Quick viewing(Text Mode)

Biogeographical Synthesis of Andalusia (Southern Spain)

Biogeographical Synthesis of Andalusia (Southern Spain)

Journal of Biogeography (1997) 24, 915–928

Biogeographical synthesis of Andalusia (southern )

S -M´ı∗,A A†, B Dı´-G†, J´ı M‡ and F V‡ ∗Departamento de Biologı´a Vegetal, Facultad de Farmacia, Universidad Complutense, E-28040 , †Departamento de Biologı´a Vegetal, Facultad de Ciencias, Universidad de Ma´laga, Apdo. 59, E-29080 Ma´laga, Spain and ‡Departamento de Biologı´a Vegetal, Universidad de , E-18001 Granada, Spain

Abstract. Andalusia is a large territory of almost and analysis of the endemic taxa, series and plant 90,000 km2 in the south of Spain. The marked heterogeneity communities found in the territory. of its orographic, lithological and climatic features affords its plants and vegetation a high degree of . A biogeographical classification for Andalusia is proposed, Key words. Biogeography, plant communities, endemic based on studies of the physical environment, bioclimatic taxa, bioclimatic data, south Spain.

Resumen. La regio´nma´s meridional de Espan˜a el estudio del medio fı´sico se propone una tipologı´a (Andalucı´a) es un territorio hetero´geneo y fuertemente biogeogra´fica para esta regio´n. contrastado donde se combinan diversos factores (geolo´gicos, clima´ticos, eda´ficos, etc.) que determinan una acusada variabilidad en su flora y vegetacio´n. trabajo Palabras clave. Biogeografı´a, comunidades vegetales, analiza la flora ende´mica del territorio y sus comunidades bioclimatologı´a, taxa ende´micos, fitosociologı´a, Sur de vegetales. Con estos datos y la informacio´n aportada por Espan˜a.

Meusel, Jaeger & Weinert, 1965). The synthesis of Braun- INTRODUCTION Blanquet not only defines territories, but also includes four Traditionally the plant biotic component has been used hierarchical biogeographical levels (district, sector, province for the definition and recognition of biogeographical and region). These definitions remain in use today, with units. For some systematic botanists, plant chorology (or some modifications (Ge´hu & Rivas-Martı´nez, 1980; Rivas- phytogeography) stresses the phylogeny and distribution of Martı´nez, 1982). high-level taxa—genera and families—at the expense of The elemental unit of biogeographical typology is the the areas of distribution and geovicariance of species and tesella. It can be defined as a territory of variable area, subspecies (Axelrod & Raven, 1972; Takhtajan, 1986), taxa which is either continuous or discontinuous according which indicate current climatic conditions, are in equilibrium to the surrounding geomorphology, and is ecologically with these conditions and compete with each other. This homogeneous (i.e. the characteristics of its climate and soil procedure has created a discipline that Takhtajan (1986) lead to a single potential vegetation type and a single refers to as ‘chorionomy’ (phytochorionomy): placing more sequence of vegetation types or replacing communities). emphasis on the climatic and floristic conditions of the past The ‘district’ is characterized not only by certain taxa and than on the current conditions in order to determine the associations which are absent in neighbouring districts, but distribution of species and plant communities (Rivas- also by the traditional use of the territory by man according Martı´nez et al., 1993). to the fertility of the soil and climatic and edaphic However, it is evident that the study of vegetation from homogeneity. The ‘sector’ is a large area with distinct a floristic point of view (i.e. the ‘Sigma’ school of geographical identity, characterized by exclusive taxa and phytosociology) is a fundamental tool for the delimitation syntaxa and particular altitudinal and edaphic catenas. of territories (Takhtajan, 1986; Rivas-Martı´nez, 1987), since Particular series and permanent communities or subseries it enables us to adjust for certain situations of discontinuity are found. The chorological ‘province’ is of wide extension. which occur in the biogeographical units. It has an original flora and endemic subelement, while In , the most widely accepted biogeographical containing its own geoseries and macroseries. An original syntheses are those based on the distribution of taxa zonation of vegetation is a further characteristic of and communities, together with certain physiognomical the province. The ‘region’ is a vast territory, sometimes and ecological factors (Braun-Blanquet, 1951; Bolo´s, 1963; transinsular or transcontinental, with endemic flora and

 1997 Blackwell Science Ltd 915 916 Salvador Rivas-Martı´nez et al. vegetation, original vegetation belts and also particular mainly composed of metamorphic rocks (mica-schists, macrobioclimates or bioclimates. The ‘kingdom’ is the quartzite, amphibolite, etc.); the Alpuja´rride, also formed highest rank in biogeography, grouping a set of regions of such materials as Paleozoic mica-schists and quartzite, with similar history, flora, vegetation and climate. but with overlying and Triassic dolomite; and, According to a recent biogeographical review by Rivas- finally, the Mala´guide, which is more complex, composed Martı´nez (1990), the , which falls within of not only phyllite, Palaeozoic mica-schists and Triassic the Holarctic kingdom, is divided into two regions: the rocks, but also of a series of post-Triassic materials, Euro–Siberian and the Mediterranean. This division is especially in the Ma´laga area (Bourgeois, 1978). mainly based on phytocoenological (particular vegetation The mountains run parallel to the coast, with two chains, series) and bioclimatic (Mediterranean index) criteria, one littoral and the other pre-littoral. Longitudinal corridors as well as characteristic flora and vegetation. In the connect the two, widening out as we move eastwards, and Euro–Siberian region the peninsular territories are there are extensive Miocene sedimentation areas. In such distributed into two superprovinces, the Alpine–Pyrennean an orographically complex territory considerable altitudes and the Atlantic, while in the Mediterranean region two are reached, such as Mulhace´n (3478 m—the highest peak other superprovinces are represented: the Ibero–Levantine in the Iberian Peninsula); (3392 m); and the Ibero–Atlantic, with eastern Andalusia (SE Spain) (3366 m); La Sagra (2381 m); Ga´dor (2236 m); Baza forming part of the former, and Andalusia (SW (2269 m); Filabres (2168 m); Ma´gina (2167 m); Tejeda Spain) the latter. (2065 m); Harana (1931 m); (1919 m); Since the publication of the first chorological syntheses (1830 m); Almijara (1824 m); (1809 m); Estancias proposed for the Iberian Peninsula, Balearic and Canary (1718 m); Loja (1671 m); (1654 m); and Pandera Islands (Rivas-Martı´nez, 1973; Rivas-Martı´nez et al., 1977), (1601 m). several authors have defined and delimited the boundaries The Campo de mountains are another of the of various peninsular and insular territories (e.g. Rivas- most characteristic formations of the Andalusian landscape. Martı´nez et al., 1990; Alcaraz, Sa´nchez Go´mez&Dela They belong to the so-called ‘Aljı´bico unit’ and are Torre, 1991; Rivas-Martı´nez et al., 1991; Rivas-Martı´nez et composed of Miocene sandstone which overlies Eocene al., 1993). The objective of this study is to propose a clays. hierarchical classification for Andalusia down to district The post-orogenic sedimentary basins are interior level. In order to delineate the biogeographical units of the depressions of the Baetic Cordilleras: physiographical units territory we have used geographical, bioclimatic, geological with well-defined characteristics differentiating them from and geomorphological criteria, as well as the distribution the surrounding mountains. They are depressed areas of mainly endemic taxa and communities. (Penibaetic Depression or Intra-Baetic Trench), aligned along the Sub-Baetic–Baetic boundary. The largest basins forming this depression are those of Ronda, , Granada, Hoya de Ma´laga, –Baza and Campo de STUDY AREA Nı´jar. Finally, on the coast of Almerı´a there is a massif—the The surface area of Andalusia is 87,268 km2, i.e. Cabo de Gata range—of volcanic origin. It is a Neogene approximately one-fifth of the Spanish part of the Iberian complex with various stages of magma emission, from the Peninsula. The territory is characterized by three Lower Miocene to the Messinian, where later erosion has morphostructural units: , the northern constructed one of the most striking landscapes in boundary; the Baetic Cordillera, to the south; and, between Andalusia. these two mountain ranges, the Depression, an Such orographical diversity plays a key role in favouring extensive tectonic fosse filled with Tertiary and Quaternary the biodiversity of the flora and vegetation, altering the local sediments (Fig. 1). climates and their influence on other physical environmental Sierra Morena is the southern boundary of the Spanish parameters. The land relief creates an altitudinal bioclimatic high plain (‘meseta’). It consists of a mountain range sequence which is particularly important in Andalusia, since stretching from NE to SW, and is composed of metamorphic the altitude of the Baetic Cordilleras—especially in the rocks (sandstone, schists, shale, batholith, etc.). The Baetic —has enabled nearly all the bioclimatic levels Cordillera is an extensive geological unit stretching from to develop, as described below. It is also responsible for the Ca´diz in the SW to Alicante in the NE. The geological dramatic contrast between the areas of high rainfall in identity can be used to recognize a series of zones or western Andalusia (Grazalema, 1952 mm) and certain ‘domains’ (L’Henaff, 1981). From the Guadalquivir territories in the southeast, situated leeward of the humid Depression to the south the Pre-Baetic, Sub-Baetic and winds, which are markedly arid (Almerı´a, 209 mm). It also Baetic zones can be distinguished, as can the flyschs of the caused the biogeographical insularity which has produced , the interior basins and post-orogenic the presence of relic and palaeoendemic species, as described volcanic massifs. The Pre-Baetic and Sub-Baetic zones are below. also known as ‘external units’, while the Baetic zone is the For the bioclimatic classification of the territory we have nucleus of the ‘internal units’, where a complicated folding followed the latest tendencies of the European school, which of strata and exotic units occurs. These can, in turn, be aim to establish the criteria for bioclimatic classification grouped into three large complexes: the Nevado–Fila´bride, by the phytogeographic zonation of vegetation (Emberger,

