Pallas's Cat Status Review & Conservation Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Pallas's Cat Status Review & Conservation Strategy ISSN 1027-2992 I Special Issue I N° 13 | Spring 2019 Pallas'sCAT cat Status Reviewnews & Conservation Strategy 02 CATnews is the newsletter of the Cat Specialist Group, Editors: Christine & Urs Breitenmoser a component of the Species Survival Commission SSC of the Co�chairs IUCN/SSC International Union for Conservation of Nature (IUCN). It is pu���� Cat Specialist Group lished twice a year, and is availa�le to mem�ers and the Friends of KORA, Thunstrasse 31, 3074 Muri, the Cat Group. Switzerland Tel ++41(31) 951 90 20 For joining the Friends of the Cat Group please contact Fax ++41(31) 951 90 40 Christine Breitenmoser at [email protected] <urs.�[email protected]�e.ch> <ch.�[email protected]> Original contri�utions and short notes a�out wild cats are welcome Send contributions and observations to Associate Editors: Ta�ea Lanz [email protected]. Guidelines for authors are availa�le at www.catsg.org/catnews This Special Issue of CATnews has �een produced with Cover Photo: Camera trap picture of manul in the support from the Taiwan Council of Agriculture's Forestry Bureau, Kot�as Hills, Kazakhstan, 20. July 2016 Fondation Segré, AZA Felid TAG and Zoo Leipzig. (Photo A. Barashkova, I Smelansky, Si�ecocenter) Design: �ar�ara sur�er, werk’sdesign gm�h Layout: Ta�ea Lanz and Christine Breitenmoser Print: Stämpfli AG, Bern, Switzerland ISSN 1027-2992 © IUCN SSC Cat Specialist Group The designation of the geographical entities in this pu�lication, and the representation of the material, do not imply the expression of any opinion whatsoever on the part of the IUCN concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or �oundaries. CATnews Special Issue 13 Spring 2019 chapter 5 TASHI DHENDUP1,2*, BIKRAM SHRESTHA3,4, NEERAJ MAHAR5, SHEKHAR KOLIPAKA6, GANGA nates from Google Earth to map the species RAM REGMI7 AND RODNEY JACKSON8 distribution and calculating the Area of Oc- cupancy AOO. The distribution points were Distribution and status of the also categorised as historical (< 2000) and contemporary (≥ 2000) and wherever pos- manul in the Himalayas and sible into "confirmed" (C1), "probable" (C2) and "possible" (C3) records according to the China SCALP criteria (Molinari-Jobin et al. 2012). Only contemporary data inclusive of C1, C2 In this article, we used published and grey literature and expert observations to re- and C3 records was used to calculate AOO view the distribution and conservation status of the Near Threatened Pallas’s cat or (Table 1). However, due to the low number manul Otocolobus manul in Bhutan, China, India, and Nepal. The species appears of recent records, the estimated AOO was widespread in China; however, distribution in the Himalayas is patchy and not clear- unrealistically small. Therefore, we have ly understood. Recent sightings and camera trap records from north Sikkim in India also included estimates of the extant and and Bhutan extend the species range to the east of the Himalayas and suggest a possibly extant range of the Pallas’s cat in wider distribution than previously thought. Nevertheless, the population size and the region from the range-wide data of the trend in the region remain unknown. The Pallas’s cat is likely to be threatened by most recent IUCN Red List Assessment (Ross habitat degradation and fragmentation from traditional pastoralism, unregulated et al. 2016; Fig. 1) which includes expert tourism, infrastructural developments such as roads and petrochemical industry, and opinions. The AOO was estimated using Ge- also by poaching (including their prey). Climate change is also an emerging threat to ospatial Conservation Assessment Tool, also the species although the potential impacts remain uncertain. Moreover, the species known as GeoCAT (Bachman et al. 2011), an remains one of the lesser known wild cats, and in-place research and monitoring are online open-source, browser-based tool used highly lacking. There is a strong need for active conservation actions and dedicated in IUCN Red List Assessments. To calculate studies on their presence and distribution followed by a more detailed investigation the AOO, we applied a 5 x 5 km2 grid based of their ecology and the impact of ongoing anthropogenic activities. on the average home range size of female Pallas’s cats in Mongolia, which is around Pallas’s cat is known to occur widespread Methods 25 km2 (Ross et al. 2016). in China (Nowell & Jackson 1996, Jutzeler Information for this assessment was accrued 31 et al. 2010). However, their distribution in from published and grey literature, expert ob- Distribution the Trans-Himalayan regions of India to Ne- servations and through a standardised