Entropy in Foundations of Quantum Physics • Marcin Pawłowski Entropy in Foundations of Quantum Physics

Total Page:16

File Type:pdf, Size:1020Kb

Entropy in Foundations of Quantum Physics • Marcin Pawłowski Entropy in Foundations of Quantum Physics Entropy in Foundations of Quantum Physics • Marcin Pawłowski Entropy in Foundations of Quantum Physics Edited by Marcin Pawłowski Printed Edition of the Special Issue Published in Entropy www.mdpi.com/journal/entropy Entropy in Foundations of Quantum Physics Entropy in Foundations of Quantum Physics Special Issue Editor Marcin Pawłowski MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Special Issue Editor Marcin Pawłowski University of Gdansk´ Poland Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Entropy (ISSN 1099-4300) (available at: https://www.mdpi.com/journal/entropy/special issues/ Foundations Quantum Physics). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03928-951-6 (Pbk) ISBN 978-3-03928-952-3 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editor ...................................... vii Marcin Pawłowski Entropy in Foundations of Quantum Physics Reprinted from: Entropy 2020, 22, 371, doi:10.3390/e22030371 ..................... 1 Mladen Paviˇci´c Hypergraph Contextuality Reprinted from: Entropy 2019, 21, 1107, doi:10.3390/e211111075 ................... 5 Ariel Caticha The Entropic Dynamics Approach to Quantum Mechanics Reprinted from: Entropy 2019, 21, 943, doi:10.3390/e21100943 .................... 25 Julio A. L´opez-Sald´ıvar, Octavio Casta ˜nos,Margarita A. Man’ko and Vladimir I. Man’ko A New Mechanism of Open System Evolution and Its Entropy Using Unitary Transformations in Noncomposite Qudit Systems Reprinted from: Entropy 2019, 21, 736, doi:10.3390/e21080736 ..................... 63 Jihwan Kim, Donghoon Ha and Younghun Kwon Uniqueness of Minimax Strategy in View of Minimum Error Discrimination of Two Quantum States Reprinted from: Entropy 2019, 21, 671, doi:10.3390/e21070671 .................... 75 Ziyang Chen, Yichen Zhang, Xiangyu Wang, Song Yu and Hong Guo Improving Parameter Estimation ofEntropic Uncertainty Relation in Continuous-Variable Quantum Key Distribution Reprinted from: Entropy 2019, 21, , doi:10.3390/e21070652 ....................... 91 Lu Wei On the Exact Variance of Tsallis Entanglement Entropy in a Random Pure State Reprinted from: Entropy 2019, 21, 539, doi:10.3390/e21050539 .....................107 Zhan-Yun Wang, Yi-Tao Gou, Jin-Xing Hou, Li-Ke Cao and Xiao-Hui Wang Probabilistic Resumable Quantum Teleportation of a Two-Qubit Entangled State Reprinted from: Entropy 2019, 21, 352, doi:10.3390/e21040352 .....................121 Omar Jim´enez,Miguel Angel Sol´ıs-Prosser, Leonardo Neves and Aldo Delgado Quantum Discord, Thermal Discord, and Entropy Generation in the Minimum Error Discrimination Strategy Reprinted from: Entropy 2019, 21, 263, doi:10.3390/e21030263 .....................133 Raffael Krismer Representation Lost: The Case for a Relational Interpretation of Quantum Mechanics Reprinted from: Entropy 2018, 20, 975, doi:10.3390/e20120975 ....................145 Chris Fields Some Consequences of the Thermodynamic Cost of System Identification Reprinted from: Entropy 2018, 20, 797, doi:10.3390/e201007975 ....................173 v Xiangluo Wang, Chunlei Yang, Guo-Sen Xie and Zhonghua Liu Image Thresholding Segmentation on Quantum State Space Reprinted from: Entropy 2018, 20, 728, doi:10.3390/e20100728 .....................189 Bahaaudin Mohammadnoor Raffah, Kamal Berrada Quantum Quantifiers for an Atom System Interacting with a Quantum FieldBased on Pseudoharmonic Oscillator States Reprinted from: Entropy 2018, 20, 607, doi:10.3390/e20080607 .....................205 Hai Zhong, Yijun Wang, Xudong Wang, Qin Liao, Xiaodong Wu and Ying Guo Enhancing of Self-Referenced Continuous-Variable Quantum Key Distribution with Virtual Photon Subtraction Reprinted from: Entropy 2018, 20, 578, doi:10.3390/e20080578 .....................219 Pu Wang, Xuyang Wang and Yongmin Li Security Analysis of Unidimensional Continuous-Variable Quantum Key Distribution Using Uncertainty Relations Reprinted from: Entropy 2018, 20, 157, doi:10.3390/e20030157 .....................231 Avishy