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 Biogeographical Synthesis of Andalusia 917

FIG. 1. Geological schema of Andalusia (after L’Henaff, 1981). 1. Nevado-Fila´bride unit, 2. Alpuja´rride unit, 3. Mala´guide unit, 4. Baetic Dorsal, 5. Campo de Gibraltar flyschs, 6. Sub-Baetic zone, 7. Pre-Baetic zone, 8. Sierra Morena, 9. Guadalquivir Depression. A: Almerı´a, C: Co´rdoba, CA: Ca´diz, H: , G: Granada, J: Jae´n, M: Ma´laga, S: Sevilla.

TABLE 1. Thermotypes of the Mediterranean macrobioclimate TABLE 2. Ombrotypes of the Mediterranean macrobioclimate Thermotypes Itc Tp(1) Ombrotype Io Infra-Mediterranean 650–451 Thermo-Mediterranean 450–351 Ultraperarid <0.1 Meso-Mediterranean 350–211 >1500 Hyperarid 0.1– 0.5 Supra-Mediterranean 210– 81 900–1500 Arid 0.5– 0.9 Oro-Mediterranean 80–−39 500– 900 Semiarid 0.9– 2.0 Cryoro-Mediterranean <−40 <500 Dry 2.0– 3.0 Subhumid 3.0– 6.0 (1) If It or Itc <120 the thermotype is calculated using Tp values. Humid 5.5–12.0 Perhumid 1.0–24.0 Ultraperhumid >24.0 1930; Ozenda, 1971; Que´zel, 1979; Rivas-Martı´nez, 1981, 1987, 1990, 1995). The relationship between climatic parameters (temperature and rainfall) and vegetation enables bioclimatic belts to be defined. By ‘belts’ we mean Mediterranean bioclimatic thermotypes and the Itc those thermoclimatic types or spaces which are produced (compensated thermicity index) limit and Tp (positive by an altitudinal or latitudinal zonation (Rivas-Martı´nez, temperature) limit values. Itc=(T+m+M)10±C, where T 1987). This phenomenon is universally valid, and in every is the mean annual temperature, m is the mean temperature region or group of similar regions there are special of the coldest month minima, M is the mean temperature bioclimatic belts with their own particular thermic values. of the coldest month maxima, and C is the compensated In a recent bioclimatic classification of the Earth, Rivas- value, designed to compensate in the extratropical territories Martı´nez (1995) establishes five macrobioclimates: Tropical, of the Earth for the extra winter cold of extremely Mediterranean, Temperate, Boreal and Polar. Each one can continental territories or the extra winter warmth of be subdivided into various bioclimates and bioclimatic belts, extremely oceanic ones. Tp is the sum in tenths of a degree defined according to their thermotypes and ombrotypes. of the mean temperatures of the months with a mean greater According to this classification, the macrobioclimate of than 0°C. With the exception of the infra-Mediterranean Andalusia is Mediterranean, i.e. the extratropical bioclimate type, the others are all represented in the studied area. with aridity (P<2T) at least 2 months after the summer Regarding the ombrotypes, they are defined according to solstice. the Io (ombrothermic index). Io=Pp/Tp where Pp is the Seven subtypes are recognized within this classifica- yearly precipitation in mm of the months with average tion—oceanic–pluviseasonal, continental–pluviseasonal, temperature higher than 0°C and Tp is defined previously oceanic–xeric, oceanic–desertic, continental–xeric, above. The Mediterranean types (Table 2) present in continental–desertic and hyperdesertic. The first four Andalusia are the following types: arid, semiarid, dry, subtypes occur in Andalusia. Table 1 summarizes the subhumid and humid.

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 918 Salvador Rivas-Martı´nez et al.

FIG. 2. Ombrothermoclimatic diagrams (after Walter & Lieth, 1967, modified by Rivas-Martı´nez et al. 1993) of six representative stations of Andalusia.

Climatic diagrams METHODS The ombrothermoclimatic diagrams initially suggested by Floristic analysis Gaussen—which were later popularized by Walter & Lieth (1967) and slightly modified by Rivas-Martı´nez (1987) and While the flora of all Mediterranean countries is very rich, Rivas-Martı´nez et al. (1993)—are most useful as graphic that of the Iberian Peninsula is truly outstanding. In Spain expressions of the climate of any territory. The alone (including the ) the number of species ombrothermoclimatic diagrams of some representative is estimated at nearly 7500 (Galiano, 1975). This floristic stations are presented in Fig. 2. richness includes a high number of endemic species, many