ques- We gathered a total of 358 locality records in pal and Bhutan in the eastern Himalayas is tionnaire survey developed by the IUCN SSC the current assessment out of which we could fragmented and also represent the southern Cat Specialist Group which was completed confirm only 35 as C1, one as C2 and two as limit of the species range. Records in this by Pallas's cat experts from Bhutan, India, C3. The rest were too coarse to correctly ca- range are mostly recent and sparse, and and Nepal. We reached out to researchers in tegorise and so were grouped together as re- information on Pallas's cats is currently re- China but unfortunately could not find anyone cords of unknown category. Most of these are stricted to ad-hoc presence records (mainly actively involved with the species. Therefore, historical data prior to the year 2002. Never- from snow leopard surveys) and incidental the status of Pallas's cat from China was theless, China is un-doubtedly the stronghold sightings (e.g. Thinley 2013, Shrestha et al. solely based on literature review and infor- of the species in the region with 334 location 2014). There are many studies on the ecolo- mation acquired from traceable sources such points. Bhutan has the least with only three gy of its primary prey, pika Ochotona spp., as as the IUCN Cat Specialist Group, Pallas’s records. Unlike China where the distribution well as on high altitude rangeland ecology, Cat Working Group (http://www.wild-cat. is widespread, distribution in the Himalayas especially in China (e.g. Smith et al. 1986, org/manul/pallas-cat/#), iNaturalist (https:// is discontinuous relatively restricted to one or Smith et al. 1990, Smith & Wang 1991, www.inaturalist.org) and other information two locations in each country, which appear Smith & Foggin 1999, Lai & Smith 2003, outlets including blogs and news. Some of highly isolated from each other. We were Hogan 2010, Guo et al. 2012) but very few the records had only locality references, so also able to accrue a decent amount of his- on Pallas’s cat. It is evident that the species we had to obtain approximate GPS coordi- torical data from China, but we could find is rare, occurs at low density and is highly vulnerable to disturbances from rangeland Table 1. Number of historical (year < 2000) and contemporary (year ≥ 2000) records of habitat degradation and destruction (Ross Pallas’s cats, Area of Occupancy, and extant and possibly extant areas in each country in et al. 2016). Therefore, given the dearth of the study region. information on Pallas’s cat, there is a strong Historic Contemporary AOO Extant Possibly need to take stock of what is known about Country Total (km²) the species. This will improve our under- records records (km²) (km²) extant (km²) standing of Pallas’s cat status in the region Bhutan NA 3 75 7,619 0 7,619 and help guide conservation interventions. China 255 80 1,825 932,609 991,172 1,923,781 In this article, we review the distribution India 2 8 200 20,861 8,053 28,914 and conservation status of Pallas’s cat in Bhutan, China, India and Nepal. Nepal 1 10 125 8,965 1 8,966 Pallas's cat Status Review & Conservation Strategy distribution and status in the Himalayas & China very few from India and Nepal and none from in the following years, including a nation- Published records after 2010 have come from Bhutan (Table 1). Pallas’s cat continues to wide high-elevation tiger Panthera tigris sur- the Tibetan Plateau north of Rouergai in Si- be reported in the region except for Bhutan vey in 2014 and a nationwide snow leopard chuan Province. Sightings were made in 2011, where the species has not been recorded survey in 2015 failed to gather any additional 2012 (Webb et al. 2014) and then in 2015 and since 2012. The AOO estimates for each Pallas’s cat records. 2016 (Webb et al. 2016). Sightings by tour- country in the region were produced from ists and wildlife-watching tourism operators 100 contemporary records (> 2000) resulting China with photographic evidence have also been in an unrealistically small estimated AOO China has approximately 50% of the pre- reported from other parts of the country: an of 2,225 km² for the region. However, the ap- sumed global distribution range of Pallas's adult with two kittens near the Qinghai Lake proximate extant and possibly extant areas cat (Jutzeler et al. 2010, Ross et al. 2016). in Qinghai (Townshend 2016), an adult with of the species in the countries of the region They can be found in northern, western and four kittens in the Bayan Bulag Grassland, sum up to 970,054 km2 and 999,226 km2 res- central China, in the Altai Mountains (Ross et Xinjiang (New China TV, 2018), Bortala Mon- pectively. al. 2016), and on the Qinghai-Tibetan Plateau gol Autonomous Prefecture of the Xinjiang (Mallon 2002).