Carmi and Daniel Moskovich Tsirelson’s Bound Prohibits Communication through a Disconnected Channel Reprinted from: Entropy 2018, 20, 151, doi:10.3390/e20030151 .....................245 vi About the Special Issue Editor Marcin Pawłowski, Ph.D., began his studies in economics in Gdansk,´ Poland. He later switched to physics and obtained his Ph.D. in 2010 followed by a Postdoctoral position at University of Bristol. He returned to the University of Gdansk´ in 2013 to start his own research group, which he has been running since. Right now, his Quantum Cybersecurity group is a part of International Centre for Theory of Quantum Technologies. Apart from problems in theoretical and applied quantum cryptography and communication, the group studies fundamental aspects of quantum physics which have a basis in all applications. vii entropy Editorial Entropy in Foundations of Quantum Physics Marcin Pawłowski International Centre for Theory of Quantum Technologies, University of Gda´nsk, 80-952 Gda´nsk, Poland; [email protected] Received: 18 March 2020; Accepted: 19 March 2020; Published: 24 March 2020 Keywords: foundations of quantum mechanics; quantum cryptography; entropy Entropy can be used in studies on foundations of quantum physics in many different ways, each of them using different properties of this mathematical object. First of all, entropy can be intuitively understood and we can exploit that fact by finding ways to derive predictions of quantum mechanics without employing the full mathematical apparatus of that theory. Instead, we can propose operational axioms which we can more easily understand and try to find the reasons why the universe behaves in the way that it does. The second reason for its usefulness stems simply from how convenient it is to use entropy in different aspects of information processing. It is therefore an indispensable tool for quantum information theory, which recently has been the field that led to the most breakthroughs in foundations of physics. Finally, sheer ubiquity of entropy in physics and other fields makes it a possible bridge between different areas, enabling us to carry insights from one to another. In this Special Issue, we find examples of papers which employ each of these approaches. In the paper “Hypergraph Contextuality” [1], the author introduces a new form of quantum contextuality. The two previously known forms were Kochen–Specker (KS) [2] and observable-based [3] contextualities. In paper [1], hypergraphs with 3-dim vectors are considered, in which some of those vectors that belong to only one triplet are dropped, as in the observable approach, and smaller hypergraphs are generated from them, such that one cannot assign definite binary values to them, as in the KS approach. This new approach is called hypergraph contextuality and allows us, among other things, to establish new entropic contextualities. In the paper “The Entropic Dynamics Approach to Quantum Mechanics” [4], the author develops his theory of Entropic Dynamics introduced in [5–7]. In this paper [4], A new version of Entropic Dynamics is introduced in which particles follow smooth differentiable Brownian trajectories in order to discuss why wave functions are complex and the connections between the superposition principle, the single-valuedness of wave functions, and the quantization of electric charges. In the paper “A New Mechanism of Open System Evolution and Its Entropy Using Unitary Transformations in Noncomposite Qudit Systems” [8], the authors develop further their method introduced in [9], which models the dynamics of open system evolution of qubits by the unitary evolution of qutrits instead of by composite systems as it is usually done. In particular, they apply their methodology to study the behavior of phase damping and spontaneous emission channels and compute the evolution of the state’s entropy in these channels. In the paper “Uniqueness of Minimax Strategy in View of Minimum Error Discrimination of Two Quantum States” [10], the authors consider minimum error discrimination of two quantum sates as a game. This is not a new approach; however, in this paper [10], it is generalized to take into account different prior probabilities for the states, choosing which constitutes the sender’s strategy. They are able to obtain the necessary and sufficient condition for the uniqueness of it. They also provide a condition for when the sender’s minimax strategy and the receiver’s optimal minimum error strategy cannot both be unique. Entropy 2020, 22, 371; doi:10.3390/e220303711 www.mdpi.com/journal/entropy Entropy 2020, 22, 371 Paper [11] deals with the issue of parameter estimation in continuous variable QKD. This is very simple problem with a straightforward solution if we work in an asymptotic limit. This is, however, not very practical and