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 Biogeographical Synthesis of Andalusia 919 of which are concentrated in the south and south east of Martı´nez, 1987, 1988; Alcaraz et al., 1989; Martı´nez Parras Spain, (Go´mez-Campo & Malato Beliz, 1985). According & Peinado, 1987, Alcaraz & Peinado, 1987; Rivas-Martı´nez to the data of Rivas-Martı´nez et al. (1991), the number of et al., 1990; Pe´rez Raya et al., 1990; Mota et al., 1991; Andalusian endemic vascular taxa (excluding hybrids) is Alcaraz et al., 1991; Peinado et al., 1992; Mota, et al, 1993). In 429. Such a wealth of flora thus makes for some highly Appendix 2 we have selected those communities which—either original plant communities. because of their endemic species or because they differentiate The origin of the territory’s taxa is the result of climatic between territories—can be used as diagnostic elements for and geological changes which have taken place throughout the definition of biogeographical units. time, leading to a complex process of synthesis of floras of very diverse origin. We can thus distinguish groups of RESULTS AND DISCUSSION taxa by their peculiar characteristics of known temporal or territorial origin. For example, the Tertiary elements living Biogeographical classification of Andalusia in the mountains (Aljı´bico sector) are taxa which are only distantly related to others of the same genus or The biogeographical pattern of Andalusia proposed here family and are limited to a very restricted area. They provide (down to district level) is as follows (Fig. 3). a good sample of Artho–Tertiary paleoendemic species, such as Rhododendron ponticum subsp. baeticum, Laurus The floristic classification nobilis, Ruscus hypophyllum, Frangula alnus subsp. baetica, Psilotum nudum, Culcita macrocarpa, Diplazium caudatum Based on the list of Andalusian endemic vascular taxa and Christella dentata among others (Blanca, 1993). Other (excluding hybrids) of Rivas-Martı´nez et al. (1991), with taxa are found in the internal areas of the Baetic range, some modifications, the percentage distribution at sector most of which are paleoendemic species living on rocks level is important for the biogeographical division of the (e.g. Sarcocapnos sp. pl., Rupicapnos africana and Seseli territory (we have excluded the Algarviense and Manchego vayredanum) or stony ground (e.g. Rothmaleria granatensis, sectors because of their scant representation in Andalusia). Jurinea fontqueri, Viola cazorlensis and Lithodora nitida). Of the 440 endemic taxa studied, 288 are exclusive to a This Tertiary element is a key factor in differentiating the given sector, with the remainder appearing in two or more flora of Andalusia from that of the rest of the Iberian sectors. Appendix 1 gives a synthesis of the endemic vascular Peninsula, where similar examples are scarce. Other elements species exclusively present in each of the biogeographical of the Andalusian flora are: the Boreal–Alpine, composed sectors. Vascular plant collections are deposited in herbaria of taxa from the northern European region or high mountain at the University of Madrid (MAF), Ma´laga (MGC) and ranges such as the Alps and Pyrennees, currently present Granada (GDA). on the highest ground in Andalusia. Many of these taxa have Many other taxa, while typical of the Andalusian developed their own endemic species. The Euro–Siberian landscape, have a somewhat wider distribution area. Space element has its origin in more humid and temperate climates precludes us from citing them all, but they include Thymus than those currently to be found in the Mediterranean, and mastichina and Thapsia maxima, two endemic Iberian are today limited to cold and humid enclaves in montane species which are very common in Andalusia; and Periploca areas of Andalusia. Another important component of the local laevigata subsp. angustifolia, Guiraoa arvensis and Anabasis flora is the Ibero–African group of plants, abundant in the articulata, three species which, although present beyond the south and south east of Spain, such as Fagonia cretica, Ziziphus Andalusian political frontiers characterize the communities lotus, Rosmarinus eriocalyx, Leysera leyseroides (Que´zel, of south-eastern Andalusia. 1985; Blanca, 1993). Finally, the Mediterranean element is Of the sectors identified, the Nevadense sector of the also highly significant in the present-day Andalusian flora. Baetic province contains 15.5% of the endemic taxa. Such From these basic floristic elements, and based on different a high rate of endemism gives the territory a floristic and circumstances (climatic changes, variety of substrata, etc.) phytocoenotic individuality in accordance with its special and typical speciation phenomena (isolation, hybridization, geological, geomorphological, bioclimatic and edaphic etc.), new taxa have arisen which today typify the floristic characteristics. The Ronden˜o, Sub-Baetic and Mala- character of Andalusia. We can identify elements including citano–Almijarense sectors also contain a high number the Aljı´bico, Almeriense, Baetic, Iberian, Nevadense, of endemic species (11.1%, 10.5% and 7.0%, respectively), Ibero–North-African, Ronden˜o, etc., according to the area corresponding to their lithological diversity (serpentine, they occupy, rather than their origin. dolomite and hard limestone) which favours the existence of a large number of endemic taxa which have adapted to specific edaphic conditions. They are followed in importance Phytosociological analysis by the Alpujarren˜o–Gadorense and Guadiciano–Bacense A great deal is known about the plant communities in sectors (2.5% and 2.0%, respectively). The Hispalense sector Andalusia as many authors have studied the territory, contains the fewest endemic taxa (1.4%), since the following the methods of Braun-Blanquet (e.g. Que´zel, 1953; Guadalquivir Depression is basically composed of marl with Rivas Goday & Mayor Lo´pez, 1966; Rivas Goday & Rivas- sandstone outcrops, i.e. a poor medium for the mainly Martı´nez, 1969, 1971; Rivas Goday & Esteve, 1972; Asensi psammophilous and silicicolous flora and vegetation which & Rivas-Martı´nez, 1977; Rivas-Martı´nez et al., 1980; Pe´rez is abundant in the Luso–Extremadurense and Gadi- Raya, 1987; Asensi & Dı´ez Garretas, 1987, 1993; Rivas- tano–Onubense elements.

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 920 Salvador Rivas-Martı´nez et al.

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 Biogeographical Synthesis of Andalusia 921

The Gaditano–Onubense and Aljı´bico sectors (3.4% which is clearly defined for the purposes of delimiting and 2.0%, respectively), which belong to the Gadi- biogeographical units. In Appendix 2 the numbers of the tano–Onubo–Algarviense province, maintain an un- sectors or districts where each community is found are doubted floristic and phytocoenotic individuality with shown in brackets. These numbers correspond to the respect to both the origin of their flora and the biotopes biogeographical classification proposed above. which they colonize. The Maria´nico–Monchiquense sector (2.5%), part of the Climatophilous and edaphophilous vegetation Luso–Extremadurense province, is an extensive unit which The climatophilous and edaphophilous communities enable corresponds to the territories to the north of the Guadalquivir us to define and delimit biogeographical territories at Depression, where metamorphic materials (sandstone, schists, provincial, sector and district level. Many examples could slate, etc.) preponderate, as mentioned above. illustrate this; thus, endemic to the Nevadense sector are the The Baetic, Gaditano–Onubo–Algarviense and Luso– oro-Mediterranean psicroxerophilous of Erigeron Extremadurense provinces form part of the Mediter- frigidus and Festuca clementei (Erigeronto frigidi–Festucetum ranean–Ibero–Atlantic superprovince. clementei) and the oro-Mediterranean matorral scrub plants Finally, the territories of southeastern Andalusia fall on siliceous substrata (Genisto baeticae–Juniperetum nanae), within the Almeriense sector, rich in endemic taxa in whose domain a series of hydrophilous communities (6.6%) and communities. This sector belongs to the Mur- develop around ponds and lakes of glacial origin ciano–Almeriense province which is, in turn, part of the (Nardo–Festucetum ibericae, Ranunculo–Vaccinietum Mediterranean–Ibero–Levantine superprovince. uliginosi, Ranunculo–Caricetum intricatae, Sedo melan- antheri–Saxifragetum alpigenae). The Ronden˜o sector (Fig. 4) contains the original features Phytogeographical analysis of plant associations of the (Paeonio broteroi–Abietetum pinsapo, The plant communities selected, of which only a few Bunio macucae–Abietetum pinsapo) and Ceratonia siliqua examples are given here, have been grouped into five types: (Clematidi cirrhosae–Ceratonietum siliquae) communities, (I) climatophilous and edaphophilous vegetation; (II) also present in the Rif in North Africa. The community of ‘matorral’ scrub and low calcicole ‘tomillar’ scrub; (III) Olea europaea subsp. sylvestris (Tamo communis–Oleetum fruticose silicicole vegetation; (IV) rupicolous chasmophyte sylvestris) is characteristic of the clay soils of the Hispalense vegetation (V) other communities with a territorial character sector. In the Gaditano–Onubo–Algarviense sector the most

FIG. 3. Biogeographical classification of Andalusia ( province limit, ····· sector limit, --- district limit, -x---x---x Andalusia limit). ∗Mediterranean region 7c Serrano–Mariense district +Western Mediterranean subregion 7d Serrano–Estanciense district