Recommended publications
  • An Ounce of Prevention: Snow Leopard Crime Revisited (PDF, 4
    TRAFFIC AN OUNCE REPORT OF PREVENTION: Snow Leopard Crime Revisited OCTOBER 2016 Kristin Nowell, Juan Li, Mikhail Paltsyn and Rishi Kumar Sharma TRAFFIC REPORT TRAFFIC, the wild life trade monitoring net work, is the leading non-governmental organization working globally on trade in wild animals and plants in the context of both biodiversity conservation and sustainable development. TRAFFIC is a strategic alliance of WWF and IUCN. All material appearing in this publication is copyrighted and may be reproduced with permission. Any reproduction in full or in part of this publication must credit TRAFFIC International as the copyright owner. Financial support for TRAFFIC’s research and the publication of this report was provided by the WWF Conservation and Adaptation in Asia’s High Mountain Landscapes and Communities Project, funded by the United States Agency for International Development (USAID). The views of the authors expressed in this publication do not necessarily reflect those of the TRAFFIC network, WWF, IUCN or the United States Agency for International Development. The designations of geographical entities in this publication, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of TRAFFIC or its supporting organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The TRAFFIC symbol copyright and Registered Trademark ownership is held by WWF. TRAFFIC is a strategic alliance of WWF and IUCN. Suggested citation: Nowell, K., Li, J., Paltsyn, M. and Sharma, R.K. (2016). An Ounce of Prevention: Snow Leopard Crime Revisited.
    [Show full text]
  • Chinese Mountain Cat 1 Chinese Mountain Cat
    Chinese mountain cat 1 Chinese mountain cat Chinese Mountain Cat[1] Conservation status [2] Vulnerable (IUCN 3.1) Scientific classification Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Family: Felidae Genus: Felis Species: F. bieti Binomial name Felis bieti Milne-Edwards, 1892 Distribution of the Chinese Mountain Cat (in green) The Chinese Mountain Cat (Felis bieti), also known as the Chinese Desert Cat, is a small wild cat of western China. It is the least known member of the genus Felis, the common cats. A 2007 DNA study found that it is a subspecies of Felis silvestris; should the scientific community accept this result, this cat would be reclassified as Felis silvestris bieti.[3] Some authorities regard the chutuchta and vellerosa subspecies of the Wildcat as Chinese Mountain Cat subspecies.[1] Chinese mountain cat 2 Description Except for the colour of its fur, this cat resembles a European Wildcat in its physical appearance. It is 27–33 in (69–84 cm) long, plus a 11.5–16 in (29–41 cm) tail. The adult weight can range from 6.5 to 9 kilograms (14 to 20 lb). They have a relatively broad skull, and long hair growing between the pads of their feet.[4] The fur is sand-coloured with dark guard hairs; the underside is whitish, legs and tail bear black rings. In addition there are faint dark horizontal stripes on the face and legs, which may be hardly visible. The ears and tail have black tips, and there are also a few dark bands on the tail.[4] Distribution and ecology The Chinese Mountain Cat is endemic to China and has a limited distribution over the northeastern parts of the Tibetan Plateau in Qinghai and northern Sichuan.[5] It inhabits sparsely-wooded forests and shrublands,[4] and is occasionally found in true deserts.
