1990) Cattedra Galileiana (Galileo Galilei Chair) Scuola Normale Superiore, Italy (1993) Fellow of the American Association for the Advancement of Science (1999) Fellow of the American Academy of Arts and Sciences (2002) Member of the U.S. National Academy of Sciences (2009) Pepose Vision Sciences Award, Brandeis University (2012) RPB Stein Innovator Award, Research to Prevent Blindness (2016) Krieg Cortical Kudos Discoverer Award from the Cajal Club (2018) Disney Award for Amblyopia Research, Research to Prevent Blindness (2020) Michael Stryker’s laboratory demonstrated the role of spontaneous neural activity as distinguished from visual experience in the prenatal and postnatal development of the central visual system. He and his students created influential and biologically realistic theoretical mathematical models of cortical development. He pioneered the use of the ferret for studies of the central visual system and used this species to delineate the role of neural activity in the development of orientation selectivity and cortical columns.
    [Show full text]