A Mediterranean-Ibero-Atlantic superprovince II Gaditano–Onubo–Algarviense province

I Baetic province 8 Aljı´bico sector 1 Hispalense sector 9 Gaditano–Onubense sector 1a Hispalense district 9a Gaditano littoral district 1b Jerezano district 9b Onubense littoral district 210Ronden˜o sector Algarviense sector 2a Rondense district 2b Bermejense district 2c Anticariense district III Luso–Extremadurense province 3 Malacitano–Almijarense sector 11 Maria´nico–Monchiquense sector 3a Malacitano–Axarquiense district 11a Marianense district 3b Almijarense district 11b Araceno–Pacense district 3c Alfacarino–Granatense district 4 Sub-Baetic sector 4a Sub-Baetic–Maginense district B Mediterranean–Ibero–Levantine superprovince 4b Cazorlense district IV Murciano–Almeriense Province 4c Alcaracense district 4d Sub-Baetic–Murciano district 12 Almeriense Sector 12a Eastern Almeriense district 5 Alpujarren˜o–Gadorense sector 12b Western Almeriense district 5a Alpujarren˜o district 12c Caridemo district 5b Gadorense district 6 Nevadense sector 6a Nevadense district V Castellano––Manchega province 6b Fila´brico district 13 Manchego sector 7 Guadiciano–Bacense sector 13a Manchego–Espunense district 7a Guadiciano–Baztetano district 7b Serrano–Bacense district

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 922 Salvador Rivas-Martı´nez et al.

FIG. 4. Abies pinsapo (Paeonio broteroi–Abietetum pinsapo). Endemic plant community to the Ronden˜o sector. striking features include the dune ecoystem (Don˜ana albicantis–Pterocephaletum spathulati of the Cazorlense National Park), the saltmarsh and ecosystems and Alcaracense districts, Thymo granatensis–Arenarietum (Gaditano–Onubense sector), and communities rich in tomentosae of the Serrano–Bacense district and Fumano Tertiary elements which find refuge in the sandstone paradoxae-Thymetum sabulicolae of the Sub-Baetic–Murciano mountains of the Aljı´bico sector (Rusco hypophylli– sector. Also worthy of mention are the thermo- and meso- Quercetum canariensis, Frangulo baetici–Rhododendretum Mediterranean chamaephyte communities of arid, semi-arid baetici). The Luso–Extremadurense province features and dry ombroclimates (Anthyllidetalia terniflorae), which extensive areas where paleozoic siliceous rocks dominate, are virtually exclusive to the Murciano–Almeriense province giving rise to the climax communities of Quercus rotundifolia, (certain irradiation to other neighbouring territories does Q. suber and Q. pyrenaica (Pyro bourgaeanae–Quercetum occur). In Appendix 2 we have selected those which are of rotundifoliae, Sanguisorbo agrimonioidis–Quercetum suberis, high discriminatory value for the definition biogeographical Arbuto unedonis–Quercetum pyrenaicae). Finally, the territories. Almeriense sector (Murciano–Almeriense province) is well defined by the climax communities of Ziziphus lotus (Zizipho Fruticose silicicole vegetation loti–Maytenetum europaei, Ziziphetum loti)andPeriploca This type of community is found in western Andalusia. The laevigata subsp. angustifolia (Mayteno europaei–Periplocetum most characteristic elements include: Genisto tridentis– angustifoliae), also present in the Murciano sector. Stauracanthetum boivinii in the Aljı´bico sector, also found in the neighbouring Tingitana province of northern ; Matorral scrub and calcicole scrub Erico ciliaris-Ulicetum lusitanici, Erico scopariae–Ulicetum The matorral scrub and calcicole scrub are stages in the australis, Halimio commutati–Cistetum bourgeani and Halimio degradation of the climax vegetation, e.g. the communities halimifolii–Stauracanthetum genistoidis are typical of the related to the dolomitic and glareo–dolomitic soils of the Onubense district; and Thymo albicantis–Stauracanthetum Baetic province (Convolvuletalia boissieri), where Convolvulo genistoidis, typical of the Gaditano district. In the nitidi–Andryaletum agardhii is typical of the Malacitano– Maria´nico–Monchiquense sector Ulici eriocladi-Ericetum Almijarense sector (Alfacarino–Granatense district), umbellate stands out. Hippocrepido eriocarpae–Pterocephaletum spathulati and Helianthemo visciduli–Anthyllidetum argyrophyllae of the Rupicolous vegetation Almijarense district, Helianthemo frigiduli–Pterocephaletum In the Baetic mountains, chasmophyte calcicole vegetation spathulati of the Sub-Baetic–Maginense district, Scorzonero is very well represented. These communities, rich in endemic