    [Show full text]
  • Observations of Small Carnivores in Son Tra Nature Reserve, a Small and Isolated Protected Area in Central Vietnam
    Observations of small carnivores in Son Tra Nature Reserve, a small and isolated protected area in central Vietnam Ulrike STREICHER1 and Larry ULIBARRI2 Abstract Over half the 45.5 km² Son Tra peninsula in central Vietnam is a nature reserve. The peninsula has been isolated from other natural habitat by sea and urbanisation for decades. Various surveys since the 1960s have recorded Large-toothed Ferret Badger Melogale personata, Small Indian Civet Viverricula indica, Common Palm Civet Paradoxurus hermaphroditus, Small Asian Mongoose Herpestes javanicus and Leopard Cat Prionailurus bengalensis; and probably otter (Lutrinae) and Large Indian Civet Viverra zibetha, although the original basis for these two is not available. Several species typical of forest in this region and active at least in large part by day were not found, suggesting that they are possibly susceptible to hunting or need larger landscapes (or both). None of the surveys targeted small carnivores, so some species, particularly nocturnal ones, might have been overlooked. The easily accessible Son Tra KeywordsNature Reserve: breeding with seasonality,its unusually community, confiding wildlife fragmentation, is ideal for habitat wildlife change, and conservation Herpestes javanicus studies and, locality education. records, Melogale per- sonata, persistence Ghi nhận thú ăn thịt nhỏ ở Khu Bảo tồn Thiên nhiên Sơn Trà, một khu bảo vệ nhỏ và cô lập ở miền trung Việt Nam Tóm tắt Khoảng một nửa diện tích 45,5 km² của bán đảo Sơn Trà ở miền trung Việt Nam là môt khu bảo tồn. Bán đảo đã bị cô lập với các sinh cảnh tự nhiên khác bởi biển và các khu đô thị từ vài thập kỷ nay.
    [Show full text]
  • The Toledo Zoo/Thinkingworks Teacher Overview for the Cat Lessons
    The Toledo Zoo/ThinkingWorks Teacher Overview for the Cat Lessons Ó2003 Teacher Overview: Cheetah, Lion, Snow Leopard and Tiger The cheetah, lion, snow leopard and tiger have traits that are unique to their particular species. Below is a list of general traits for each species that will help you and your students complete the ThinkingWorks lesson. The cheetah, lion, snow leopard and tiger belong to the class of vertebrate (e.g., animals with a backbone) animals known as Mammalia or Mammals. This group is characterized by live birth, suckling young with milk produced by the mother, a covering of hair or fur and warm-bloodedness (e.g., capable of producing their own body heat). The class Mammalia is further broken down into smaller groups known as orders and families. The cheetah, snow leopard and tiger belong to the order Carnivora, a group typified as flesh-eating, with large canine teeth. Two of the many other members of this order include dogs (e.g., wolf, African wild dog and fox) bears (e.g., polar and black bear), weasels (e.g., skunk and otter) and seals (e.g., gray and harbor seal). The cheetah, lion, snow leopard and tiger also belong to the family Felidae, a family composed of many species including the leopard, jaguar, bobcat and puma. Cheetahs are currently exhibited on the historic side of the Zoo near the Museum and on the north side of the Zoo in the Africa! exhibit. Lions are exhibited in the Africa Savanna near the exit. Snow leopards are exhibited on the historic side between the sloth bear exhibit and the exit to the African Savanna.
    [Show full text]
  • Pallas's Cat Status Review & Conservation Strategy
    ISSN 1027-2992 I Special Issue I N° 13 | Spring 2019 Pallas'sCAT cat Status Reviewnews & Conservation Strategy 02 CATnews is the newsletter of the Cat Specialist Group, Editors: Christine & Urs Breitenmoser a component of the Species Survival Commission SSC of the Co-chairs IUCN/SSC International Union for Conservation of Nature (IUCN). It is pub- Cat Specialist Group lished twice a year, and is available to members and the Friends of KORA, Thunstrasse 31, 3074 Muri, the Cat Group. Switzerland Tel ++41(31) 951 90 20 For joining the Friends of the Cat Group please contact Fax ++41(31) 951 90 40 Christine Breitenmoser at [email protected] <[email protected]> <[email protected]> Original contributions and short notes about wild cats are welcome Send contributions and observations to Associate Editors: Tabea Lanz [email protected]. Guidelines for authors are available at www.catsg.org/catnews This Special Issue of CATnews has been produced with Cover Photo: Camera trap picture