Recommended publications
  • Quantum Theory Cannot Consistently Describe the Use of Itself
    ARTICLE DOI: 10.1038/s41467-018-05739-8 OPEN Quantum theory cannot consistently describe the use of itself Daniela Frauchiger1 & Renato Renner1 Quantum theory provides an extremely accurate description of fundamental processes in physics. It thus seems likely that the theory is applicable beyond the, mostly microscopic, domain in which it has been tested experimentally. Here, we propose a Gedankenexperiment 1234567890():,; to investigate the question whether quantum theory can, in principle, have universal validity. The idea is that, if the answer was yes, it must be possible to employ quantum theory to model complex systems that include agents who are themselves using quantum theory. Analysing the experiment under this presumption, we find that one agent, upon observing a particular measurement outcome, must conclude that another agent has predicted the opposite outcome with certainty. The agents’ conclusions, although all derived within quantum theory, are thus inconsistent. This indicates that quantum theory cannot be extrapolated to complex systems, at least not in a straightforward manner. 1 Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland. Correspondence and requests for materials should be addressed to R.R. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:3711 | DOI: 10.1038/s41467-018-05739-8 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05739-8 “ 1”〉 “ 1”〉 irect experimental tests of quantum theory are mostly Here, | z ¼À2 D and | z ¼þ2 D denote states of D depending restricted to microscopic domains. Nevertheless, quantum on the measurement outcome z shown by the devices within the D “ψ ”〉 “ψ ”〉 theory is commonly regarded as being (almost) uni- lab.
    [Show full text]
  • Arxiv:2004.01992V2 [Quant-Ph] 31 Jan 2021 Ity [6–20]
    Hidden Variable Model for Universal Quantum Computation with Magic States on Qubits Michael Zurel,1, 2, ∗ Cihan Okay,1, 2, ∗ and Robert Raussendorf1, 2 1Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada 2Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC, Canada (Dated: February 2, 2021) We show that every quantum computation can be described by a probabilistic update of a proba- bility distribution on a finite phase space. Negativity in a quasiprobability function is not required in states or operations. Our result is consistent with Gleason's Theorem and the Pusey-Barrett- Rudolph theorem. It is often pointed out that the fundamental objects In Theorem 2, we apply this to quantum computation in quantum mechanics are amplitudes, not probabilities with magic states, showing that universal quantum com- [1, 2]. This fact notwithstanding, here we construct a de- putation can be classically simulated by the probabilistic scription of universal quantum computation|and hence update of a probability distribution. of all quantum mechanics in finite-dimensional Hilbert This looks all very classical, and therein lies a puzzle. spaces|in terms of a probabilistic update of a probabil- In fact, our Theorem 2 is running up against a number ity distribution. In this formulation, quantum algorithms of no-go theorems: Theorem 2 in [23] and the Pusey- look structurally akin to classical diffusion problems. Barrett-Rudolph (PBR) theorem [24] say that probabil- While this seems implausible, there exists a well-known ity representations for quantum mechanics do not exist, special instance of it: quantum computation with magic and [9{13] show that negativity in certain Wigner func- states (QCM) [3] on a single qubit.