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 Biogeographical Synthesis of Andalusia 923 taxa of the genus Saxifraga (S. biternata, S. boissieri, S. Mun˜oz Garmendia, F., Paiva, J. & Villar, L. (1986–1993) Flora camposii subsp. camposii, S. camposii subsp. leptophylla, S. Ibe´rica, vols. 1–4. Real Jardı´n Bota´nico. Madrid. erioblasta, S. globulifera subsp. granatensis, S. reuteriana, Emberger, L. (1930) Sur une formule applicable en ge´ographie S. rigoi), characterize the biogeographical sectors and botanique. Compt. Rend. Hebd. Se´anc. Acad. Sci. Paris, 191, districts of the Baetic province (Mota, Gu´mez-Mercado 389–391. Galiano, E. F. (1975) Donne´es disponibles et lacunes de la & Valle, 1991). Other species are typical of chasmophyte connaissance floristique de l’Espagne. La flore du bassin communities on siliceous rocks such as S. nevadensis me´diterane´en. Essai de syste´matique synthe´tique, pp. 29–39. (Saxifragetum nevadensis) in the Nevadense sector, or C.N.R.S. Parı´s. Saxifraga gemmulosa (Asplenio–Saxifragetum gemmulosae) Ge´hu, J.M. & Rivas-Martı´nez, S. (1980) Notions fondamentales of the chrysolite rocks of the Bermejense district. de phytosociologie. Syntaxonomie pp. 5–33. J. Cramer, Vaduz. Go´mez-Campo, C. & Malato-Beliz, J.(1985) The Iberian Peninsula. Plant conservation in the Mediterranean area (ed. by C. Go´mez- Other communities Campo), pp. 47–70. Dr W. Junk Publishers, Dordrecht. We include in this section a group of communities belonging Greuter, W., Burdet, H.M. & Long, G. (eds) (1984–1989) Med- to different phytosociological classes (therophytes, crop Checklist, vol. 1, 3, 4. Conserv. Jard. Bot. Gene´ve. weeds, nitrophiles, etc.), which have proved useful for the L’Henaff, R. (1981) Recherches ge´omorphologiques sur les Cordille`res definition of biogeographical units. Be´tiques -Occidentales (Espagne). Unpublished Ph.D. thesis, University of Paris. Martı´nez Parras, J.M. & Peinado, M (1987) Andalucı´a oriental. ACKNOWLEDGMENTS La vegetacio´n de Espan˜a (ed. by M. Peinado Lorca & S. Rivas- Martı´nez), pp. 231–256. Univ. Alcala´ de Henares. We thank R. R. Brooks, Emeritus Professor of Geo- Meusel, H. Jaeger, E. & Weinert, E. (1965) Vergleichande chorologie chemistry and J. Flentley, Professor of Geography of the der zentraleuropaischen flora. Fischer, Jena. Massey University, Palmerston North, New Zealand for Mota, J., Go´mez Mercado, F. & Valle, F. (1991) Rupicolous Vegetatio comments on the manuscript. The authors wish to thank vegetation of the betic ranges (South Spain). , 94, 101–113. Ross Howard for translating the original manuscript into Mota, J., Valle, F. & Cabello J. (1993) Dolomitic vegetation of English. This research was supported by DGCYT project South Spain. Vegetatio, 109, 29–45. NAT-89–0087-CO3. Ozenda, P. (1971) Sur une extension de la notion de zone et d’etage de ve´ge´tation submediterrane´ens. Compt. Rend. Soc. Bioge´ogr. 415, 92–103. REFERENCES Peinado, M., Alcaraz, F. & Martı´nez Parras, J.M. (1992) Vegetation of southeastern Spain. Fl. et Veget. Mundi. 10; 1–487. Alcaraz, F. & Peinado, M. (1987) El sudeste ibe´rico semia´rido. La Pe´rez Raya, F. (1987) Vegetacio´n en el sector Malacitano-Almijarense vegetacio´n de Espan˜a (ed. byn˜ M. Peinado Lorca & S. Rivas- de Sierra Nevada. Unpublished Ph.D. thesis, University of Martı´nez), pp. 259–281. Univ. Alcala´ de Henares. Granada. Alcaraz, F., Dı´az, T.E., Rivas-Martı´nez, S. & Sa´nchez Go´mez, P. Perez Raya, F., Lopez Nieto, J., Molero Mesa, J. & Valle, F. (1989) Datos sobre la vegetacio´n del sudeste de Espan˜a: provincia ´ ´ biogeogra´fica Murciano-Almeriense. Itinera Geobot. 2, 5–133. (1990) Vegetacio´n de Sierra Nevada. Ayuntamiento de Granada, Alcaraz, F, Sa´nchez Go´mez, P.& De la Torre, A. (1991) Biogeografı´a Granada. de la provincia Murciano–Almeriense hasta el nivel de subsector. Que´zel, P. (1953) Contribution a l’e´tude phytosociologique et Rivagodaya, 6, 77–100. geobotanique de la Sierra Nevada. Mem. Soc. Brot. 9, 5–77. Asensi, A. & Dı´ez Garretas, B. (1987) Andalucı´a occidental. La Que´zel, P. (1979) Les foreˆts du pourtour me´diterrane´en. Foreˆts et vegetacio´n de Espan˜a (ed. by M. Peinado Lorca & S. Rivas- maquis me´diterrane´ens: e´cologie, conservation et ame´nagement, Martı´nez), pp. 199–230. Univ. Alcala´ de Henares. pp. 9–33. Les Presses de l’Unesco, Parı´s. Asensi, A. & Dı´ez Garretas, B. (1993) Dry coastal ecosystems of Que´zel, P. (1985) Definition of the Mediterranean region and the southeastern and eastern Spain. Dry coastal ecosystems, (ed. by origin of its flora. Plant conservation in the Mediterranean area E. Van der Maarel), pp. 363–368. Elsevier, Amsterdam. (ed. by C. Go´mez-Campo) pp. 9–24. Dr. W. Junk Publishers, Asensi, A. & Rivas-Martı´nez, S. (1977) Contribucio´nal Dordrecht. conocimiento fitosociolo´gico de los pinsapares de la Serranı´ade Rivas Goday, S. & Mayor Lo´pez, M. (1966) Aspectos de la Ronda. Anal. Inst. Bot. Cavanilles, 33, 239–247. vegetacio´n y flora oro´fila del Reino de Granada. Anal. Real Axelrod, D. I. & Raven, P. H. (1972) Evolutionary biogeography Acad. Farm. 31, 345–400. viewed from plate tectonic theory. Challenging biological Rivas Goday, S. & Rivas-Martı´nez, S. (1969) Matorrales y tomillares problems: directions toward their solution (ed. by J.A. Behnke), de la Penı´nsula Ibe´rica comprendidos en la Cl. Ononido- pp. 218–236. New York. Rosmarinetea Br.-Bl. 1947. Anal. Inst. Bot. Cavanilles 25, 5–180. Blanca, G. (1993) Origen de la Flora andaluza. Introduccio´nala Rivas Goday, S. & Rivas-Martı´nez, S. (1971) Vegetacio´n potencial flora andaluza, pp. 19–35. Junta de Andalucı´a. Agencia de Medio de la provincia de Granada. Trab. Dept. Bot. Fisiol. Veg. Madrid, Ambiente, Sevilla. 4, 3–85. Bolo´s, O. (1963) Bota´nica y Geografı´a. Mem. Real Acad. Ci. Rivas Goday, S. & Esteve, F. (1972) Flora serpentinı´cola espan˜ola. , 34, 3–51. Nota segunda. Nuevos edafismos ende´micos y sus respectivas Bourgois, J. (1978) La transversale de Ronda (Cordille´res be´tiques, asociaciones del Reino de Granada. Anal. Real Acad. Farm. 38, Espagne). Ann Sci. Univ. Besanc¸on (Geol.), 30, 1–445. 409–461. Braun-Blanquet, J. (1951) Pflanzensoziologie. Grundzuge der Rivas-Martı´nez, S. (1973) Avances sobre una sı´ntesis corolo´gica Vegetationskunde. Springer-Verlag. Wien. de la penı´nsula Ibe´rica, Baleares y Canarias. Anal. Inst. Bot. Castroviejo, S., Laı´nz, M., Lo´pez Gonza´lez, G., Montserrat, P., Cavanilles, 30, 69–87.

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 924 Salvador Rivas-Martı´nez et al.

Rivas-Martı´nez, S. (1981) Les e´tages bioclimatiques de la ve´ge´tation E. (1980) Vegetacio´n de Don˜ana (Huelva, Espan˜a). Lazaroa, 2, de la peninsule Ibe´rique. Anal. Jard. Bot. Madrid 37, 251–268. 5–189. Rivas-Martı´nez, S. (1982) Etages bioclimatiques, secteurs Rivas-Martı´nez, S., Lousa, M. Dı´az, T.E., Ferna´ndez Gonza´lez, F. chorologiques et se´ries de ve´ge´tation de l’Espagne & Costa, J.C. (1990) La vegetacio´n del sur de (Sado, me´diterrane´enne. Ecol. Medit. 8, 275–288. y Algarve). Itinera Geobot. 3, 5–126. Rivas-Martı´nez, S. (1987) Memoria del mapa de series de vegetacio´n Rivas-Martı´nez, S., Asensi, A., Molero Mesa, J. & Valle, F. (1991) de Espam˜ a. Ministerio de Agricultura, Pesca y Alimentacio´n Endemismos vasculares de Andalucı´a. Rivasgodaya, 6, 5–76. (ICONA), Madrid. Rivas-Martı´nez, S., Wildpret, W., Dı´az, T.E., Pe´rez de Paz, P. L., Rivas-Martı´nez, S. (1988) Bioclimatologı´a, biogeografı´a y series de Del Arco, M. & Rodriguez, O. (1993) Excursion guide. Outline vegetacio´n de Andalucı´a Occidental. Lagascalia, 15 (extra), 91–119. vegetation of Island (). Itinera Geobot. Rivas-Martı´nez, S. (1990) Bioclimatic belts of West Europe (Relations 7, 5–168. between bioclimate and plant ecosystems). Environment and quality Takhtajan, A. (1986) Floristic regions of the world. University of of life: climate and global change (ed. by J. C. Duplessy, A. Pons Press, Berkeley. & R. Fantechi), pp. 225–246. Proc. Eur. School Cim. Nat. Hazards Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Course. Commission of the European Communities. Valentine, D. H., Walters, S. M. & Webb, D. A. (eds.) (1964–1980) Rivas-Martı´nez, S. (1995) Clasificacio´n bioclima´tica de la Tierra. Flora Europaea, vols. 1–5. Cambridge University Press, Folia Bot. Matritensis, 14, 1–25. Cambridge. Rivas-Martı´nez, S., Arnaiz, C., Barreno, E. & Crespo, A. (1977) Valde´s, B., Talavera, S. & Galiano, E. F. (eds) (1987) Flora vascular Apuntes sobre las provincias corolo´gicas de la penı´nsula Ibe´rica de Andalucı´a occidental, vols. 1–3. Ketres, Barcelona. e islas Canarias. Opusc. Bot. Pharm. Complut. 1, 1–48. Walter, H. & Lieth, H. (1960–1967) Klimadiagramm-Weltatlas. Rivas-Martı´nez, S., Costa, M., Castroviejo, S. & Valde´s Bermejo, Fischer, Jena.