of manul in the support from the Taiwan Council of Agriculture's Forestry Bureau, Kotbas Hills, Kazakhstan, 20. July 2016 Fondation Segré, AZA Felid TAG and Zoo Leipzig. (Photo A. Barashkova, I Smelansky, Sibecocenter) Design: barbara surber, werk’sdesign gmbh Layout: Tabea Lanz and Christine Breitenmoser Print: Stämpfli AG, Bern, Switzerland ISSN 1027-2992 © IUCN SSC Cat Specialist Group The designation of the geographical entities in this publication, and the representation of the material, do not imply the expression of any opinion whatsoever on the part of the IUCN concerning the legal status of any country, territory, or area, or its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • PICA Project Report (Action A2.2 & 2.3)
    PICA Project Report (Action A2.2 & 2.3) Investigation of Pallas’s cat activity patterns and temporal interactions with sympatric species Authors: Katarzyna Ruta, Gustaf Samelius, David Barclay, Emma Nygren PICA - “Conservation of the Pallas’s cat through capacity building, research, and global planning” 1. Introduction: 1.1 Activity patterns of wild felids: Activity patterns form a part of species’ adaptation to their environment (Beltran & Delibes, 1994) and are therefore a fundamental aspect of animal behaviour (Nielsen, 1983; Weller & Bennett, 2001). Felids are generally considered to be crepuscular and nocturnal in their activity (Kitchener, 1991), although they are well adapted to function in a wide range of light conditions (Sunquist & Sunquist, 2002). Numerous abiotic pressures and biotic interactions are known to shape the temporal behaviour of (cat-like) carnivores (Marinho et al., 2018), including changes in temperature (Beltran & Delibes, 1994; Podolski et al., 2013), light (Huck et al., 2017; Heurich et al., 2014) and season (Podolski et al., 2013; Manfredi et al., 2011), sex and reproductive status of the animal (Kolbe & Squires, 2007; Schmidt, 1999; Schmidt et al., 2009), predation risk (Caro, 2005; Farías et al., 2012) and human disturbance (Wolf & Ale, 2009; Ale & Brown, 2009). Owing to the dietary constraints of carnivores whose preys have their own well-defined circadian rhythms (Halle, 2000; Zielinski, 2000), the availability and vulnerability of prey is, however, considered as one of the main influences on predator temporal activity (Zielinski, 1988; Lodé, 1995). According to Optimal Foraging Theory, predators are expected to synchronize their daily activity with the activity of their most profitable prey, increasing the probability of encounters while reducing energy expenditure (MacArthur & Pianka, 1966; Monterroso et al., 2013; Emmons, 1987).
    [Show full text]
  • Origin of the Egyptian Domestic Cat
    UPTEC X 12 012 Examensarbete 30 hp Juni 2012 Origin of the Egyptian Domestic Cat Carolin Johansson Molecular Biotechnology Programme Uppsala University School of Engineering UPTEC X 12 012 Date of issue 2012-06 Author Carolin Johansson Title (English) Origin of the Egyptian Domestic Cat Title (Swedish) Abstract This study presents mitochondrial genome sequences from 22 Egyptian house cats with the aim of resolving the uncertain origin of the contemporary world-wide population of Domestic cats. Together with data from earlier studies it has been possible to confirm some of the previously suggested haplotype identifications and phylogeny of the Domestic cat lineage. Moreover, by applying a molecular clock, it is proposed that the Domestic cat lineage has experienced several expansions representing domestication and/or breeding in pre-historical and historical times, seemingly in concordance with theories of a domestication origin in the Neolithic Middle East and in Pharaonic Egypt. In addition, the present study also demonstrates the possibility of retrieving long polynucleotide sequences from hair shafts and a time-efficient way to amplify a complete feline mitochondrial genome. Keywords Feline domestication, cat in ancient Egypt, mitochondrial genome, Felis silvestris libyca Supervisors Anders Götherström Uppsala University Scientific reviewer Jan Storå Stockholm University Project name Sponsors Language Security English Classification ISSN 1401-2138 Supplementary bibliographical information Pages 123 Biology Education Centre Biomedical Center Husargatan 3 Uppsala Box 592 S-75124 Uppsala Tel +46 (0)18 4710000 Fax +46 (0)18 471 4687 Origin of the Egyptian Domestic Cat Carolin Johansson Populärvetenskaplig sammanfattning Det är inte sedan tidigare känt exakt hur, när och var tamkatten domesticerades.