    [Show full text]
  • Appendix: the Interaction Picture
    Appendix: The Interaction Picture The technique of expressing operators and quantum states in the so-called interaction picture is of great importance in treating quantum-mechanical problems in a perturbative fashion. It plays an important role, for example, in the derivation of the Born–Markov master equation for decoherence detailed in Sect. 4.2.2. We shall review the basics of the interaction-picture approach in the following. We begin by considering a Hamiltonian of the form Hˆ = Hˆ0 + V.ˆ (A.1) Here Hˆ0 denotes the part of the Hamiltonian that describes the free (un- perturbed) evolution of a system S, whereas Vˆ is some added external per- turbation. In applications of the interaction-picture formalism, Vˆ is typically assumed to be weak in comparison with Hˆ0, and the idea is then to deter- mine the approximate dynamics of the system given this assumption. In the following, however, we shall proceed with exact calculations only and make no assumption about the relative strengths of the two components Hˆ0 and Vˆ . From standard quantum theory, we know that the expectation value of an operator observable Aˆ(t) is given by the trace rule [see (2.17)], & ' & ' ˆ ˆ Aˆ(t) =Tr Aˆ(t)ˆρ(t) =Tr Aˆ(t)e−iHtρˆ(0)eiHt . (A.2) For reasons that will immediately become obvious, let us rewrite this expres- sion as & ' ˆ ˆ ˆ ˆ ˆ ˆ Aˆ(t) =Tr eiH0tAˆ(t)e−iH0t eiH0te−iHtρˆ(0)eiHte−iH0t . (A.3) ˆ In inserting the time-evolution operators e±iH0t at the beginning and the end of the expression in square brackets, we have made use of the fact that the trace is cyclic under permutations of the arguments, i.e., that Tr AˆBˆCˆ ··· =Tr BˆCˆ ···Aˆ , etc.
    [Show full text]
  • Quantum Violation of Classical Physics in Macroscopic Systems
    Quantum VIOLATION OF CLASSICAL PHYSICS IN MACROSCOPIC SYSTEMS Lucas Clemente Ludwig Maximilian University OF Munich Max Planck INSTITUTE OF Quantum Optics Quantum VIOLATION OF CLASSICAL PHYSICS IN MACROSCOPIC SYSTEMS Lucas Clemente Dissertation AN DER Fakultät für Physik DER Ludwig-Maximilians-Universität München VORGELEGT VON Lucas Clemente AUS München München, IM NoVEMBER 2015 TAG DER mündlichen Prüfung: 26. Januar 2016 Erstgutachter: Prof. J. IGNACIO Cirac, PhD Zweitgutachter: Prof. Dr. Jan VON Delft WEITERE Prüfungskommissionsmitglieder: Prof. Dr. HarALD Weinfurter, Prof. Dr. Armin Scrinzi Reality is that which, when you stop believing in it, doesn’t go away. “ — Philip K. Dick How To Build A Universe That Doesn’t Fall Apart Two Days Later, a speech published in the collection I Hope I Shall Arrive Soon Contents Abstract xi Zusammenfassung xiii List of publications xv Acknowledgments xvii 0 Introduction 1 0.1 History and motivation . 3 0.2 Local realism and Bell’s theorem . 5 0.3 Contents of this thesis . 10 1 Conditions for macrorealism 11 1.1 Macroscopic realism . 13 1.2 Macrorealism per se following from strong non-invasive measurability 15 1.3 The Leggett-Garg inequality . 17 1.4 No-signaling in time . 19 1.5 Necessary and sufficient conditions for macrorealism . 21 1.6 No-signaling in time for quantum measurements . 25 1.6.1 Without time evolution . 26 1.6.2 With time evolution . 27 1.7 Conclusion and outlook . 28 Appendix 31 1.A Proof that NSIT0(1)2 is sufficient for NIC0(1)2 . 31 2 Macroscopic classical dynamics from microscopic quantum behavior 33 2.1 Quantifying violations of classicality .