APPENDIX 1. Endemic taxa of different sectors and districts. The districts in which each taxon may be found are given in brackets, in accordance with the biogeographical classification proposed in the text. Nomenclature follows Tutin et al. (1964, 1980), Greuter et al. (1984, 1989), Valde´s et al. (1987), Castroviejo et al. (1986, 1993), and Rivas-Martı´nez et al. (1991).

1. H S Omphalodes commutata (2a, 2b, 2c) Anchusa puechii (1a) Ononis saxicola (2a) Anthemis bourgaei (1b) Orobanche haenseleri (2a) Centaurea pauneroi (1a) Platycapnos tenuiloba subsp. parallela (2b) Ononis azcaratei (1b) Reseda undata subsp. gayana (2a) Silene stockeni (1b) Saxifraga biternata (2c) Silene tomentosa (1b) Saxifraga boissieri (2a) Saxifraga gemmulosa (2b) 2. R˜  S Saxifraga reuteriana (2c) Abies pinsapo (2a, 2b) Scrophularia viciosoi (2c) Allium rouyi (2b) Sideritis incana var. occidentalis (2a) Anthyllis vulneraria subsp. arundana (2a) Silene fernandezii (2b) Arenaria capillipes (2b) Silene inaperta subsp. serpentinicola (2b) Arenaria retusa subsp. retusa (2b) Sisymbrium arundanum (2a) Armeria carratracensis (2b) Staehelina baetica (2b) Armeria colorata (2b) Teucrium chrysotrichum (2b) Armeria malacitana (2b) Ulex baeticus subsp. baeticus (2a, 2b, 2c) Armeria villosa (2a) Vulpia hispanica subsp. montana (2a) Avenula bromoides subsp. arundana (2a) Campanula specularioides (2a) 3. M–A S Carduus rivasgodayanus (2a) Arenaria caesia (3b, 3c) Centaurea carratracensis (2b) Arenaria delaguardiae (3b) Centaurea lainzii (2b) Arenaria racemosa (3b) Cytisus moleroi (2a) Armeria filicaulis subsp. trevenqueana (3c) Erodium recoderi (2a) Brachypodium boissieri (3b, 3c) Fumana lacidulemiensis (2a) Brassica repanda subsp. latisiliqua (3b, 3c) Galium pulvinatum (2a) Centaurea boissieri subsp. funkii (3c) Galium viridiflorum (2b) Centaurea bombycina (3b, 3c) Halimium atriplicifolium subsp. serpentinicola (2b) Erodium boissieri (3c) Helictotrichon filifolium subsp. arundanum (2a) Erodium daucoides (3c) Iberis fontqueri (2b) Eryngium grossii (3b) Koeleria dasyphylla (2a) Genista nevadensis (3c) Lepidium hirtum subsp. anticarium (2c) Helianthemum estevei (3c) Linaria clementei subsp. clementei (2b) Helianthemum pannosum (3c) Linaria clementei subsp. reverchonii (2b) Helianthemum raynaudii (3c) Linaria huteri (2b) Helianthemum viscidulum subsp. viscidulum (3b, 3c) Linaria oblongifolia (2a, 2c) Hieracium texedense (3b) Linaria platycalyx (2a) Iberis grossii (3b) Linum suffruticosum subsp. carratracensis (2b) Limonium malacitanum (3a) Nepeta amethystina subsp. anticaria (2c) Limonium subglabrum (3c)

(continued)

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 Biogeographical Synthesis of Andalusia 925

APPENDIX 1. (continued).

Linaria amoi (3b) Coronopus navasii (5b) Linum suffruticosum subsp. dolomiticolum (3b) Lavatera oblongifolia (5) Odontites granatensis (3c) Limonium ugijarense (5a) Rothmaleria granatensis (3b, 3c) Seseli intricatum (5b) Scabiosa pulsatilloides (3c) Teucrium cavanillesianum (5b) Silene boryi subsp. tejedensis (3b, 3c) Teucrium eriocephalum subsp. serranum (5a) Tanacetum funkii (3c) Teucrium oxylepis subsp. oxylepis (5a) Teucrium fragile (3b) Veronica fontqueri (5b) Thymelaea tartonraira subsp. angustifolia (3b, 3c) Trisetum velutinum (3b, 3c) 6. N S Ulex parviflorus subsp. rivasgodayanus (3b) Agrostis canina subsp. granatensis (6a) Alchemilla fontqueri (6a) 4. S-B S Alyssum diffusum subsp. corymbosum (6a) Alyssum baeticum (4b) Alyssum purpureum (6a) Alyssum fastigiatum (4b) Anthyllis vulneraria subsp. nivalis (6a) Alyssum reverchonii (4b) Antirrhinum rupestre (6a) Anthyllis rupestris (4b) Arenaria imbricata (6a) Aquilegia pyrenaica subsp. cazorlensis (4b) Armeria splendens (6a) Arenaria alfacarensis (4a, 4b, 4c) Artemisia granatensis (6a) Carduncellus hispanicus subsp. macrocephalus (4) Astragalus sempervirens subsp. nevadensis (6a) Carlina baetica (4b, 4c) Biscutella glacialis (6a) Centaurea boissieri subsp. prostrata (4b, 4c, 4d) Campanula willkommii (6a) Centaurea jaennensis (4b) Carduus carlinoides subsp. hispanicus (6a) Cirsium rosulatum (4b, 4c) Carex camposii (6a, 6b) Crepis granatensis (4a, 4b) Centaurea pulvinata (6a) Dianthus anticarius subsp. subbeticus (4b) Centaurea sagredoi (6b) Erodium cazorlanum (4b) Cerastium alpinum subsp. aquaticum (6a) Erysimum favargeri (4b) Cerastium alpinum subsp. nevadense (6a) Erysimum fitzii (4a) Chaenorrhinum glareosum (6a) Erysimum myriophyllum subsp. cazorlense (4b) Coincya orophila subsp. nevadensis (6a, 6b) Festuca cordubensis (4a) Dactyllis juncinella (6a) Geranium cazorlense (4b) Draba dubia subsp. nevadensis (6a) Helianthemum frigidulum (4a) Draba hispanica subsp. laderoi (6a) Helianthemum viscidulum subsp. viscarioides (4a, 4b) Erigeron frigidus (6a) Hypochaeris rutea (4a) Erodium rupicola (6b) Jasione crispa subsp. segurensis (4b, 4c) Festuca clementei (6a) Jurinea fontqueri (4a) Festuca frigida (6a) Leucanthemopsis spathulifolia (4b, 4c) Festuca pseudoeskia (6a) Lithodora nitida (4a) Genista versicolor (6a) Moehringia intricata subsp. giennensis (4b, 4c, 4d) Gentiana pneumonanthe subsp. depressa (6a) Muscari cazorlanum (4b) Gentiana verna subsp. sierrae (6a) Narcissus longispathus (4a, 4b, 4c) Herniaria boissieri (6a) Ranunculus malessanus (4b, 4c) Holcus caespitosus (6a) Salvia blancoana (4b, 4c) Iberis embergeri (6a) Sarcocapnos baetica subsp. integrifolia (4a, 4b) Jasione crispa subsp. amethystina (6a) Saxifraga rigoi (4b, 4c) Laserpitium longiradium (6a) Scabiosa andryalifolia (4b, 4c) Leontodon carpetanus subsp. nevadensis (6a) Scilla paui (4b, 4c) Leontodon microcephalus (6a) Scilla reverchonii (4b) Lepidium stylatum (6a) Scorzonera albicans (4b, 4c) Leucanthemopsis pectinata (6a) Scorzonera reverchonii (4b, 4c) Linaria aeruginea subsp. nevadensis (6a) Sideritis laxespicata (4b, 4c) Linaria glacialis (6a) Sisymbriella aspera subsp. pseudoboissieri (4b) Moehringia fontqueri (6a) Solenanthus reverchonii (4b) Nepeta boissieri (6a) Succisella andreae-molinae (4b, 4c) Phleum abbreviatum (6a) Thymelaea granatensis subsp. glauca (4a) Pimpinella procumbens (6a) Thymelaea granatensis subsp. granatensis (4) Pinguicula nevadensis (6a) Vicia glauca subsp. giennensis (4a) Plantago nivalis (6a) Viola cazorlensis (4a, 4b, 4c) Poa minor subsp. nevadensis (6a) Potentilla nevadensis subsp. condensata (6a) 5. A˜ -G S Potentilla nevadensis subsp. nevadensis (6a) Alyssum gadorense (5b) Primula elatior subsp. lofthousei (6a, 6b) Astragalus tremolsianus (5b) Ranunculus acetosellifolius (6a) Carduncellus hispanicus subsp. hispanicus (5b) Ranunculus angustifolius subsp. alismoides (6a) Centaurea gadorensis (5b) Reseda complicata (6a)