    [Show full text]
  • Sabin Snow Leopard Grant Program
    Sabin Snow Leopard Grant Program The Andrew Sabin Family Foundation and Panthera have partnered to launch the new Sabin Snow Leopard Grants Program, which will provide up to $100,000 a year to support in situ conservation projects on snow leop- ards. Awards of up to $20,000 per project will be made for one year, but may be extended to subsequent years, contingent upon performance and results. ELIGIBILITY Applications may be made by individuals, or institutions. In the latter case, the project leader must be identified and make the submission. Application is open to all qualified candidates but projects led by country nationals and/or in country NGOs will be given priority. SPECIES AND LOCATION The Sabin Snow Leopard Grants Program supports applications for in situ conservation efforts on the snow leop- ard in Asia. Emphasis will be given to requests for field conservation and research activities, including: • Applying interventions that directly and immediately mitigate threats to snow leopards including activities which measurably reduce the persecution of snow leopards by pastoralists and poachers, the illegal trade in snow leopards, and so on. • Monitoring and Research. We are very interested in survey efforts in areas of the snow leopard’s range for which there is limited or poor data, including developing baseline information on snow leopard populations; identifying and delineating important connections between known snow leopard populations; and undertak- ing basic research on snow leopard ecology where gaps exist. BUDGET GUIDELINES The maximum allowable request is $20,000 per annum. Panthera will consider local salaries, per diems, and sti- pends for local field personnel only; we will not fund salaries for core administrative and management personnel.
    [Show full text]
  • Spatio-Temporal Coexistence of Sympatric Mesocarnivores with a Single Apex Carnivore in a fine-Scale Landscape
    Global Ecology and Conservation 21 (2020) e00897 Contents lists available at ScienceDirect Global Ecology and Conservation journal homepage: http://www.elsevier.com/locate/gecco Original Research Article Spatio-temporal coexistence of sympatric mesocarnivores with a single apex carnivore in a fine-scale landscape Guojing Zhao a, b, c, d, e, 1, Haitao Yang a, b, c, d, e, 1, Bing Xie a, b, c, d, e, * Yinan Gong a, b, c, d, e, Jianping Ge a, b, c, d, e, Limin Feng a, b, c, d, e, a Northeast Tiger and Leopard Biodiversity National Observation and Research Station, Beijing Normal University, Beijing, 100875, China b National Forestry and Grassland Administration Key Laboratory for Conservation Ecology of Northeast Tiger and Leopard National Park, Beijing Normal University, Beijing, 100875, China c National Forestry and Grassland Administration Amur Tiger and Amur Leopard Monitoring and Research Center, Beijing Normal University, Beijing, 100875, China d Ministry of Education Key Laboratory for Biodiversity Science and Engineering, Beijing Normal University, Beijing, 100875, China e College of Life Sciences, Beijing Normal University, Beijing, 100875, China article info abstract Article history: Mesocarnivores uniquely and profoundly impact ecosystem function, structure, and dy- Received 23 July 2019 namics. Sympatric species tend to spatially and temporally partition limited resources to Received in revised form 22 December 2019 facilitate coexistence. We investigated the seasonal spatial and temporal cooccurrences Accepted 22 December 2019 among six mesocarnivores, the leopard cat (Prionailurus bengalensis), red fox (Vulpes vulpes), Asian badger (Meles leucurus), Siberian weasel (Mustela sibirica), masked palm Keywords: civet (Paguma larvata) and yellow-throated marten (Martes flavigula), as well as a single Camera trap apex predator (Northern Chinese leopard, Panthera pardus japonensis).
    [Show full text]
  • Project Snow Leopard
    PROJECT SNOW LEOPARD Ministry of Environment and Forests PROJECT SNOW LEOPARD Ministry of Environment and Forests CONTENTS 1. Introduction 1 2. Project Justification 5 3. Project Objectives 11 4. Project Areas 15 4.1. Criteria for determining landscapes 18 5. Broad management principles 19 5.1. Management approach 21 5.2. Management initiatives 22 5.3. Strategy for reaching out 24 5.4. Research 24 6. Indicative Activities under Project 27 7. Administration 31 8. Financial Implications 35 9. Conclusion 37 10. Time-lines 39 11. Annexures 41 1. Details of the Project Snow Leopard, Drafting Committee instituted by the Ministry of Environment and Forests, Government of India, (vide Notification No. F.No., 15/5/2006 WL I, Dated 31 July 2006) 41 2. Recommendations of the National Workshop on ‘Project Snow Leopard’ held on 11-12 July, 2006 at Leh-Ladakh 42 3. Known protected areas in the Indian high altitudes (including the Trans-Himalaya and Greater Himalaya) with potential for snow leopard occurrence (Rodgers et al. 2000, WII Database and inputs from the respective Forest/Wildlife Departments). 43 4. List of PAs in the Five Himalayan States. PAs in the snow leopard range are seperately iden tified (based on WII Database and inputs from state Forest/Wildlife Departments) 44 12. Activity Flow chart 48 FOREWORD The Indian Himalaya have numerous unique ecosystems hidden within, which house rich biodiversity including a wealth of medicinal plants, globally important wildlife, besides providing ecological, aesthetic, spiritual and economic services. A significant proportion of these values is provided by high altitude areas located above the forests – the alpine meadows and the apparently bleak cold deserts beyond, an area typified by the mystical apex predator, the snow leopard, which presides over the stark landscape inhabited by its prey including a variety of wild sheep and goats.