    [Show full text]
  • Arxiv:1909.06771V2 [Quant-Ph] 19 Sep 2019
    Quantum PBR Theorem as a Monty Hall Game Del Rajan ID and Matt Visser ID School of Mathematics and Statistics, Victoria University of Wellington, Wellington 6140, New Zealand. (Dated: LATEX-ed September 20, 2019) The quantum Pusey{Barrett{Rudolph (PBR) theorem addresses the question of whether the quantum state corresponds to a -ontic model (system's physical state) or to a -epistemic model (observer's knowledge about the system). We reformulate the PBR theorem as a Monty Hall game, and show that winning probabilities, for switching doors in the game, depend whether it is a -ontic or -epistemic game. For certain cases of the latter, switching doors provides no advantage. We also apply the concepts involved to quantum teleportation, in particular for improving reliability. Introduction: No-go theorems in quantum foundations Furthermore, concepts involved in the PBR proof have are vitally important for our understanding of quantum been used for a particular guessing game [43]. physics. Bell's theorem [1] exemplifies this by showing In this Letter, we reformulate the PBR theorem into that locally realistic models must contradict the experi- a Monty Hall game. This particular gamification of the mental predictions of quantum theory. theorem highlights that winning probabilities, for switch- There are various ways of viewing Bell's theorem ing doors in the game, depend on whether it is a -ontic through the framework of game theory [2]. These are or -epistemic game; we also show that in certain - commonly referred to as nonlocal games, and the best epistemic games switching doors provides no advantage. known example is the CHSH game; in this scenario the This may have consequences for an alternative experi- participants can win the game at a higher probability mental test of the PBR theorem.
    [Show full text]
  • Particle Or Wave: There Is No Evidence of Single Photon Delayed Choice
    Particle or wave: there is no evidence of single photon delayed choice. Michael Devereux* Los Alamos National Laboratory (Retired) Abstract Wheeler supposed that the way in which a single photon is measured in the present could determine how it had behaved in the past. He named such retrocausation delayed choice. Over the last forty years many experimentalists have claimed to have observed single-photon delayed choice. Recently, however, researchers have proven that the quantum wavefunction of a single photon assumes the identical mathematical form of the solution to Maxwell’s equations for that photon. This efficacious understanding allows for a trenchant analysis of delayed-choice experiments and denies their retrocausation conclusions. It is now usual for physicists to employ Bohr’s wave-particle complementarity theory to distinguish wave from particle aspects in delayed- choice observations. Nevertheless, single-photon, delayed-choice experiments, provide no evidence that the photon actually acts like a particle, or, instead, like a wave, as a function of a future measurement. And, a recent, careful, Stern-Gerlach analysis has shown that the supposition of concurrent wave and particle characteristics in the Bohm-DeBroglie theory is not tenable. PACS 03.65.Ta, 03.65.Ud 03.67.-a, 42.50.Ar, 42.50.Xa 1. Introduction. Almost forty years ago Wheeler suggested that there exists a type of retrocausation, which he called delayed choice, in certain physical phenomena [1]. Specifically, he said that the past behavior of some quantum systems could be determined by how they are observed in the present. “The past”, he wrote, “has no existence except as it is recorded in the present” [2].