(continued)

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 926 Salvador Rivas-Martı´nez et al.

APPENDIX 1. (continued).

Salix hastata subsp. sierrae-nevadae (6a) Verbascum giganteum subsp. martinezii (9a) Saxifraga nevadensis (6a) Vulpia fontquerana (9b) Senecio elodes (6a) 10. A S Senecio malacitanus subsp. frigidus (6a) (These taxa are also found in Portugal) Sideritis arborescens subsp. luteola (6a, 6b) Linaria lamarckii Thlaspi nevadense (6a) Thymus carnosus Thymus serpylloides (6a, 6b) Ulex subsericeus Trisetum antoni-josephi (6a) Trisetum glaciale (6a) 11. M–M S Vaccinium uliginosum subsp. nanum (6a) Armeria capitella (11a) Verbascum nevadense (6a) Armeria pauana (11a) Veronica turbicola (6a) Centaurea cordubensis (11a) Viola crassiuscula (6a) Centaurea galianoi (11b) Centaurea monticola subsp. citricolor (11a) 7. G–B S Centaurea taresiana (11b) Armeria lanceobracteata (7c) Coincya longirostra (11a) Brassica repanda subsp. almeriensis (7c) Dianthus crassipes subsp. serenaeus (11a) Helianthemum viscidulum subsp. guadicianum (7a) Erica andevalensis (11b) Limonium majus (7a) Gyrocarium oppositifolium (11a) Limonium minus (7a) Linaria intricata (11a, 11b) Limonium quesadense (7a) Saxifraga camposii subsp. leptophylla (7c) 12. A S Sideritis funkiana subsp. funkiana (7a) Androcymbium europaeum (12b, 12c) Sideritis stachyoides (7c) Antirrhinum charidemi (12c) Chaenorrhinum grandiflorum subsp. grandiflorum (12b) Coris hispanica (12b) 8. A´ı S Dianthus charidemi (12c) Armeria hirta Euzomodendrum bourgaeanum (12b) Brachypodium gaditanum Helianthemum alypoides (12b) Carduus lusitanicus subsp. santacreui Herniaria fontanesii subsp. almeriana (12a, 12b, 12c) Cytisus tribracteolatus Limonium album (12a) Digitalis purpurea subsp. bocquetii Limonium estevei (12a) Holcus grandiflorus Limonium tabernense (12b) Odontites foliosa Linaria benitoi (12b) Psilotum nudum var. molesworthiae Linaria nigricans (12b) Silene gaditana Moricandia foetida (12a, 12b) Narcissus tortifolius (12b) 9. G–O S Salsola papillosa (12a, 12b, 12c) Armeria hispalensis (9b) Sideritis osteoxylla (12c) Daucus arcanus (9b) Sideritis pusilla subsp. pusilla (12b, 12c) Festuca ampla subsp. simplex (9a, 9b) Silene littorea subsp. ascendens (12b) Gaudinia hispanica (9b) Teucrium balthazaris (12a) Linaria tartessiana (9b) Teucrium charidemi (12c) Linaria tursica (9b) Teucrium compactum subsp. rixanense (12b) Lythrum baeticum (9b) Teucrium eriocephalum subsp. almeriense (12b, 12c) Micropyropsis tuberosa (9b) Teucrium intricatum (12b) Ononis baetica var. donyanensis (9b) Teucrium lanigerum (12a, 12c) Rorippa valdes-bermejoi (9b) Teucrium murcicum subsp. hieronymi (12b, 12c) Sideritis arborescens subsp. perez-larae (9a) Teucrium turredanum (12b) Taraxacum gaditanum (9a, 9b) Ulex canescens (12c) Thymus albicans subsp. donyanae (9b) Verbascum charidemi (12c)

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 Biogeographical Synthesis of Andalusia 927

APPENDIX 2. Endemic or characteristic plant communities of Andalusian sectors and districts