    [Show full text]
  • Hybrid Cats’ Position Statement, Hybrid Cats Dated January 2010
    NEWS & VIEWS AAFP Position Statement This Position Statement by the AAFP supersedes the AAFP’s earlier ‘Hybrid cats’ Position Statement, Hybrid cats dated January 2010. The American Association of Feline Practitioners (AAFP) strongly opposes the breeding of non-domestic cats to domestic cats and discourages ownership of early generation hybrid cats, due to concerns for public safety and animal welfare issues. Unnatural breeding between intended mates can make The AAFP strongly opposes breeding difficult. the unnatural breeding of non- Domestic cats have 38 domestic to domestic cats. This chromosomes, and most commonly includes both natural breeding bred non-domestic cats have 36 and artificial insemination. chromosomes. This chromosomal The AAFP opposes the discrepancy leads to difficulties unlicensed ownership of non- in producing live births. Gestation domestic cats (see AAFP’s periods often differ, so those ‘Ownership of non-domestic felids’ kittens may be born premature statement at catvets.com). The and undersized, if they even AAFP recognizes that the offspring survive. A domestic cat foster of cats bred between domestic mother is sometimes required cats and non-domestic (wild) cats to rear hybrid kittens because are gaining in popularity due to wild females may reject premature their novelty and beauty. or undersized kittens. Early There are two commonly seen generation males are usually hybrid cats. The Bengal (Figure 1), sterile, as are some females. with its spotted coat, is perhaps The first generation (F1) female the most popular hybrid, having its offspring of a domestic cat bred to origins in the 1960s. The Bengal a wild cat must then be mated back is a cross between the domestic to a domestic male (producing F2), cat and the Asian Leopard Cat.
    [Show full text]
  • Movements and Diet of the Leopard Cat Prionailurus Bengalensis in a Seasonal Evergreen Forest in South-Central Thailand
    Acta Theriologica 45 (3): 421-426, 2000. PL ISSN 0001-7051 Movements and diet of the leopard cat Prionailurus bengalensis in a seasonal evergreen forest in south-central Thailand Lon I. GRASSMAN Jr Grassman L. I. Jr 2000. Movements and diet of the leopard cat Prionailurus bengalensis in a seasonal evergreen forest in south-central Thailand. Acta Theriologica 45: 421-426. The natural history of the leopard cat Prionailurus bengalensis (Kerr, 1792) was investigated in a seasonal evergreen forest in south-central Thailand by radio telemetry and fecal analysis. Mean overall home range size for male leopard cats (n = 3) was 4.1 km (SD = 1.23 km ) while a female cat exhibited a home range of 2.5 km . Mean one-day movement was 1.05 ± 0.35 km. They exhibited arrhythmic activity (mean = 47%) dominated by nocturnal and crepuscular tendencies. Peak activity (mean = 58%) occurred between 03.01-06.00 h and 18.01-21.00 h. Analysis of feces (n = 25) collected in the field indicated that leopard cats utilized at least 9 prey species dominated by Rattus sp. (28%). Important secondary prey items included: frogs, Mus sp., siamese hare Lepus peguensis, and tree shrew Tupaia glis. Key words: Prionailurus bengalensis, radio telemetry, movements, diet, tropics Department of Forest Biology, Kasetsart University, Bangkhen, Bangkok, 10900, Thailand Introduction The leopard cat Prionailurus bengalensis (Kerr, 1792) has one of the largest distributions of wild cats throughout Asia, but there is a conspicuous lack of data on their natural history. There have been only two previous in-depth ecological studies on leopard cats: Rabinowitz (1990) in western Thailand and Izawa et al.
    [Show full text]