    [Show full text]
  • The Mathemathics of Secrets.Pdf
    THE MATHEMATICS OF SECRETS THE MATHEMATICS OF SECRETS CRYPTOGRAPHY FROM CAESAR CIPHERS TO DIGITAL ENCRYPTION JOSHUA HOLDEN PRINCETON UNIVERSITY PRESS PRINCETON AND OXFORD Copyright c 2017 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu Jacket image courtesy of Shutterstock; design by Lorraine Betz Doneker All Rights Reserved Library of Congress Cataloging-in-Publication Data Names: Holden, Joshua, 1970– author. Title: The mathematics of secrets : cryptography from Caesar ciphers to digital encryption / Joshua Holden. Description: Princeton : Princeton University Press, [2017] | Includes bibliographical references and index. Identifiers: LCCN 2016014840 | ISBN 9780691141756 (hardcover : alk. paper) Subjects: LCSH: Cryptography—Mathematics. | Ciphers. | Computer security. Classification: LCC Z103 .H664 2017 | DDC 005.8/2—dc23 LC record available at https://lccn.loc.gov/2016014840 British Library Cataloging-in-Publication Data is available This book has been composed in Linux Libertine Printed on acid-free paper. ∞ Printed in the United States of America 13579108642 To Lana and Richard for their love and support CONTENTS Preface xi Acknowledgments xiii Introduction to Ciphers and Substitution 1 1.1 Alice and Bob and Carl and Julius: Terminology and Caesar Cipher 1 1.2 The Key to the Matter: Generalizing the Caesar Cipher 4 1.3 Multiplicative Ciphers 6
    [Show full text]
  • The Case for Quantum State Realism
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-23-2012 12:00 AM The Case for Quantum State Realism Morgan C. Tait The University of Western Ontario Supervisor Wayne Myrvold The University of Western Ontario Graduate Program in Philosophy A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Morgan C. Tait 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Philosophy Commons Recommended Citation Tait, Morgan C., "The Case for Quantum State Realism" (2012). Electronic Thesis and Dissertation Repository. 499. https://ir.lib.uwo.ca/etd/499 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. THE CASE FOR QUANTUM STATE REALISM Thesis format: Monograph by Morgan Tait Department of Philosophy A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Morgan Tait 2012 THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr. Wayne Myrvold Dr. Dan Christensen Supervisory Committee ______________________________ Dr. Robert Spekkens ______________________________ Dr. Robert DiSalle ______________________________ Dr. Chris Smeenk The thesis by Morgan Christopher Tait entitled: The Case for Quantum State Realism is accepted in partial fulfillment of the requirements for the degree of « Doctor of Philosophy» ______________________ _______________________________ Date Chair of the Thesis Examination Board ii Abstract I argue for a realist interpretation of the quantum state.
    [Show full text]
  • Reformulation of Quantum Mechanics and Strong Complementarity from Bayesian Inference Requirements
    Reformulation of quantum mechanics and strong complementarity from Bayesian inference requirements William Heartspring Abstract: This paper provides an epistemic reformulation of quantum mechanics (QM) in terms of inference consistency requirements of objective Bayesianism, which include the principle of maximum entropy under physical constraints. Physical constraints themselves are understood in terms of consistency requirements. The by-product of this approach is that QM must additionally be understood as providing the theory of theories. Strong complementarity - that dierent observers may live in separate Hilbert spaces - follows as a consequence, which resolves the rewall paradox. Other clues pointing to this reformu- lation are analyzed. The reformulation, with the addition of novel transition probability arithmetic, resolves the measurement problem completely, thereby eliminating subjectivity of measurements from quantum mechanics. An illusion of collapse comes from Bayesian updates by observer's continuous outcome data. Dark matter and dark energy pop up directly as entropic tug-of-war in the reformulation. Contents 1 Introduction1 2 Epistemic nature of quantum mechanics2 2.1 Area law, quantum information and spacetime2 2.2 State vector from objective Bayesianism5 3 Consequences of the QM reformulation8 3.1 Basis, decoherence and causal diamond complementarity 12 4 Spacetime from entanglement 14 4.1 Locality: area equals mutual information 14 4.2 Story of Big Bang cosmology 14 5 Evidences toward the reformulation 14 5.1 Quantum redundancy 15 6 Transition probability arithmetic: resolving the measurement problem completely 16 7 Conclusion 17 1 Introduction Hamiltonian formalism and Schrödinger picture of quantum mechanics are assumed through- out the writing, with time t 2 R. Whenever the word entropy is mentioned without addi- tional qualication, it refers to von Neumann entropy.