1. H S Moehringietum giennensis (4b, 4c) Climatophilous vegetation: Rumici–Aquilegietum cazorlensis (4b) Tamo communis–Oleetum sylvestris (1b) Sarcocapnetum integrifoliae (4a, 4b) Matorral scrub: Sileno andryalifoliae–Saxifragetum camposii (4a) Asperulo hirsutae–Ulicetum scabri (1b) Other communities: Teucrio lusitanici–Coridothymetum capitati (1a) Sileno lasiostylae–Arenarietum tenuis (4b, 4c) Other communities: Chrozophoro tinctoriae–Teucrietum spinosi (1a, 1b) 5. A˜ –G S Kickxio lanigerae–Tanacetum annui (1b) Matorral scrub: Convolvulo lanuginosi–Lavanduletum lanatae (5b) 2. R˜  S Erico multiflorae–Thymetum longiflori (5a) Climatophilous vegetation: Lavandulo dentatae–Genistetum retamoidis (5a) Bunio macucae–Abietetum pinsapo (2b) Odontito–Thymetum baetici (5a) Paeonio broteroi–Abietetum pinsapo (2a) Rupicolous vegetation: Edaphoxerophilous vegetation: Asterisco maritimi–Rosmarinetum tomentosi (5a) Pino pinastri–Quercetum cocciferae (2b) Other communities: Matorral scrub: Achilleo odoratae–Astragaletum tremolsiani (5b) Asperulo asperrimae–Staehelinetum baeticae (2b) Coridothymo capitati–Genistetum haenseleri (2a, 2b, 2c) 6. N S Genisto lanuginosae–Cistetum populifolii (2b) Climatophilous vegetation: Halimio atriplicifolii–Digitaletum laciniatae (2b) Erigeronto frigidi–Festucetum clementei (6a) Ulici baetici–Cistetum clusii (2b) Genisto versicoloris–Juniperetum nanae (6a) Ulici baetici–Lavanduletum lanatae (2a, 2c) Silicicolous scrub: Chasmophyte vegetation: Teucrio compacti–Cistetum ladaniferi (6b) Linario anticariae–Saxifragetum biternatae (2c) Chasmophyte vegetation: Saxifragetum boissieri (2a) Saxifragetum nevadensis (6a) Other communities: Sedo brevifolii–Centranthetum nevadensis (6a) Arenario capillipes–Iberidetum fontqueri (2b) Other communities: Galio viridiflori–Schoenetum nigricantis (2b) Arenario granatensis–Festucetum indigestae (6a) Jasiono–Linarietum saturejoidis (2b) Arenario pungentis–Sideritetum glacialis (6a) Linario clementei–Andryaletum ramosissimae (2b) Armerio splendentis–Agrostietum nevadensis (6a) Violo demetriae–Jonopsidietum prolongoi (2a, 2c) Campanulo willkommii–Polystichetum lonchytidis (6a) Crepidi oporinoidis–Rumicetum indurati (6a) 3. M–A S Digitali nevadensis–Senecietum granatensis (6a) Edaphoxerophilous vegetation: Festucetum baetico–pseudoeskiae (6a) Rhamno myrtifoliae–Juniperetum phoeniceae (3b, 3c) Nardo strictae–Festucetum ibericae (6a) Matorral scrub: Omalotheco pusillae–Lepidietum stylati (6a) Centaureo bombycinae–Lavanduletum lanatae (3b, 3c) Ranunculo acetosellifolii–Vaccinietum uliginosi (6a) Cisto clusii–Ulicetum rivasgodayani (3b) Sedo melanantheri–Saxifragetum alpigenae (6a) Convolvulo nitidi–Andryaletum agardhii (3c) Senecio elodes–Aconitetum nevadensis (6a) Hippocrepido eriocarpae–Pterocephaletum spathulati (3b) Senecio granatensis–Digitaletum nevadensis (6a) Thymo gracilis–Lavanduletum lanatae (3a, 3b, 3c) Violo crassiusculae–Linarietum glacialis (6a) Chasmophyte vegetation: Helianthemo–Anthyllidetum argyrophyllae (3b) 7. G–B S Hieracio texedensi–Moehringietum texedensis (3b) Matorral scrub: Teucrio rotundifolii–Kerneretum boissieri (3c) Thymo granatensis–Arenarietum tomentosae (7b) Other communities: Sideritido inacanae–Lavanduletum lanatae (7d) Arenario modestae–Linarietum angustealatae (3c) Jurineo pinnatae–Gypsophiletum struthii (7a) Brachypodio boissieri–Trisetum velutinae (3b, 3c) Rupicolous vegetation: Centaureo granatensis–Andryaletum ramosissimae (3c) Athamanto hispanicae–Sideritetum stachyoidis (7c) Crithmo maritimi–Limonietum malacitani (3a) Teucrieto rotundifolii–Kerneretum boissieri alyssetosum cadevalliani Jasiono–Linarietum saturejoidis linarietosum flavae (3b) (7b) Other communities: 4. S-B S Caro–Juncetum maritimi (7a) Climatophilous vegetation: Centaureo–Dorycnietum gracilis (7a) Juniperetum phoeniceo–thuriferae pinetosum clusianae (4d) Matorral scrub: 8. A´ı S Fumano paradoxae–Thymetum sabulicolae (4c, 4d) Climatophilous vegetation: Helianthemo frigiduli–Pterocephaletum spathulati (4a) Rusco hypophylli–Quercetum canariensis Helianthemo nummularii–Genistetum pseudopilosae (4b, 4c) Teucrio baetici–Quercetum suberis Salvio pseudovellereae–Teucrietum leonis (4d) Edaphophilous vegetation: Saturejo intricatae–Genistetum boissieri (4b, 4c) Equiseto telmateiae–Salicetum pedicellatae Scorzonero albicantis–Pterocephaletum spathulati (4b, 4c) Frangulo baetici–Rhododendretum baetici Chasmophyte vegetation: Silicicolous scrub: Jasiono minutae–Saxifragetum rigoi (4b) Genisto tridentis–Stauracanthetum boivinii

(continued)

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928 928 Salvador Rivas-Martı´nez et al.

APPENDIX 2. (continued).

Phillyreo–Quercetum fruticosae Ulici eriocladi–Cistetum ladaniferi (11b) Stauracantho boivinii–Drosophylletum lusitanici Ulici eriocladi–Ericetum umbellatae (11b) Other communities: Other communities: Caricetum mauritanicae Jasiono marianae–Dianthetum lusitani (11) Clinopodio arundani–Digitaletum bocquetii Junco rugosi–Ericetum andevalensis (11b) Davallio canariensis–Sedetum baetici Laurentio–Juncetum tingitani 12. A S Limonietum emarginati Climatophilous vegetation: Mayteno europaei–Periplocetum angustifoliae (12a, 12c) 9. G–O S Ziziphetum loti (12) Silicicolous and psammophilous scrub: Zizipho loti–Maytenetum europaei (12b) Artemisio crithmifoliae–Armerietum pungentis (9a, 9b) Matorral scrub: Erico ciliaris–Ulicetum lusitanici (9b) Anabasio hispanicae–Euzomodendretum bourgaeani (12b) Erico scopariae–Ulicetum australis (9b) Astragalo grossii–Santolinetum viscosae (12a) Halimio commutati–Cistetum bourgaeani (9b) Helianthemo alypoidis–Gypsophiletum struthii (12b) Halimio halimifolii–Stauracanthetum genistoidis (9b) Helianthemo almeriensis–Sideritetum pusillae (12b) Thymo albicantis–Stauracanthetum genistoidis (9a) Limonio insignis–Anabasietum hispanicae (12) Other communities: Salsolo papillosae–Limonietum carthaginensis (12a) Haynardio cylindricae–Lophlochoetum hispidae (9b) Santolino viscosae–Gypsophiletum struthii (12b) Inulo crithmoidis–Arthrocnemetum macrostachyi (9, 10) Saturejo canescentis–Thymetum hyemalis (12a) Linario donyanae–Loeflingietum baeticae (9b) Sideritido osteoxyllae–Teucrietum charidemi (12c) Polygono–Limoniastretum monopetali (9, 10) Teucrio belionis–Helianthemetum scopulori (12) Rhamno oleoidi–Juniperetum macrocarpae (9a, 9b) Teucrio balthazaris–Santolinetum viscosae (12a) Scirpo fluitantis–Juncetum heterophylli (9b) Teucrio lanigeri–Sideritetum ibanyezii (12a) Thymelaeo hirsutae–Genistetum ramosissimae (12b) 10. A S Rupicolous calcicole vegetation: The following communities are endemic to Portugal: Cosentinio bivalentis–Teucrietum freynii (12a) Artemisio–Armerietum pungentis armerietosum velutini Galio ephedroidis–Phagnaletum saxatilis (12b) Artemisio–Armerietum pungentis linarietosum lamarckii Lafuenteo rotundifoliae–Teucrietum intricati (12b) Astragaletum vicentini Other communities: Cistetum libanotidis Artemisio barrelieri–Launeetum arborescentis (12) Genisto–Cistetum palhinhae Carrichtero annuae–Sinapietum flexuosi (12a, 12b) Querco cocciferae–Juniperetum turbinatae Castellio tuberculatae–Geranietum rotundifolii (12b) Thymo camphorati–Stauracanthetum spectabilis Limonio insignis–Lygeetum sparti (12) Thymo lotocephali–Coridothymetum capitati Wahlenbergio–Loeflingietum pentandrae (12b) Tuberario majoris–Stauracanthetum boivinii Ulicetum erinacei 13. M S Matorral scrub: 11. M´–Monchiquense Sector Lepidio subulati–Teucrietum balthazaris (13a) Silicicolous scrub: Teucrio webbiani–Helianthemetum origanifolii (13a) Ericetum australo–andevalensis (11b)

 Blackwell Science Ltd 1997, Journal of Biogeography, 24, 915–928