    [Show full text]
  • Antum Entanglement in Time
    antum Entanglement in Time by Del Rajan A thesis submied to the Victoria University of Wellington in fullment of the requirements for the degree of Doctor of Philosophy Victoria University of Wellington 2020 Abstract is thesis is in the eld of quantum information science, which is an area that reconceptualizes quantum physics in terms of information. Central to this area is the quantum eect of entanglement in space. It is an interdependence among two or more spatially separated quantum systems that would be impossible to replicate by classical systems. Alternatively, an entanglement in space can also be viewed as a resource in quantum information in that it allows the ability to perform information tasks that would be impossible or very dicult to do with only classical information. Two such astonishing applications are quantum com- munications which can be harnessed for teleportation, and quantum computers which can drastically outperform the best classical supercomputers. In this thesis our focus is on the theoretical aspect of the eld, and we provide one of the rst expositions on an analogous quantum eect known as entanglement in time. It can be viewed as an interdependence of quantum systems across time, which is stronger than could ever exist between classical systems. We explore this temporal eect within the study of quantum information and its foundations as well as through relativistic quantum information. An original contribution of this thesis is the design of one of the rst quantum information applications of entanglement in time, namely a quantum blockchain. We describe how the entanglement in time provides the quantum advantage over a classical blockchain.
    [Show full text]
  • New Journal of Physics the Open–Access Journal for Physics
    New Journal of Physics The open–access journal for physics The rise and fall of redundancy in decoherence and quantum Darwinism C Jess Riedel1,2,5, Wojciech H Zurek1,3 and Michael Zwolak1,4 1 Theoretical Division/CNLS, LANL, Los Alamos, NM 87545, USA 2 Department of Physics, University of California, Santa Barbara, CA 93106, USA 3 Santa Fe Institute, Santa Fe, NM 87501, USA 4 Department of Physics, Oregon State University, Corvallis, OR 97331, USA E-mail: [email protected] New Journal of Physics 14 (2012) 083010 (20pp) Received 9 March 2012 Published 10 August 2012 Online at http://www.njp.org/ doi:10.1088/1367-2630/14/8/083010 Abstract. A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality—the fact that multiple observers can agree on the state of a subsystem after measuring just a small fraction of its environment—implies that the correlations found in nature between macroscopic systems and their environments are exceptional. Building on previous studies of quantum Darwinism showing that highly redundant branching states are produced ubiquitously during pure decoherence, we examine the conditions needed for the creation of branching states and study their demise through many-body interactions. We show that even constrained dynamics can suppress redundancy to the values typical of random states on relaxation timescales, and prove that these results hold exactly in the thermodynamic limit.
    [Show full text]
  • Schrödinger Equation Revisited
    Schrödinger equation revisited Wolfgang P. Schleicha,b, Daniel M. Greenbergera,c, Donald H. Kobeb, and Marlan O. Scullyd,e,f,1 aInstitut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, D-89069 Ulm, Germany; bDepartment of Physics, University of North Texas, Denton, TX 76203-1427; cCity College of the City University of New York, New York, NY 10031; dTexas A&M University, College Station, TX 77843; ePrinceton University, Princeton, NJ 08544; and fBaylor University, Waco, TX 97096 Contributed by Marlan O. Scully, February 8, 2013 (sent for review November 8, 2012) The time-dependent Schrödinger equation is a cornerstone of quan- i) Starting from the nonlinear wave equation (Eq. 2), we as- tum physics and governs all phenomena of the microscopic world. sume that we search for a wave equation for a scalar wave However, despite its importance, its origin is still not widely ap- containing only a first-order derivative in time and a second- preciated and properly understood. We obtain the Schrödinger order derivative in space, and we establish a mathematical equation from a mathematical identity by a slight generalization identity involving derivatives of a complex-valued field. of the formulation of classical statistical mechanics based on the ii) A description (16–20) of classical statistical mechanics in Hamilton–Jacobi equation. This approach brings out most clearly terms of a classical matter wave whose phase is given by the fact that the linearity of quantum mechanics is intimately con- the classical action and is governed by the Hamilton–Jacobi nected to the strong coupling between the amplitude and phase equation (21), and whose amplitude is defined by the square of a quantum wave.
    [Show full text]